The present invention relates to fiber materials, more specifically to carbon fiber materials modified with carbon nanotubes.
Fiber materials are used for many different applications in a wide variety of industries, such as the commercial aviation, recreation, industrial and transportation industries. Commonly-used fiber materials for these and other applications include carbon fiber, cellulosic fiber, glass fiber, metal fiber, ceramic fiber and aramid fiber, for example.
Carbon fiber is routinely manufactured with sizing agents to protect the material from environmental degradation. Additionally, other physical stresses can compromise carbon fiber integrity such as compressive forces and self abrasion. Many sizing formulations used to protect carbon fibers against these vulnerabilities are proprietary in nature and are designed to interface with specific resin types. To realize the benefit of carbon fiber material properties in a composite, there must be a good interface between the carbon fibers and the matrix. The sizing employed on a carbon fiber can provide a physico-chemical link between fiber and the resin matrix and thus affects the mechanical and chemical properties of the composite.
However, most conventional sizing agents have a lower interfacial strength than the carbon fiber material to which they are applied. As a consequence, the strength of the sizing and its ability to withstand interfacial stress ultimately determines the strength of the overall composite. Thus, using conventional sizing, the resulting composite will generally have a strength less than that of the carbon fiber material.
It would be useful to develop sizing agents and processes of coating the same on carbon fiber materials to address some of the issues described above as well as to impart desirable characteristics to the carbon fiber materials. The present invention satisfies this need and provides related advantages as well.
In some aspects, embodiments disclosed here relate to a composition that includes a carbon nanotube (CNT)-infused carbon fiber material. The CNT-infused carbon fiber material includes a carbon fiber material of spoolable dimensions and carbon nanotubes (CNTs) infused to the carbon fiber material. The infused CNTs are uniform in length and uniform in distribution. The CNT-infused carbon fiber material also includes a barrier coating conformally disposed about the carbon fiber material, while the CNTs are substantially free of the barrier coating.
In some aspects, embodiments disclosed herein related to a continuous CNT infusion process that includes: (a) functionalizing a carbon fiber material; (b) disposing a barrier coating on the functionalized carbon fiber material (c) disposing a carbon nanotube (CNT)-forming catalyst on the functionalized carbon fiber material; and (d) synthesizing carbon nanotubes, thereby forming a carbon nanotube-infused carbon fiber material.
The present disclosure is directed, in part, to carbon nanotube-infused (“CNT-infused”) carbon fiber materials. The infusion of CNTs to the carbon fiber material can serve many functions including, for example, as a sizing agent to protect against damage from moisture, oxidation, abrasion, and compression. A CNT-based sizing can also serve as an interface between the carbon fiber material and a matrix material in a composite. The CNTs can also serve as one of several sizing agents coating the carbon fiber material.
Moreover, CNTs infused on a carbon fiber material can alter various properties of the carbon fiber material, such as thermal and/or electrical conductivity, and/or tensile strength, for example. The processes employed to make CNT-infused carbon fiber materials provide CNTs with substantially uniform length and distribution to impart their useful properties uniformly over the carbon fiber material that is being modified. Furthermore, the processes disclosed herein are suitable for the generation of CNT-infused carbon fiber materials of spoolable dimensions.
The present disclosure is also directed, in part, to processes for making CNT-infused carbon fiber materials. The processes disclosed herein can be applied to nascent carbon fiber materials generated de novo before, or in lieu of, application of a typical sizing solution to the carbon fiber material. Alternatively, the processes disclosed herein can utilize a commercial carbon fiber material, for example, a carbon tow, that already has a sizing applied to its surface. In such embodiments, the sizing can be removed to provide a direct interface between the carbon fiber material and the synthesized CNTs, although a barrier coating and/or transition metal particle can serve as an intermediate layer providing indirect infusion, as explained further below. After CNT synthesis further sizing agents can be applied to the carbon fiber material as desired.
The processes described herein allow for the continuous production of carbon nanotubes of uniform length and distribution along spoolable lengths of tow, tapes, fabrics and other 3D woven structures. While various mats, woven and non-woven fabrics and the like can be functionalized by processes of the invention, it is also possible to generate such higher ordered structures from the parent tow, yarn or the like after CNT functionalization of these parent materials. For example, a CNT-infused woven fabric can be generated from a CNT-infused carbon fiber tow.
As used herein the term “carbon fiber material” refers to any material which has carbon fiber as its elementary structural component. The term encompasses fibers, filaments, yarns, tows, tows, tapes, woven and non-woven fabrics, plies, mats, and the like.
As used herein the term “spoolable dimensions” refers to carbon fiber materials having at least one dimension that is not limited in length, allowing for the material to be stored on a spool or mandrel. Carbon fiber materials of “spoolable dimensions” have at least one dimension that indicates the use of either batch or continuous processing for CNT infusion as described herein. One carbon fiber material of spoolable dimensions that is commercially available is exemplified by AS4 12 k carbon fiber tow with a tex value of 800 (1 tex=1 g/1,000 m) or 620 yard/lb (Grafil, Inc., Sacramento, Calif.). Commercial carbon fiber tow, in particular, can be obtained in 5, 10, 20, 50, and 100 lb. (for spools having high weight, usually a 3 k/12K tow) spools, for example, although larger spools may require special order. Processes of the invention operate readily with 5 to 20 lb. spools, although larger spools are usable. Moreover, a pre-process operation can be incorporated that divides very large spoolable lengths, for example 100 lb. or more, into easy to handle dimensions, such as two 50 lb spools.
As used herein, the term “carbon nanotube” (CNT, plural CNTs) refers to any of a number of cylindrically-shaped allotropes of carbon of the fullerene family including single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), multi-walled carbon nanotubes (MWNTs). CNTs can be capped by a fullerene-like structure or open-ended. CNTs include those that encapsulate other materials.
As used herein “uniform in length” refers to length of CNTs grown in a reactor. “Uniform length” means that the CNTs have lengths with tolerances of plus or minus about 20% of the total CNT length or less, for CNT lengths varying from between about 1 micron to about 500 microns. At very short lengths, such as 1-4 microns, this error may be in a range from between about plus or minus 20% of the total CNT length up to about plus or minus 1 micron, that is, somewhat more than about 20% of the total CNT length.
As used herein “uniform in distribution” refers to the consistency of density of CNTs on a carbon fiber material. “Uniform distribution” means that the CNTs have a density on the carbon fiber material with tolerances of plus or minus about 10% coverage defined as the percentage of the surface area of the fiber covered by CNTs. This is equivalent to ±1500 CNTs/μm2 for an 8 nm diameter CNT with 5 walls. Such a figure assumes the space inside the CNTs as fillable.
As used herein, the term “infused” means bonded and “infusion” means the process of bonding. Such bonding can involve direct covalent bonding, ionic bonding, pi-pi, and/or van der Waals force-mediated physisorption. For example, in some embodiments, the CNTs can be directly bonded to the carbon fiber material. Bonding can be indirect, such as the CNT infusion to the carbon fiber material via a barrier coating and/or an intervening transition metal nanoparticle disposed between the CNTs and carbon fiber material. In the CNT-infused carbon fiber materials disclosed herein, the carbon nanotubes can be “infused” to the carbon fiber material directly or indirectly as described above. The particular manner in which a CNT is “infused” to a carbon fiber materials is referred to as a “bonding motif.”
As used herein, the term “transition metal” refers to any element or alloy of elements in the d-block of the periodic table. The term “transition metal” also includes salt forms of the base transition metal element such as oxides, carbides, nitrides, and the like.
