Information
-
Patent Grant
-
6474348
-
Patent Number
6,474,348
-
Date Filed
Thursday, September 30, 199925 years ago
-
Date Issued
Tuesday, November 5, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Gulakowski; Randy
- Smetana; Jiri
-
CPC
-
US Classifications
Field of Search
US
- 134 221
- 134 2211
- 134 2212
- 134 23
- 134 24
- 134 2218
- 264 219
- 164 454
-
International Classifications
-
Abstract
A method of removing ceramic core material from an internal passage of a superalloy airfoil casting using a CNC controlled fluid spray nozzle in a manner that the fluid spray nozzle is caused to laterally scan and/or rotary orbit an area of one or more openings of one or more passages at an exterior casting surface to improve removal of material residing in the passage.
Description
FIELD OF THE INVENTION
The present invention relates to a method of flowing pressurized fluid into one or more internal passages of a casting to remove ceramic cote or other material.
BACKGROUND OF THE INVENTION
In the investment casting of nickel or cobalt based superalloy turbine airfoils (e.g. turbine blades and vanes), a ceramic core is positioned in the investment shell mold to produce cooling air passages internal of the casting when the molten superalloy is cast and solidified in the mold about the core.
Following casting, the ceramic core must be removed from the casting to leave the internal air cooling passages therein. In the past, the ceramic core has been removed from the cast turbine airfoil by an autoclave technique, open kettle technique or other technique. One autoclave technique involves immersing the casting in an aqueous caustic solution (e.g. 45% KOH) at elevated pressure and elevated temperature (e.g. 250 psi and 177 degrees C) for an appropriate time to dissolve or leach the core from the casting. U.S. Pat. Nos. 4,134,777 and 4,141,781 disclose autoclave techniques to remove a ceramic core.
An exemplary open kettle technique involves immersing the casting in a similar aqueous caustic solution at ambient pressure and elevated temperature (e.g. 132 degrees C) with agitation of the solution for a time to dissolve or leach the core from the casting.
U.S. Pat. No. 5,915,452 discloses removing a ceramic core from a casting using a caustic fluid at elevated temperature sprayed under pressure at an exposed region of the core in the casting.
U.S. Pat. No. 5,778,963 describes core removal using a caustic solution sprayed at a pressure of 5000 to 10,000 psi at the core in the casting. The patent indicates that ceramic core residue can be removed by directing a stream of water or steam at the casting following the high pressure spraying treatment.
U.S. Pat. No. 4,439,241 describes a caustic autoclave treatment to soften engine run deposits in internal airfoil passages followed by a waterblast treatment where water is sprayed at greater than 2000 psi from a spray nozzle through the passages to remove any remaining softened deposits from the internal passages.
An object of the present invention is to provide an improved method for removing material from an internal passage of a metallic body such as, for example, internal passages of a casting.
SUMMARY OF THE INVENTION
The present invention provides in one embodiment a method of flowing a fluid into an internal passage of a body, such as a metallic casting, to remove ceramic core material or other material therefrom under CNC control of a fluid spray nozzle in a manner that the fluid spray nozzle is caused to laterally scan a two dimensional area of each opening of one or more passages at an exterior casting surface to improve removal of ceramic core or other material residing in the passage. In an illustrative embodiment of the invention, an area of each opening of an internal passage at an exterior casting surface is scanned laterally in X and Y orthogonal directions with a fluid spray nozzle under CNC control. Motion of the fluid spray nozzle in a Z axis orthogonal to the X and Y axes also is CNC controlled to provide optimum positioning of the spray nozzle relative to the passage opening.
The present invention provides in another embodiment a method of flowing a fluid into an internal passage of a casting to remove ceramic core material or other material therefrom under CNC control of a fluid spray nozzle in a manner that the fluid spray nozzle is caused to orbitally scan a two dimensional area of each opening of one or more passages at an exterior casting surface.
Openings at the root end, tip end or trailing edge of a gas turbine engine airfoil superalloy casting (e.g. turbine blade or vane) can be scanned under CNC control pursuant to embodiments of the invention to remove residual ceramic core material from internal cooling passages.