As used herein, the term “nanoparticle” or NP (plural NPs), or grammatical equivalents thereof refers to particles sized between about 0.1 to about 100 nanometers in equivalent spherical diameter, although the NPs need not be spherical in shape. Transition metal NPs, in particular, serve as catalysts for CNT growth on the carbon fiber materials.
As used herein, the term “sizing agent,” “fiber sizing agent,” or just “sizing,” refers collectively to materials used in the manufacture of carbon fibers as a coating to protect the integrity of carbon fibers, provide enhanced interfacial interactions between a carbon fiber and a matrix material in a composite, and/or alter and/or enhance particular physical properties of a carbon fiber. In some embodiments, CNTs infused to carbon fiber materials behave as a sizing agent.
As used herein, the term “matrix material” refers to a bulk material than can serve to organize sized CNT-infused carbon fiber materials in particular orientations, including random orientation. The matrix material can benefit from the presence of the CNT-infused carbon fiber material by imparting some aspects of the physical and/or chemical properties of the CNT-infused carbon fiber material to the matrix material.
As used herein, the term “material residence time” refers to the amount of time a discrete point along a glass fiber material of spoolable dimensions is exposed to CNT growth conditions during the CNT infusion processes described herein. This definition includes the residence time when employing multiple CNT growth chambers.
As used herein, the term “linespeed” refers to the speed at which a glass fiber material of spoolable dimensions can be fed through the CNT infusion processes described herein, where linespeed is a velocity determined by dividing CNT chamber(s) length by the material residence time.
In some embodiments, the present invention provides a composition that includes a carbon nanotube (CNT)-infused carbon fiber material. The CNT-infused carbon fiber material includes a carbon fiber material of spoolable dimensions, a barrier coating conformally disposed about the carbon fiber material, and carbon nanotubes (CNTs) infused to the carbon fiber material. The infusion of CNTs to the carbon fiber material can include a bonding motif of direct bonding of individual CNTs to the carbon fiber material or indirect bonding via a transition metal NP, barrier coating, or both.
Without being bound by theory, transition metal NPs, which serve as a CNT-forming catalyst, can catalyze CNT growth by forming a CNT growth seed structure. In one embodiment, the CNT-forming catalyst can remain at the base of the carbon fiber material, locked by the barrier coating, and infused to the surface of the carbon fiber material. In such a case, the seed structure initially formed by the transition metal nanoparticle catalyst is sufficient for continued non-catalyzed seeded CNT growth without allowing the catalyst to move along the leading edge of CNT growth, as often observed in the art. In such a case, the NP serves as a point of attachment for the CNT to the carbon fiber material. The presence of the barrier coating can also lead to further indirect bonding motifs. For example, the CNT forming catalyst can be locked into the barrier coating, as described above, but not in surface contact with carbon fiber material. In such a case a stacked structure with the barrier coating disposed between the CNT forming catalyst and carbon fiber material results. In either case, the CNTs formed are infused to the carbon fiber material. In some embodiments, some barrier coatings will still allow the CNT growth catalyst to follow the leading edge of the growing nanotube. In such cases, this can result in direct bonding of the CNTs to the carbon fiber material or, optionally, to the barrier coating. Regardless of the nature of the actual bonding motif formed between the carbon nanotubes and the carbon fiber material, the infused CNT is robust and allows the CNT-infused carbon fiber material to exhibit carbon nanotube properties and/or characteristics.
Again, without being bound by theory, when growing CNTs on carbon fiber materials, the elevated temperatures and/or any residual oxygen and/or moisture that can be present in the reaction chamber can damage the carbon fiber material. Moreover, the carbon fiber material itself can be damaged by reaction with the CNT-forming catalyst itself. That is the carbon fiber material can behave as a carbon feedstock to the catalyst at the reaction temperatures employed for CNT synthesis. Such excess carbon can disturb the controlled introduction of the carbon feedstock gas and can even serve to poison the catalyst by overloading it with carbon. The barrier coating employed in the invention is designed to facilitate CNT synthesis on carbon fiber materials. Without being bound by theory, the coating can provide a thermal barrier to heat degradation and/or can be a physical barrier preventing exposure of the carbon fiber material to the environment at the elevated temperatures. Alternatively or additionally, it can minimize the surface area contact between the CNT-forming catalyst and the carbon fiber material and/or it can mitigate the exposure of the carbon fiber material to the CNT-forming catalyst at CNT growth temperatures.
Compositions having CNT-infused carbon fiber materials are provided in which the CNTs are substantially uniform in length. In the continuous process described herein, the residence time of the carbon fiber material in a CNT growth chamber can be modulated to control CNT growth and ultimately, CNT length. This provides a means to control specific properties of the CNTs grown. CNT length can also be controlled through modulation of the carbon feedstock and carrier gas flow rates and reaction temperature. Additional control of the CNT properties can be obtained by controlling, for example, the size of the catalyst used to prepare the CNTs. For example, 1 nm transition metal nanoparticle catalysts can be used to provide SWNTs in particular. Larger catalysts can be used to prepare predominantly MWNTs.
Additionally, the CNT growth processes employed are useful for providing a CNT-infused carbon fiber material with uniformly distributed CNTs on carbon fiber materials while avoiding bundling and/or aggregation of the CNTs that can occur in processes in which pre-formed CNTs are suspended or dispersed in a solvent solution and applied by hand to the carbon fiber material. Such aggregated CNTs tend to adhere weakly to a carbon fiber material and the characteristic CNT properties are weakly expressed, if at all. In some embodiments, the maximum distribution density, expressed as percent coverage, that is, the surface area of fiber covered, can be as high as about 55% assuming about 8 nm diameter CNTs with 5 walls. This coverage is calculated by considering the space inside the CNTs as being “fillable” space. Various distribution/density values can be achieved by varying catalyst dispersion on the surface as well as controlling gas composition and process speed. Typically for a given set of parameters, a percent coverage within about 10% can be achieved across a fiber surface. Higher density and shorter CNTs are useful for improving mechanical properties, while longer CNTs with lower density are useful for improving thermal and electrical properties, although increased density is still favorable. A lower density can result when longer CNTs are grown. This can be the result of the higher temperatures and more rapid growth causing lower catalyst particle yields.
The compositions of the invention having CNT-infused carbon fiber materials can include a carbon fiber material such as a carbon filament, a carbon fiber yarn, a carbon fiber tow, a carbon tape, a carbon fiber-braid, a woven carbon fabric, a non-woven carbon fiber mat, a carbon fiber ply, and other 3D woven structures. Carbon filaments include high aspect ratio carbon fibers having diameters ranging in size from between about 1 micron to about 100 microns. Carbon fiber tows are generally compactly associated bundles of filaments and are usually twisted together to give yarns.
Yarns include closely associated bundles of twisted filaments. Each filament diameter in a yarn is relatively uniform. Yarns have varying weights described by their ‘tex,’ expressed as weight in grams of 1000 linear meters, or denier, expressed as weight in pounds of 10,000 yards, with a typical tex range usually being between about 200 tex to about 2000 tex.
Tows include loosely associated bundles of untwisted filaments. As in yarns, filament diameter in a tow is generally uniform. Tows also have varying weights and the tex range is usually between 200 tex and 2000 tex. They are frequently characterized by the number of thousands of filaments in the tow, for example 12K tow, 24K tow, 48K tow, and the like.
Carbon tapes are materials that can be assembled as weaves or can represent non-woven flattened tows. Carbon tapes can vary in width and are generally two-sided structures similar to ribbon. Processes of the present invention are compatible with CNT infusion on one or both sides of a tape. CNT-infused tapes can resemble a “carpet” or “forest” on a flat substrate surface. Again, processes of the invention can be performed in a continuous mode to functionalize spools of tape.
Carbon fiber-braids represent rope-like structures of densely packed carbon fibers. Such structures can be assembled from carbon yarns, for example. Braided structures can include a hollow portion or a braided structure can be assembled about another core material.
In some embodiments a number of primary carbon fiber material structures can be organized into fabric or sheet-like structures. These include, for example, woven carbon fabrics, non-woven carbon fiber mat and carbon fiber ply, in addition to the tapes described above. Such higher ordered structures can be assembled from parent tows, yarns, filaments or the like, with CNTs already infused in the parent fiber. Alternatively such structures can serve as the substrate for the CNT infusion processes described herein.
There are three types of carbon fiber which are categorized based on the precursors used to generate the fibers, any of which can be used in the invention: Rayon, Polyacrylonitrile (PAN) and Pitch. Carbon fiber from rayon precursors, which are cellulosic materials, has relatively low carbon content at about 20% and the fibers tend to have low strength and stiffness. Polyacrylonitrile (PAN) precursors provide a carbon fiber with a carbon content of about 55%. Carbon fiber based on a PAN precursor generally has a higher tensile strength than carbon fiber based on other carbon fiber precursors due to a minimum of surface defects.
Pitch precursors based on petroleum asphalt, coal tar, and polyvinyl chloride can also be used to produce carbon fiber. Although pitches are relatively low in cost and high in carbon yield, there can be issues of non-uniformity in a given batch.
CNTs useful for infusion to carbon fiber materials include single-walled CNTs, double-walled CNTs, multi-walled CNTs, and mixtures thereof. The exact CNTs to be used depends on the application of the CNT-infused carbon fiber. CNTs can be used for thermal and/or electrical conductivity applications, or as insulators. In some embodiments, the infused carbon nanotubes are single-wall nanotubes. In some embodiments, the infused carbon nanotubes are multi-wall nanotubes. In some embodiments, the infused carbon nanotubes are a combination of single-wall and multi-wall nanotubes. There are some differences in the characteristic properties of single-wall and multi-wall nanotubes that, for some end uses of the fiber, dictate the synthesis of one or the other type of nanotube. For example, single-walled nanotubes can be semi-conducting or metallic, while multi-walled nanotubes are metallic.
CNTs lend their characteristic properties such as mechanical strength, low to moderate electrical resistivity, high thermal conductivity, and the like to the CNT-infused carbon fiber material. For example, in some embodiments, the electrical resistivity of a carbon nanotube-infused carbon fiber material is lower than the electrical resistivity of a parent carbon fiber material. More generally, the extent to which the resulting CNT-infused fiber expresses these characteristics can be a function of the extent and density of coverage of the carbon fiber by the carbon nanotubes. Any amount of the fiber surface area, from 0-55% of the fiber can be covered assuming an 8 nm diameter, 5-walled MWNT (again this calculation counts the space inside the CNTs as fillable). This number is lower for smaller diameter CNTs and more for greater diameter CNTs. 55% surface area coverage is equivalent to about 15,000 CNTs/micron2. Further CNT properties can be imparted to the carbon fiber material in a manner dependent on CNT length, as described above. Infused CNTs can vary in length ranging from between about 1 micron to about 500 microns, including 1 micron, 2 microns, 3 microns, 4 micron, 5, microns, 6, microns, 7 microns, 8 microns, 9 microns, 10 microns, 15 microns, 20 microns, 25 microns, 30 microns, 35 microns, 40 microns, 45 microns, 50 microns, 60 microns, 70 microns, 80 microns, 90 microns, 100 microns, 150 microns, 200 microns, 250 microns, 300 microns, 350 microns, 400 microns, 450 microns, 500 microns, and all values in between. CNTs can also be less than about 1 micron in length, including about 0.5 microns, for example. CNTs can also be greater than 500 microns, including for example, 510 microns, 520 microns, 550 microns, 600 microns, 700 microns and all values in between.
Compositions of the invention can incorporate CNTs have a length from about 1 micron to about 10 microns. Such CNT lengths can be useful in application to increase shear strength. CNTs can also have a length from about 5 to about 70 microns. Such CNT lengths can be useful in applications for increased tensile strength if the CNTs are aligned in the fiber direction. CNTs can also have a length from about 10 microns to about 100 microns. Such CNT lengths can be useful to increase electrical/thermal properties as well as mechanical properties. The process used in the invention can also provide CNTs having a length from about 100 microns to about 500 microns, which can also be beneficial to increase electrical and thermal properties. Such control of CNT length is readily achieved through modulation of carbon feedstock and inert gas flow rates coupled with varying linespeeds and growth temperature.
In some embodiments, compositions that include spoolable lengths of CNT-infused carbon fiber materials can have various uniform regions with different lengths of CNTs. For example, it can be desirable to have a first portion of CNT-infused carbon fiber material with uniformly shorter CNT lengths to enhance shear strength properties, and a second portion of the same spoolable material with a uniform longer CNT length to enhance electrical or thermal properties.
Processes of the invention for CNT infusion to carbon fiber materials allow control of the CNT lengths with uniformity and in a continuous process allowing spoolable carbon fiber materials to be functionalized with CNTs at high rates. With material residence times between 5 to 300 seconds, linespeeds in a continuous process for a system that is 3 feet long can be in a range anywhere from about 0.5 ft/min to about 36 ft/min and greater. The speed selected depends on various parameters as explained further below.
In some embodiments, a material residence time of about 5 to about 30 seconds can produce CNTs having a length between about 1 micron to about 10 microns. In some embodiments, a material residence time of about 30 to about 180 seconds can produce CNTs having a length between about 10 microns to about 100 microns. In still further embodiments, a material residence time of about 180 to about 300 seconds can produce CNTs having a length between about 100 microns to about 500 microns. One skilled in the art will recognize that these ranges are approximate and that CNT length can also be modulated by reaction temperatures, and carrier and carbon feedstock concentrations and flow rates.
CNT-infused carbon fiber materials of the invention include a barrier coating. Barrier coatings can include for example an alkoxysilane, methylsiloxane, an alumoxane, alumina nanoparticles, spin on glass and glass nanoparticles. As described below, the CNT-forming catalyst can be added to the uncured barrier coating material and then applied to the carbon fiber material together. In other embodiments the barrier coating material can be added to the carbon fiber material prior to deposition of the CNT-forming catalyst. The barrier coating material can be of a thickness sufficiently thin to allow exposure of the CNT-forming catalyst to the carbon feedstock for subsequent CVD growth. In some embodiments, the thickness is less than or about equal to the effective diameter of the CNT-forming catalyst. In some embodiments, the thickness of the barrier coating is in a range from between about 10 nm to about 100 nm. The barrier coating can also be less than 10 nm, including 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, and any value in between.
Without being bound by theory, the barrier coating can serve as an intermediate layer between the carbon fiber material and the CNTs and serves to mechanically infuse the CNTs to the carbon fiber material. Such mechanical infusion still provides a robust system in which the carbon fiber material serves as a platform for organizing the CNTs while still imparting properties of the CNTs to the carbon fiber material. Moreover, the benefit of including a barrier coating is the immediate protection it provides the carbon fiber material from chemical damage due to exposure to moisture and/or any thermal damage due to heating of the carbon fiber material at the temperatures used to promote CNT growth.