The objects and advantages of the present invention will become more readily apparent from the following description taken with the following drawings.
DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view of apparatus for practicing an embodiment of the invention.
FIG. 1A
is a schematic view of the fluid spray nozzles mounted on a plate connected to a slide mechanism to impart scanning motion to the fluid spray nozzles.
FIG. 2
is a plan view of the end of the root of the airfoil casting showing the pattern of movement of a fluid spray nozzle relative to the root openings.
FIG. 3
is a schematic diagram illustrating the lateral scanning motion designated jiggle blast relative to an opening at the root end of the airfoil.
FIG. 4
is a plan view of the tip end of the airfoil casting showing the pattern of movement of a fluid spray nozzle relative to the tip openings.
FIGS. 5A
,
5
B are schematic diagrams illustrating the dwell and then orbiting motion, respectively, at each tip opening.
DETAILED DESCRIPTION OF THE INVENTION
Referring to
FIGS. 1 and 1A
, apparatus for practicing an embodiment of the invention is illustrated as comprising a fixture
10
for holding one or more gas turbine engine blade superalloy castings
12
in a root up orientation. In particular, each turbine blade casting
12
includes a root end
12
a
connected to an airfoil
12
b
by a platform region
12
c
. The airfoil terminates in tip end
12
d
. The root end includes openings
13
a
,
13
b
,
13
c
at the exterior surface of the root end
12
a
in
FIG. 1
, while the tip end
12
d
includes openings
15
a
,
15
b
,
15
c
,
15
d
at the exterior surface of the tip end in FIG.
4
. The openings
13
a
-
13
c
and
15
a
-
15
d
are interconnected by one or more internal passages
17
formed inside the casting
12
by a ceramic core (not shown) which has been partially removed by a prior core removal treatment of the castings
12
. The core removal treatment can comprise the aforementioned autoclave, open kettle, caustic pressure spray, and other treatment that partially removes the ceramic core from the castings
12
to leave the internal passages
17
, which may have residual ceramic core material therein. For example, in some cases, the residual ceramic core material can comprise ceramic core material whose binder (e.g. silica) has been chemically dissolved or attacked by the prior core removal treatment to weaken or soften remaining ceramic core material and allow removal thereof from the internal passages by the invention. In other cases, there may remain less residue of ceramic core material that still needs to be removed from the internal passages.
The fixture
10
is shown including a clamp assembly
20
that includes conical clamp members
22
and cooperating stops
24
that engage and clamp respective airfoils
12
b
of the respective castings
12
, while the root
12
a
is held on pins
25
a
,
25
b
residing in the root fir tree grooves on opposite sides of the root
12
a
and held against root stop
27
.
The fixture
10
and fluid spray nozzles
30
are disposed in an enclosure or cabinet (only cabinet ceiling shown in
FIG. 1A
) so that fluid sprays are confined in the cabinet. The cabinet can be of the type shown in U.S. Pat. No. 5,915,452, the teachings of which are incorporated herein by reference, or any other type of cabinet. Multiple fixtures
10
can be positioned on a rotary table or carousel (not shown) in the cabinet below the nozzles
30
to sequentially flush castings on some fixtures, while other fixtures are being loaded or unloaded outside or in a separate compartment of the cabinet. The invention is not limited to the type of fixture
10
shown and can be practiced using any suitable fixture to hold the castings
12
fixed in position relative to fluid spray nozzles
30
.
Fluid spray nozzles
30
are shown schematically in
FIG. 1A
fixedly mounted on a common support plate
32
above the openings
13
a
,
13
b
,
13
c
in the root end
12
a
of the castings
12
, FIG.