The infused CNTs disclosed herein can effectively function as a replacement for conventional carbon fiber “sizing.” The infused CNTs are more robust than conventional sizing materials and can improve the fiber-to-matrix interface in composite materials and, more generally, improve fiber-to-fiber interfaces. Indeed, the CNT-infused carbon fiber materials disclosed herein are themselves composite materials in the sense the CNT-infused carbon fiber material properties will be a combination of those of the carbon fiber material as well as those of the infused CNTs. Consequently, embodiments of the present invention provide a means to impart desired properties to a carbon fiber material that otherwise lack such properties or possesses them in insufficient measure. Carbon fiber materials can be tailored or engineered to meet the requirements of specific applications. The CNTs acting as sizing can protect carbon fiber materials from absorbing moisture due to the hydrophobic CNT structure. Moreover, hydrophobic matrix materials, as further exemplified below, interact well with hydrophobic CNTs to provide improved fiber to matrix interactions.
Despite the beneficial properties imparted to a carbon fiber material having infused CNTs described above, the compositions of the present invention can include further “conventional” sizing agents. Such sizing agents vary widely in type and function and include, for example, surfactants, anti-static agents, lubricants, siloxanes, alkoxysilanes, aminosilanes, silanes, silanols, polyvinyl alcohol, starch, and mixtures thereof. Such secondary sizing agents can be used to protect the CNTs themselves or provide further properties to the fiber not imparted by the presence of the infused CNTs.
Compositions of the present invention can further include a matrix material to form a composite with the CNT-infused carbon fiber material. Such matrix materials can include, for example, an epoxy, a polyester, a vinylester, a polyetherimide, a polyetherketoneketone, a polyphthalamide, a polyetherketone, a polytheretherketone, a polyimide, a phenol-formaldehyde, and a bismaleimide. Matrix materials useful in the present invention can include any of the known matrix materials (see Mel M. Schwartz, Composite Materials Handbook (2d ed. 1992)). Matrix materials more generally can include resins (polymers), both thermosetting and thermoplastic, metals, ceramics, and cements.
Thermosetting resins useful as matrix materials include phthalic/maleic type polyesters, vinyl esters, epoxies, phenolics, cyanates, bismaleimides, and nadic end-capped polyimides (e.g., PMR-15). Thermoplastic resins include polysulfones, polyamides, polycarbonates, polyphenylene oxides, polysulfides, polyether ether ketones, polyether sulfones, polyamide-imides, polyetherimides, polyimides, polyarylates, and liquid crystalline polyester.
Metals useful as matrix materials include alloys of aluminum such as aluminum 6061, 2024, and 713 aluminum braze. Ceramics useful as matrix materials include carbon ceramics, such as lithium aluminosilicate, oxides such as alumina and mullite, nitrides such as silicon nitride, and carbides such as silicon carbide. Cements useful as matrix materials include carbide-base cermets (tungsten carbide, chromium carbide, and titanium carbide), refractory cements (tungsten-thoria and barium-carbonate-nickel), chromium-alumina, nickel-magnesia iron-zirconium carbide. Any of the above-described matrix materials can be used alone or in combination.
CNT-infused carbon fiber materials can be used in a myriad of applications. For example, chopped CNT-infused carbon fiber can be used in propellant applications. U.S. Pat. No. 4,072,546 describes the use of graphite fibers to augment propellant burning rate. The presence of CNTs infused on chopped carbon fiber can further enhance such burn rates. CNT-infused carbon fiber materials can also be used in flame retardant applications as well. For example, the CNTs can form a protective char layer that retards burning of a material coated with a layer of CNT infused carbon fiber material.
CNT-infused conductive carbon fibers can be used in the manufacture of electrodes for superconductors. In the production of superconducting fibers, it can be challenging to achieve adequate adhesion of the superconducting layer to a carrier fiber due, in part, to the different coefficients of thermal expansion of the fiber material and of the superconducting layer. Another difficulty in the art arises during the coating of the fibers by the CVD process. For example, reactive gases, such as hydrogen gas or ammonia, can attack the fiber surface and/or form undesired hydrocarbon compounds on the fiber surface and make good adhesion of the superconducting layer more difficult. CNT-infused carbon fiber materials with barrier coating can overcome these aforementioned challenges in the art.
CNT infused carbon fiber materials can be used in applications requiring wear-resistance. U.S. Pat. No. 6,691,393 describes wear resistance in carbon fiber friction materials. Such carbon fiber friction materials are used in, for example, automotive brake discs. Other wear resistance applications can include, for example, rubber o-rings and gasket seals.
The large effective surface area of CNTs makes the CNT-infused carbon fiber materials effective for water filtration applications and other extractive processes, such as separation of organic oils from water. CNT-infused carbon fiber materials can be used to remove organic toxins from water tables, water storage facilities, or in-line filters for home and office use.
In oilfield technologies, the CNT-infused carbon fibers are useful in the manufacture of drilling equipment, such as pipe bearings, piping reinforcement, and rubber o-rings. Furthermore, as described above, CNT-infused carbon fibers can be used in extractive processes. Applying such extraction properties in a formation containing valuable petroleum deposits, the CNT-infused carbon fiber materials can be used to extract oil from otherwise intractable formations. For example, the CNT-infuse carbon fiber materials can be used to extract oil from formations where substantial water and/or sand is present. The CNT-infused carbon fiber material can also be useful to extract heavier oils that would otherwise be difficult to extract due to their high boiling points. In conjunction with a perforated piping system, for example, the wicking of such heavy oils by CNT-infused carbon materials overcoated on the perforated piping can be operatively coupled to a vacuum system, or the like, to continuously remove high boiling fractions from heavy oil and oil shale formations. Moreover, such processes can be used in conjunction with, or in lieu, of conventional thermal or catalyzed cracking methods, known in the art.
CNT-infused carbon fiber materials can enhance structural elements in aerospace and ballistics applications. For example, the structures such as nose cones in missiles, leading edge of wings, primary structural parts, such as flaps and aerofoils, propellers and air brakes, small plane fuselages, helicopter shells and rotor blades, aircraft secondary structural parts, such as floors, doors, seats, air conditioners, and secondary tanks and airplane motor parts can benefit from the structural enhancement provided by CNT-infused carbon fibers. Structural enhancement in many other applications can include, for example, mine sweeper hulls, helmets, radomes, rocket nozzles, rescue stretchers, and engine components. In building and construction, structural enhancement of exterior features include columns, pediments, domes, cornices, and formwork. Likewise, in interior building structures such as blinds, sanitary-ware, window profiles, and the like can all benefit from the use of CNT-infused carbon fiber materials.
In maritime industry, structural enhancement can include boat hulls, stringers, and decks. CNT-infused carbon fiber materials can also be used in the heavy transportation industry in large panels for trailer walls, floor panels for railcars, truck cabs, exterior body molding, bus body shells, and cargo containers, for example. In automotive applications, CNT-infused carbon fiber materials can be used in interior parts, such as trimming, seats, and instrument panels. Exterior structures such as body panels, openings, underbody, and front and rear modules can all benefit from the use of CNT-infused carbon fiber materials. Even automotive engine compartment and fuel mechanical area parts, such as axles and suspensions, fuel and exhaust systems, and electrical and electronic components can all utilize CNT-infused carbon fiber materials.
Other applications of CNT-infused carbon fiber materials include, bridge construction, reinforced concrete products, such as dowel bars, reinforcing bars, post-tensioning and pre-stressing tendons, stay-in-place framework, electric power transmission and distribution structures such as utility poles, transmission poles, and cross-arms, highway safety and roadside features such as sign supports, guardrails, posts and supports, noise barriers, and in municipal pipes and storage tanks
CNT-infused carbon fiber materials can also be used in a variety of leisure equipment such as water and snow skis, kayaks, canoes and paddles, snowboards, golf club shafts, golf trolleys, fishing rods, and swimming pools. Other consumer goods and business equipment include gears, pans, housings, gas pressure bottles, components for household appliances, such as washers, washing machine drums, dryers, waste disposal units, air conditioners and humidifiers.