1
. The plate
32
is connected to a shaft
34
that extends through a ceiling or roof CR of cabinet (not shown) in which the fixture
10
and nozzles
30
are disposed. One or more flexible fluid seals S are provided about the shaft
34
in the ceiling. The shaft
34
is connected to a Y axis slide
44
,
FIG. 1A
, that resides on an X axis slide
45
of a conventional compound slide assembly
42
. In particular, the shaft
34
is connected to a coupling
34
a
that is connected to a ball screw
35
. The X axis slide
45
is mounted on a fixed base (not shown) for linear slide movement in an X-direction by a conventional slide servomotor
48
on the base and slide ball screw drive
50
connected to the servomotor. The Y slide
44
is mounted on a slideway
44
a
of a shoulder
45
a
of X axis slide
45
perpendicular to the X direction for linear slide movement in a Y-direction (see arrow head symbol) orthogonal to the X axis by a conventional slide servomotor and slide ball screw (not shown) mounted on the slide
45
. In this way, the fluid spray nozzles
30
can be moved in the orthogonal X and Y directions as described below. The X and Y axis slide servomotors are controlled by a CNC (computer numerical control) unit
60
to move the nozzles
30
in the X and Y directions. The CNC unit
60
can include teachable software where motions of the fluid spray nozzles
30
and locating or centering coordinates of the root end openings or tip end openings of the castings
12
residing in fixture
10
can be taught to the unit
60
by manually moving the nozzles
30
relative to the fixtured castings.
The ball screw
35
is disposed on the Y slide and is rotated by a rotary servomotor
37
relative to a ball nut
39
fixed on the Y slide. The ball screw
35
is rotated by servomotor
37
relative to ball nut
39
for movement in a Z axis orthogonal to the X and Y axes to position the nozzles
30
at an optimum position relative to the openings
13
a
,
13
b
,
13
c
of the root
12
a
(or openings
15
a
through
15
d
of the tip end
12
d
) to direct the fluid spray into each opening and maximize spray force therein. The servomotor
37
is controlled by the CNC unit
60
.
Following a core removal treatment, such as the aforementioned autoclave, open kettle treatment, etc. to partially remove the ceramic core from the castings
12
, the castings are rinsed in a water bath or spray and fixtured on fixture
10
and positioned beneath the fluid spray nozzles
30
as shown in FIG.
1
. The core removal treatment forms no part of the invention and can be practiced pursuant to any of the above mentioned treatments known to the art. The nozzles
30
are brought to a desired position or spacing opposing the openings
13
a
,
13
b
,
13
c
by servomotor
37
. The fluid spray nozzles
30
receive pressurized water via respective high pressure hoses
54
communicated to tri-plex pumps
55
by respective electric motors (not shown). The pumps can provide pressurized filtered tap water at pressures up to 3000 psi to a pressure regulator system
57
communicated to hoses
54
when solenoid valve V is opened. The water can be heated to elevated temperature if desired. Fluids other than water may be used in practice of the invention.
The fluid spray nozzles
30
typically each comprise a Washjet solid stream zero degree spray nozzle available from Spraying Systems Co., North Ave., Wheaton, Ill., although the invention is not limited to any particular type of spray nozzle. An exemplary fluid spray nozzle
30
will have a nozzle orifice diameter of 0.035 inch for certain gas turbine airfoil castings, although other orifice diameters can be used in practicing the invention depending upon the casting configuration to be treated.
After the castings
12
are fixtured on fixture
10
and the nozzles
30
positioned relative to the openings
13
a
,
13
b
,
13
c
, the pumps
55
are turned on, valve V is opened, and water at a pressure typically between 800-1500 psi is discharged from a respective nozzle
30
into each opening
13
a
,
13
b
,
13
c
at the root end
12
a
as now described.
Referring to
FIG. 2
, the pattern of CNC controlled motion of each nozzle
30
pursuant to an embodiment of the invention is shown relative to a respective root end
12
b
. In particular, each nozzle
30
traverses (as indicated by the arrow heads) successively from opening
13
a
to opening
13
b
to opening
13
c
at each root end
12
a
under CNC control. At each opening, the center of each nozzle
30
initially dwells at a center position C of the opening
13
a
,
13
b
,
13
c
determined by the CNC unit
60
based on previously taught coordinates acquired by the CNC unit and indicated by the circle in
FIG. 2
for
10
seconds or other predetermined time. The pressurized water flows through the passages
17
and exits the castings
12
at the other root openings (e.g.