The electrical properties of CNT-infused carbon fibers also can impact various energy and electrical applications. For example, CNT-infused carbon fiber materials can be used in wind turbine blades, solar structures, electronic enclosures, such as laptops, cell phones, computer cabinets, where such CNT-infused materials can be used in EMI shielding, for example. Other applications include powerlines, cooling devices, light poles, circuit boards, electrical junction boxes, ladder rails, optical fiber, power built into structures such as data lines, computer terminal housings, and business equipment, such as copiers, cash registers and mailing equipment.
In some embodiments the present invention provides a continuous process for CNT infusion that includes (a) disposing a carbon nanotube-forming catalyst on a surface of a carbon fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes directly on the carbon fiber material, thereby forming a carbon nanotube-infused carbon fiber material. For a 9 foot long system, the linespeed of the process can range from between about 1.5 ft/min to about 108 ft/min. The linespeeds achieved by the process described herein allow the formation of commercially relevant quantities of CNT-infused carbon fiber materials with short production times. For example, at 36 ft/min linespeed, the quantities of CNT-infused carbon fibers (over 5% infused CNTs on fiber by weight) can exceed over 100 pound or more of material produced per day in a system that is designed to simultaneously process 5 separate tows (20 lb/tow). Systems can be made to produce more tows at once or at faster speeds by repeating growth zones. Moreover, some steps in the fabrication of CNTs, as known in the art, have prohibitively slow rates preventing a continuous mode of operation. For example, in a typical process known in the art, a CNT-forming catalyst reduction step can take 1-12 hours to perform. CNT growth itself can also be time consuming, for example requiring tens of minutes for CNT growth, precluding the rapid linespeeds realized in the present invention. The process described herein overcomes such rate limiting steps.
The CNT-infused carbon fiber material-forming processes of the invention can avoid CNT entanglement that occurs when trying to apply suspensions of pre-formed carbon nanotubes to fiber materials. That is, because pre-formed CNTs are not fused to the carbon fiber material, the CNTs tend to bundle and entangle. The result is a poorly uniform distribution of CNTs that weakly adhere to the carbon fiber material. However, processes of the present invention can provide, if desired, a highly uniform entangled CNT mat on the surface of the carbon fiber material by reducing the growth density. The CNTs grown at low density are infused in the carbon fiber material first. In such embodiments, the fibers do not grow dense enough to induce vertical alignment, the result is entangled mats on the carbon fiber material surfaces. By contrast, manual application of pre-formed CNTs does not insure uniform distribution and density of a CNT mat on the carbon fiber material.
Process 700 includes at least the operations of:
701: Functionalizing the carbon fiber material.
702: Applying a barrier coating and a CNT-forming catalyst to the functionalized carbon fiber material.
704: Heating the carbon fiber material to a temperature that is sufficient for carbon nanotube synthesis.
706: Promoting CVD-mediated CNT growth on the catalyst-laden carbon fiber.
In step 701, the carbon fiber material is functionalized to promote surface wetting of the fibers and to improve adhesion of the barrier coating.
To infuse carbon nanotubes into a carbon fiber material, the carbon nanotubes are synthesized on the carbon fiber material which is conformally coated with a barrier coating. In one embodiment, this is accomplished by first conformally coating the carbon fiber material with a barrier coating and then disposing nanotube-forming catalyst on the barrier coating, as per operation 702. In some embodiments, the barrier coating can be partially cured prior to catalyst deposition. This can provide a surface that is receptive to receiving the catalyst and allowing it to embed in the barrier coating, including allowing surface contact between the CNT forming catalyst and the carbon fiber material. In such embodiments, the barrier coating can be fully cured after embedding the catalyst. In some embodiments, the barrier coating is conformally coated over the carbon fiber material simultaneously with deposition of the CNT-form catalyst. Once the CNT-forming catalyst and barrier coating are in place, the barrier coating can be fully cured.
In some embodiments, the barrier coating can be fully cured prior to catalyst deposition. In such embodiments, a fully cured barrier-coated carbon fiber material can be treated with a plasma to prepare the surface to accept the catalyst. For example, a plasma treated carbon fiber material having a cured barrier coating can provide a roughened surface in which the CNT-forming catalyst can be deposited. The plasma process for “roughing” the surface of the barrier thus facilitates catalyst deposition. The roughness is typically on the scale of nanometers. In the plasma treatment process craters or depressions are formed that are nanometers deep and nanometers in diameter. Such surface modification can be achieved using a plasma of any one or more of a variety of different gases, including, without limitation, argon, helium, oxygen, nitrogen, and hydrogen. In some embodiments, plasma roughing can also be performed directly in the carbon fiber material itself. This can facilitate adhesion of the barrier coating to the carbon fiber material.
As described further below and in conjunction with
With reference to the illustrative embodiment of
In operation 706, CVD-promoted nanotube growth on the catalyst-laden carbon fiber material is then performed. The CVD process can be promoted by, for example, a carbon-containing feedstock gas such as acetylene, ethylene, and/or ethanol. The CNT synthesis processes generally use an inert gas (nitrogen, argon, helium) as a primary carrier gas. The carbon feedstock is provided in a range from between about 0% to about 15% of the total mixture. A substantially inert environment for CVD growth is prepared by removal of moisture and oxygen from the growth chamber.
In the CNT synthesis process, CNTs grow at the sites of a CNT-forming transition metal nanoparticle catalyst. The presence of the strong plasma-creating electric field can be optionally employed to affect nanotube growth. That is, the growth tends to follow the direction of the electric field. By properly adjusting the geometry of the plasma spray and electric field, vertically-aligned CNTs (i.e., perpendicular to the carbon fiber material) can be synthesized. Under certain conditions, even in the absence of a plasma, closely-spaced nanotubes will maintain a vertical growth direction resulting in a dense array of CNTs resembling a carpet or forest. The presence of the barrier coating can also influence the directionality of CNT growth.
The operation of disposing a catalyst on the carbon fiber material can be accomplished by spraying or dip coating a solution or by gas phase deposition via, for example, a plasma process. The choice of techniques can be coordinated with the mode with which the barrier coating is applied. Thus, in some embodiments, after forming a solution of a catalyst in a solvent, catalyst can be applied by spraying or dip coating the barrier coated carbon fiber material with the solution, or combinations of spraying and dip coating. Either technique, used alone or in combination, can be employed once, twice, thrice, four times, up to any number of times to provide a carbon fiber material that is sufficiently uniformly coated with CNT-forming catalyst. When dip coating is employed, for example, a carbon fiber material can be placed in a first dip bath for a first residence time in the first dip bath. When employing a second dip bath, the carbon fiber material can be placed in the second dip bath for a second residence time. For example, carbon fiber materials can be subjected to a solution of CNT-forming catalyst for between about 3 seconds to about 90 seconds depending on the dip configuration and linespeed. Employing spraying or dip coating processes, a carbon fiber material with a surface density of catalyst of less than about 5% surface coverage to as high as about 80% coverage, in which the CNT-forming catalyst nanoparticles are nearly monolayer. In some embodiments, the process of coating the CNT-forming catalyst on the carbon fiber material should produce no more than a monolayer. For example, CNT growth on a stack of CNT-forming catalyst can erode the degree of infusion of the CNT to the carbon fiber material. In other embodiments, the transition metal catalyst can be deposited on the carbon fiber material using evaporation techniques, electrolytic deposition techniques, and other processes known to those skilled in the art, such as addition of the transition metal catalyst to a plasma feedstock gas as a metal organic, metal salt or other composition promoting gas phase transport.