13
b
,
13
c
if opening
13
a
is being water blasted), tip end openings
15
a
through
15
d
, and other openings that may be present on the castings. For example, sometimes, the internal passages
17
include openings along the trailing edge TR of the airfoil
12
b
where the water can exit. Then, at each opening
13
a
,
13
b
,
13
c
, each nozzle is moved under CNC control in a so-called jiggle motion where the center of the nozzle
30
laterally scans a two dimensional area of each opening indicated by the two dimensional box B in
FIG. 2
by motions in the X and Y directions as best shown in FIG.
3
. In
FIG. 3
, the X direction of motion of each nozzle
30
is indicated by X− and X+ relative to the center C of the opening
13
a
(or
13
b
or
13
c
), while the Y direction of motion is indicated by Y− and Y+. The aggregate of the X and Y motions causes each nozzle
30
to scan a two dimensional area indicated by the box B in
FIG. 2
at each opening
13
a
,
13
b
,
13
c
. Movement of each nozzle
30
in the Y direction is related to movement in the X direction and the number of blast cycles by the equation:
Y
=(
X
move distance/blast cycles) multiplied by 2
where X move distance is shown in FIG.
3
and blast cycles are the number of X+ to X− cycles of each nozzle
30
. By way of example only, for an X move distance of 0.040 inch and blast cycles of 20, the Y move distance is 0.004 inch.
As illustrated in Table I below, the dimensions of the box B scanned by nozzles
30
and the number of blast cycles can be controlled by the CNC unit
60
and selected from one of the box sizes listed and stored in the CNC unit:
TABLE I
|
|
X move distance
blast cycles
|
|
|
.010 inch
5
|
.020
10
|
,030
15
|
.040
20
|
.050
30
|
|
For example, a lateral scan of each nozzle
30
can occur by scanning the X axis at an X move distance of 0.010 inch with 5 blast cycles and Y move distance determined by the above equation. A different scan of each nozzle
30
can occur by scanning the X axis at an X move distance of 0.020 inch with 10 blast cycles and Y move distance determined by the above equation. A still different scan of each nozzle
30
can occur by scanning the X axis at an X move distance of 0.030 inch with 15 blast cycles and Y move distance determined by the above equation. A further scan of each nozzle
30
can occur by scanning the X axis at an X move distance of 0.040 inch with 20 blast cycles and Y move distance determined by the above equation. Another scan of each nozzle
30
can occur by scanning the X axis at an X move distance of 0.050 inch with 30 blast cycles and Y move distance determined by the above equation. One or more of these or other nozzle scans can be carried out at each opening
13
a
,
13
b
,
13
c.
Scanning of the nozzle
30
in the X and Y directions during the jiggle blast motion can occur at any selected feedrate (speed). An illustrative feedrate in the X and Y directions is 50 inches per minute under CNC control.
As mentioned, each nozzle
30
at each root end
12
a
is moved from opening
13
a
, then to opening
13
b
, then to opening
13
c
where the nozzles dwell and then undergo jiggle motion as described above. Movement between the openings
13
a
to
13
b
and
13
b
to
13
c
occurs at a rapid feedrate (speed) compared to the speed during lateral scanning constituting jiggle motion. For example, the rapid feedrate between openings
13
a
/
13
b
and
13
b
/
13
c
can be 200 inches per minute compared to the feedrate of 50 inches per minute during the jiggle motion.
After the openings
13
a
,
13
b
,
13
c
of root ends
12
a
of the castings
12
are water blasted on fixture
10
, the castings
12
are removed from the fixture .
10
and inverted and placed on another similar fixture (not shown) to hold the casting
12
in an inverted position with the tip end openings
15
a
through
15
d
facing upwardly as shown in FIG.
4
. The blade tip openings
15
a
through
15
d
are shown as circular cross-section openings and have illustrative different diameters, such as 0.015 inch diameter for smaller openings and 0.035 inch for larger openings of an aerospace airfoil casting and as high as 0.150 inch for openings of an industrial gas turbine engine airfoil castings.
After the castings
12
are fixtured, the pumps are turned on, valve V is opened, and water at a pressure typically between 800-1500 psi is discharged from the nozzles
30
successively into the openings
15
a
-
15
d
in the tip end
12
d
as now described.