Because processes of the invention are designed to be continuous, a spoolable carbon fiber material can be dip-coated in a series of baths where dip coating baths are spatially separated. In a continuous process in which nascent carbon fibers are being generated de novo, dip bath or spraying of CNT-forming catalyst can be the first step after applying and curing or partially curing a barrier coating to the carbon fiber material. Application of the barrier coating and a CNT-forming catalyst can be performed in lieu of application of a sizing, for newly formed carbon fiber materials. In other embodiments, the CNT-forming catalyst can be applied to newly formed carbon fibers in the presence of other sizing agents after barrier coating. Such simultaneous application of CNT-forming catalyst and other sizing agents can still provide the CNT-forming catalyst in surface contact with the barrier coating of the carbon fiber material to insure CNT infusion.
The catalyst solution employed can be a transition metal nanoparticle which can be any d-block transition metal as described above. In addition, the nanoparticles can include alloys and non-alloy mixtures of d-block metals in elemental form or in salt form, and mixtures thereof. Such salt forms include, without limitation, oxides, carbides, and nitrides. Non-limiting exemplary transition metal NPs include Ni, Fe, Co, Mo, Cu, Pt, Au, and Ag and salts thereof and mixtures thereof. In some embodiments, such CNT-forming catalysts are disposed on the carbon fiber by applying or infusing a CNT-forming catalyst directly to the carbon fiber material simultaneously with barrier coating deposition. Many of these transition metal catalysts are readily commercially available from a variety of suppliers, including, for example, Ferrotec Corporation (Bedford, N.H.).
Catalyst solutions used for applying the CNT-forming catalyst to the carbon fiber material can be in any common solvent that allows the CNT-forming catalyst to be uniformly dispersed throughout. Such solvents can include, without limitation, water, acetone, hexane, isopropyl alcohol, toluene, ethanol, methanol, tetrahydrofuran (THF), cyclohexane or any other solvent with controlled polarity to create an appropriate dispersion of the CNT-forming catalyst nanoparticles. Concentrations of CNT-forming catalyst can be in a range from about 1:1 to 1:10000 catalyst to solvent. Such concentrations can be used when the barrier coating and CNT-forming catalyst is applied simultaneously as well.
In some embodiments heating of the carbon fiber material can be at a temperature that is between about 500° C. and 1000° C. to synthesize carbon nanotubes after deposition of the CNT-forming catalyst. Heating at these temperatures can be performed prior to or substantially simultaneously with introduction of a carbon feedstock for CNT growth.
In some embodiments, the present invention provides a process that includes removing sizing agents from a carbon fiber material, applying a barrier coating conformally over the carbon fiber material, applying a CNT-forming catalyst to the carbon fiber material, heating the carbon fiber material to at least 500° C., and synthesizing carbon nanotubes on the carbon fiber material. In some embodiments, operations of the CNT-infusion process include removing sizing from a carbon fiber material, applying a barrier coating to the carbon fiber material, applying a CNT-forming catalyst to the carbon fiber, heating the fiber to CNT-synthesis temperature and CVD-promoted CNT growth the catalyst-laden carbon fiber material. Thus, where commercial carbon fiber materials are employed, processes for constructing CNT-infused carbon fibers can include a discrete step of removing sizing from the carbon fiber material before disposing barrier coating and the catalyst on the carbon fiber material.
The step of synthesizing carbon nanotubes can include numerous techniques for forming carbon nanotubes, including those disclosed in co-pending U.S. Patent Application No. US 2004/0245088 which is incorporated herein by reference. The CNTs grown on fibers of the present invention can be accomplished by techniques known in the art including, without limitation, micro-cavity, thermal or plasma-enhanced CVD techniques, laser ablation, arc discharge, and high pressure carbon monoxide (HiPCO). During CVD, in particular, a barrier coated carbon fiber material with CNT-forming catalyst disposed thereon, can be used directly. In some embodiments, any conventional sizing agents can be removed prior CNT synthesis. In some embodiments, acetylene gas is ionized to create a jet of cold carbon plasma for CNT synthesis. The plasma is directed toward the catalyst-bearing carbon fiber material. Thus, in some embodiments synthesizing CNTs on a carbon fiber material includes (a) forming a carbon plasma; and (b) directing the carbon plasma onto the catalyst disposed on the carbon fiber material. The diameters of the CNTs that are grown are dictated by the size of the CNT-forming catalyst as described above. In some embodiments, the sized fiber substrate is heated to between about 550 to about 800° C. to facilitate CNT synthesis. To initiate the growth of CNTs, two gases are bled into the reactor: a process gas such as argon, helium, or nitrogen, and a carbon-containing gas, such as acetylene, ethylene, ethanol or methane. CNTs grow at the sites of the CNT-forming catalyst.
In some embodiments, the CVD growth is plasma-enhanced. A plasma can be generated by providing an electric field during the growth process. CNTs grown under these conditions can follow the direction of the electric field. Thus, by adjusting the geometry of the reactor vertically aligned carbon nanotubes can be grown radially about a cylindrical fiber. In some embodiments, a plasma is not required for radial growth about the fiber. For carbon fiber materials that have distinct sides such as tapes, mats, fabrics, plies, and the like, catalyst can be disposed on one or both sides and correspondingly, CNTs can be grown on one or both sides as well.
As described above, CNT-synthesis is performed at a rate sufficient to provide a continuous process for functionalizing spoolable carbon fiber materials. Numerous apparatus configurations facilitate such continuous synthesis as exemplified below.
In some embodiments, CNT-infused carbon fiber materials can be constructed in an “all plasma” process. An all plasma process can being with roughing the carbon fiber material with a plasma as described above to improve fiber surface wetting characteristics and provide a more conformal barrier coating, as well as improve coating adhesion via mechanical interlocking and chemical adhesion through the use of functionalization of the carbon fiber material by using specific reactive gas species, such as oxygen, nitrogen, hydrogen in argon or helium based plasmas.
Barrier coated carbon fiber materials pass through numerous further plasma-mediated steps to form the final CNT-infused product. In some embodiments, the all plasma process can include a second surface modification after the barrier coating is cured. This is a plasma process for “roughing” the surface of the barrier coating on the carbon fiber material to facilitate catalyst deposition. As described above, surface modification can be achieved using a plasma of any one or more of a variety of different gases, including, without limitation, argon, helium, oxygen, ammonia, hydrogen, and nitrogen.
After surface modification, the barrier coated carbon fiber material proceeds to catalyst application. This is a plasma process for depositing the CNT-forming catalyst on the fibers. The CNT-forming catalyst is typically a transition metal as described above. The transition metal catalyst can be added to a plasma feedstock gas as a precursor in the form of a ferrofluid, a metal organic, metal salt or other composition for promoting gas phase transport. The catalyst can be applied at room temperature in the ambient environment with neither vacuum nor an inert atmosphere being required. In some embodiments, the carbon fiber material is cooled prior to catalyst application.
Continuing the all-plasma process, carbon nanotube synthesis occurs in a CNT-growth reactor. This can be achieved through the use of plasma-enhanced chemical vapor deposition, wherein carbon plasma is sprayed onto the catalyst-laden fibers. Since carbon nanotube growth occurs at elevated temperatures (typically in a range of about 500 to 1000° C. depending on the catalyst), the catalyst-laden fibers can be heated prior to exposing to the carbon plasma. For the infusion process, the carbon fiber material can be optionally heated until it softens. After heating, the carbon fiber material is ready to receive the carbon plasma. The carbon plasma is generated, for example, by passing a carbon containing gas such as acetylene, ethylene, ethanol, and the like, through an electric field that is capable of ionizing the gas. This cold carbon plasma is directed, via spray nozzles, to the carbon fiber material. The carbon fiber material can be in close proximity to the spray nozzles, such as within about 1 centimeter of the spray nozzles, to receive the plasma. In some embodiments, heaters are disposed above the carbon fiber material at the plasma sprayers to maintain the elevated temperature of the carbon fiber material.
Another configuration for continuous carbon nanotube synthesis involves a special rectangular reactor for the synthesis and growth of carbon nanotubes directly on carbon fiber materials. The reactor can be designed for use in a continuous in-line process for producing carbon-nanotube bearing fibers. In some embodiments, CNTs are grown via a chemical vapor deposition (“CVD”) process at atmospheric pressure and at elevated temperature in the range of about 550° C. to about 800° C. in a multi-zone reactor. The fact that the synthesis occurs at atmospheric pressure is one factor that facilitates the incorporation of the reactor into a continuous processing line for CNT-on-fiber synthesis. Another advantage consistent with in-line continuous processing using such a zone reactor is that CNT growth occurs in a seconds, as opposed to minutes (or longer) as in other procedures and apparatus configurations typical in the art.
CNT synthesis reactors in accordance with the various embodiments include the following features:
Rectangular Configured Synthesis Reactors:
The cross section of a typical CNT synthesis reactor known in the art is circular. There are a number of reasons for this including, for example, historical reasons (cylindrical reactors are often used in laboratories) and convenience (flow dynamics are easy to model in cylindrical reactors, heater systems readily accept circular tubes (quartz, etc.), and ease of manufacturing. Departing from the cylindrical convention, the present invention provides a CNT synthesis reactor having a rectangular cross section. The reasons for the departure are as follows: 1. Since many carbon fiber materials that can be processed by the reactor are relatively planar such as flat tape or sheet-like in form, a circular cross section is an inefficient use of the reactor volume. This inefficiency results in several drawbacks for cylindrical CNT synthesis reactors including, for example, a) maintaining a sufficient system purge; increased reactor volume requires increased gas flow rates to maintain the same level of gas purge. This results in a system that is inefficient for high volume production of CNTs in an open environment; b) increased carbon feedstock gas flow; the relative increase in inert gas flow, as per a) above, requires increased carbon feedstock gas flows. Consider that the volume of a 12K carbon fiber tow is 2000 times less than the total volume of a synthesis reactor having a rectangular cross section. In an equivalent growth cylindrical reactor (i.e., a cylindrical reactor that has a width that accommodates the same planarized carbon fiber material as the rectangular cross-section reactor), the volume of the carbon fiber material is 17,500 times less than the volume of the chamber. Although gas deposition processes, such as CVD, are typically governed by pressure and temperature alone, volume has a significant impact on the efficiency of deposition. With a rectangular reactor there is a still excess volume. This excess volume facilitates unwanted reactions; yet a cylindrical reactor has about eight times that volume. Due to this greater opportunity for competing reactions to occur, the desired reactions effectively occur more slowly in a cylindrical reactor chamber. Such a slow down in CNT growth, is problematic for the development of a continuous process. One benefit of a rectangular reactor configuration is that the reactor volume can be decreased by using a small height for the rectangular chamber to make this volume ratio better and reactions more efficient. In some embodiments of the present invention, the total volume of a rectangular synthesis reactor is no more than about 3000 times greater than the total volume of a carbon fiber material being passed through the synthesis reactor. In some further embodiments, the total volume of the rectangular synthesis reactor is no more than about 4000 times greater than the total volume of the carbon fiber material being passed through the synthesis reactor. In some still further embodiments, the total volume of the rectangular synthesis reactor is less than about 10,000 times greater than the total volume of the carbon fiber material being passed through the synthesis reactor. Additionally, it is notable that when using a cylindrical reactor, more carbon feedstock gas is required to provide the same flow percent as compared to reactors having a rectangular cross section. It should be appreciated that in some other embodiments, the synthesis reactor has a cross section that is described by polygonal forms that are not rectangular, but are relatively similar thereto and provide a similar reduction in reactor volume relative to a reactor having a circular cross section; c) problematic temperature distribution; when a relatively small-diameter reactor is used, the temperature gradient from the center of the chamber to the walls thereof is minimal. But with increased size, such as would be used for commercial-scale production, the temperature gradient increases. Such temperature gradients result in product quality variations across a carbon fiber material substrate (i.e., product quality varies as a function of radial position). This problem is substantially avoided when using a reactor having a rectangular cross section. In particular, when a planar substrate is used, reactor height can be maintained constant as the size of the substrate scales upward. Temperature gradients between the top and bottom of the reactor are essentially negligible and, as a consequence, thermal issues and the product-quality variations that result are avoided. 2. Gas introduction: Because tubular furnaces are normally employed in the art, typical CNT synthesis reactors introduce gas at one end and draw it through the reactor to the other end. In some embodiments disclosed herein, gas can be introduced at the center of the reactor or within a target growth zone, symmetrically, either through the sides or through the top and bottom plates of the reactor. This improves the overall CNT growth rate because the incoming feedstock gas is continuously replenishing at the hottest portion of the system, which is where CNT growth is most active. This constant gas replenishment is an important aspect to the increased growth rate exhibited by the rectangular CNT reactors.
Zoning.
Chambers that provide a relatively cool purge zone depend from both ends of the rectangular synthesis reactor. Applicants have determined that if hot gas were to mix with the external environment (i.e., outside of the reactor), there would be an increase in degradation of the carbon fiber material. The cool purge zones provide a buffer between the internal system and external environments. Typical CNT synthesis reactor configurations known in the art typically require that the substrate is carefully (and slowly) cooled. The cool purge zone at the exit of the present rectangular CNT growth reactor achieves the cooling in a short period of time, as required for the continuous in-line processing.
Non-Contact, Hot-Walled, Metallic Reactor.
In some embodiments, a hot-walled reactor is made of metal is employed, in particular stainless steel. This may appear counterintuitive because metal, and stainless steel in particular, is more susceptible to carbon deposition (i.e., soot and by-product formation). Thus, most CNT reactor configurations use quartz reactors because there is less carbon deposited, quartz is easier to clean, and quartz facilitates sample observation. However, Applicants have observed that the increased soot and carbon deposition on stainless steel results in more consistent, faster, more efficient, and more stable CNT growth. Without being bound by theory it has been indicated that, in conjunction with atmospheric operation, the CVD process occurring in the reactor is diffusion limited. That is, the catalyst is “overfed;” too much carbon is available in the reactor system due to its relatively higher partial pressure (than if the reactor was operating under partial vacuum). As a consequence, in an open system—especially a clean one—too much carbon can adhere to catalyst particles, compromising their ability to synthesize CNTs. In some embodiments, the rectangular reactor is intentionally run when the reactor is “dirty,” that is with soot deposited on the metallic reactor walls. Once carbon deposits to a monolayer on the walls of the reactor, carbon will readily deposit over itself. Since some of the available carbon is “withdrawn” due to this mechanism, the remaining carbon feedstock, in the form of radicals, react with the catalyst at a rate that does not poison the catalyst. Existing systems run “cleanly” which, if they were open for continuous processing, would produced a much lower yield of CNTs at reduced growth rates.
Although it is generally beneficial to perform CNT synthesis “dirty” as described above, certain portions of the apparatus, such as gas manifolds and inlets, can nonetheless negatively impact the CNT growth process when soot created blockages. In order to combat this problem, such areas of the CNT growth reaction chamber can be protected with soot inhibiting coatings such as silica, alumina, or MgO. In practice, these portions of the apparatus can be dip-coated in these soot inhibiting coatings. Metals such as INVAR® can be used with these coatings as INVAR has a similar CTE (coefficient of thermal expansion) ensuring proper adhesion of the coating at higher temperatures, preventing the soot from significantly building up in critical zones.