Referring to
FIGS. 4 and 5
, the pattern of CNC controlled motion of each nozzle
30
pursuant to another embodiment of the invention is shown relative to a respective tip end
12
d
. In particular, each nozzle
30
traverses (as indicated by the arrow heads) at a relatively high feedrate (e.g. 200 inches per minute) successively from opening
15
a
to opening
15
b
to opening
15
c
to opening
15
d
at each tip end
12
d
under CNC control. At each tip opening, the nozzle
30
initially dwells with the nozzle center at a center CT of the tip opening determined by the CNC unit
60
for 5 seconds or other predetermined time, FIG.
5
A.
Then, at each opening
15
a
,
15
b
,
15
c
,
15
d
, the nozzle
30
is moved under CNC control in a so-called roto blast motion where the nozzle
30
is rotated at relatively low orbital speed (50 inches per minute) to orbit in a counterclockwise (or clockwise) direction about the center CT of each tip opening as indicated in FIG.
5
B. The orbiting motion is imparted by concurrently moving the Y and X slides
44
,
45
to this end.
As also illustrated in the Table II below, the radius of the orbital scan of the nozzles
30
relative to respective opening
15
a
,
15
b
,
15
c
,
15
d
and the number of orbits can be controlled by the CNC unit
60
and selected from one of the listings below stored in the CNC unit:
TABLE II
|
|
Radius of orbits
Number of orbits
|
|
|
.005 inch
2
|
.010
5
|
.015
10
|
.020
15
|
.025
20
|
|
For example, a first orbital scan of each nozzle
30
can occur at an orbital radius of 0.005 inch for two orbits. A different orbital scan can occur at 0.010 inch orbital radius for 5 orbits. A still different orbital scan can occur at 0.015 inch orbital radius for 10 orbits. Another orbital scan can occur at 0.020 inch orbital radius for 15 orbits. A further orbital scan can occur at 0.025 inch orbital radius for 20 orbits. One or more of these nozzle scans can be carried out at each opening
15
a
,
15
b
,
15
c
,
15
d
. Scanning of the nozzle
30
in the orbital manner can occur at any selected feedrate (speed). An illustrative feedrate of orbital scan is 50 inches per minute under CNC control.
The pressurized water flows through the passages
17
and exits the castings
12
at the root openings
13
a
,
13
b
,
13
c
, other tip end openings, and other openings that may be present on the castings.
Such scanning of root openings
13
a
,
13
b
,
13
c
and tip openings
15
a
,
15
b
,
15
c
,
15
d
, and trailing edge openings, if present, in the manner described above pursuant to the invention improves removal of residual ceramic core material from the passages
17
and allows the number of prior caustic core removal treatments or cycles to be reduced and yet still achieve acceptable core removal.
While the invention has been described hereabove in terms of specific embodiments thereof, it is not intended to be limited thereto and modifications and changes can made therein without departing from the spirit and scope of the invention as set forth in following claims.
Claims
- 1. A method of removing ceramic core material from an internal passage of an airfoil casting, comprising discharging pressurized fluid comprising water from a spray nozzle at an opening of the passage at an exterior surface of the casting while scanning under computer numerical control a two dimensional area of the opening by orbiting movement of said spray nozzle about a center of said opening.
- 2. The method of claim 1 wherein a radius of the orbital motion can be varied.
- 3. The method of claim 1 wherein an opening at a tip of said airfoil is scanned.
- 4. A method of removing ceramic core material from an internal passage of a superalloy airfoil casting, comprisingdischarging pressurized fluid comprising water from a spray nozzle at an opening of the passage at an exterior root surface of the casting while scanning in orthogonal directions a two dimensional area of the root opening with said spray nozzle under computer numerical control, and discharging pressurized fluid comprising water from a spray nozzle at an opening of the passage at an exterior tip surface of the casting while orbitally scanning a two dimensional area of the tip opening with said spray nozzle under computer numerical control.
US Referenced Citations (23)
Foreign Referenced Citations (6)
Number |
Date |
Country |
35 37 351 |
Apr 1987 |
DE |
2275341 |
Aug 1994 |
GB |
470365 |
Jan 1974 |
RU |
643232 |
Jan 1979 |
RU |
923718 |
Jun 1980 |
RU |
1220222 |
Aug 1995 |
RU |