Combined Catalyst Reduction and CNT Synthesis.
In the CNT synthesis reactor disclosed herein, both catalyst reduction and CNT growth occur within the reactor. This is significant because the reduction step cannot be accomplished timely enough for use in a continuous process if performed as a discrete operation. In a typical process known in the art, a reduction step typically takes 1-12 hours to perform. Both operations occur in a reactor in accordance with the present invention due, at least in part, to the fact that carbon feedstock gas is introduced at the center of the reactor, not the end as would be typical in the art using cylindrical reactors. The reduction process occurs as the fibers enter the heated zone; by this point, the gas has had time to react with the walls and cool off prior to reacting with the catalyst and causing the oxidation reduction (via hydrogen radical interactions). It is this transition region where the reduction occurs. At the hottest isothermal zone in the system, the CNT growth occurs, with the greatest growth rate occurring proximal to the gas inlets near the center of the reactor.
In some embodiments, when loosely affiliated carbon fiber materials, such as carbon tow are employed, the continuous process can include steps that spreads out the strands and/or filaments of the tow. Thus, as a tow is unspooled it can be spread using a vacuum-based fiber spreading system, for example. When employing sized carbon fibers, which can be relatively stiff, additional heating can be employed in order to “soften” the tow to facilitate fiber spreading. The spread fibers which comprise individual filaments can be spread apart sufficiently to expose an entire surface area of the filaments, thus allowing the tow to more efficiently react in subsequent process steps. Such spreading can approach between about 4 inches to about 6 inches across for a 3 k tow. The spread carbon tow can pass through a surface treatment step that is composed of a plasma system as described above. After a barrier coating is applied and roughened, spread fibers then can pass through a CNT-forming catalyst dip bath. The result is fibers of the carbon tow that have catalyst particles distributed radially on their surface. The catalyzed-laden fibers of the tow then enter an appropriate CNT growth chamber, such as the rectangular chamber described above, where a flow through atmospheric pressure CVD or PE-CVD process is used to synthesize the CNTs at rates as high as several microns per second. The fibers of the tow, now with radially aligned CNTs, exit the CNT growth reactor.
In some embodiments, CNT-infused carbon fiber materials can pass through yet another treatment process that, in some embodiments is a plasma process used to functionalize the CNTs. Additional functionalization of CNTs can be used to promote their adhesion to particular resins. Thus, in some embodiments, the present invention provides CNT-infused carbon fiber materials having functionalized CNTs.
As part of the continuous processing of spoolable carbon fiber materials, the a CNT-infused carbon fiber material can further pass through a sizing dip bath to apply any additional sizing agents which can be beneficial in a final product. Finally if wet winding is desired, the CNT-infused carbon fiber materials can be passed through a resin bath and wound on a mandrel or spool. The resulting carbon fiber material/resin combination locks the CNTs on the carbon fiber material allowing for easier handling and composite fabrication. In some embodiments, CNT infusion is used to provide improved filament winding. Thus, CNTs formed on carbon fibers such as carbon tow, are passed through a resin bath to produce resin-impregnated, CNT-infused carbon tow. After resin impregnation, the carbon tow can be positioned on the surface of a rotating mandrel by a delivery head. The tow can then be wound onto the mandrel in a precise geometric pattern in known fashion.
The winding process described above provides pipes, tubes, or other forms as are characteristically produced via a male mold. But the forms made from the winding process disclosed herein differ from those produced via conventional filament winding processes. Specifically, in the process disclosed herein, the forms are made from composite materials that include CNT-infused tow. Such forms will therefore benefit from enhanced strength and the like, as provided by the CNT-infused tow.
In some embodiments, a continuous process for infusion of CNTs on spoolable carbon fiber materials can achieve a linespeed between about 0.5 ft/min to about 36 ft/min. In this embodiment where the CNT growth chamber is 3 feet long and operating at a 750° C. growth temperature, the process can be run with a linespeed of about 6 ft/min to about 36 ft/min to produce, for example, CNTs having a length between about 1 micron to about 10 microns. The process can also be run with a linespeed of about 1 ft/min to about 6 ft/min to produce, for example, CNTs having a length between about 10 microns to about 100 microns. The process can be run with a linespeed of about 0.5 ft/min to about 1 ft/min to produce, for example, CNTs having a length between about 100 microns to about 200 microns. The CNT length is not tied only to linespeed and growth temperature, however, the flow rate of both the carbon feedstock and the inert carrier gases can also influence CNT length. For example, a flow rate consisting of less than 1% carbon feedstock in inert gas at high linespeeds (6 ft/min to 36 ft/min) will result in CNTs having a length between 1 micron to about 5 microns. A flow rate consisting of more than 1% carbon feedstock in inert gas at high linespeeds (6 ft/min to 36 ft/min) will result in CNTs having length between 5 microns to about 10 microns.
In some embodiments, more than one carbon material can be run simultaneously through the process. For example, multiple tapes tows, filaments, strand and the like can be run through the process in parallel. Thus, any number of pre-fabricated spools of carbon fiber material can be run in parallel through the process and re-spooled at the end of the process. The number of spooled carbon fiber materials that can be run in parallel can include one, two, three, four, five, six, up to any number that can be accommodated by the width of the CNT-growth reaction chamber. Moreover, when multiple carbon fiber materials are run through the process, the number of collection spools can be less than the number of spools at the start of the process. In such embodiments, carbon strands, tows, or the like can be sent through a further process of combining such carbon fiber materials into higher ordered carbon fiber materials such as woven fabrics or the like. The continuous process can also incorporate a post processing chopper that facilitates the formation CNT-infused chopped fiber mats, for example.
In some embodiments, processes of the invention allow for synthesizing a first amount of a first type of carbon nanotube on the carbon fiber material, in which the first type of carbon nanotube is selected to alter at least one first property of the carbon fiber material. Subsequently, process of the invention allow for synthesizing a second amount of a second type of carbon nanotube on the carbon fiber material, in which the second type of carbon nanotube is selected to alter at least one second property of the carbon fiber material.
In some embodiments, the first amount and second amount of CNTs are different. This can be accompanied by a change in the CNT type or not. Thus, varying the density of CNTs can be used to alter the properties of the original carbon fiber material, even if the CNT type remains unchanged. CNT type can include CNT length and the number of walls, for example. In some embodiments the first amount and the second amount are the same. If different properties are desirable in this case along the two different stretches of the spoolable material, then the CNT type can be changed, such as the CNT length. For example, longer CNTs can be useful in electrical/thermal applications, while shorter CNTs can be useful in mechanical strengthening applications.
In light of the aforementioned discussion regarding altering the properties of the carbon fiber materials, the first type of carbon nanotube and the second type of carbon nanotube can be the same, in some embodiments, while the first type of carbon nanotube and the second type of carbon nanotube can be different, in other embodiments. Likewise, the first property and the second property can be the same, in some embodiments. For example, the EMI shielding property can be the property of interest addressed by the first amount and type of CNTs and the 2nd amount and type of CNTs, but the degree of change in this property can be different, as reflected by differing amounts, and/or types of CNTs employed. Finally, in some embodiments, the first property and the second property can be different. Again this may reflect a change in CNT type. For example the first property can be mechanical strength with shorter CNTs, while the second property can be electrical/thermal properties with longer CNTs. One skilled in the art will recognize the ability to tailor the properties of the carbon fiber material through the use of different CNT densities, CNT lengths, and the number of walls in the CNTs, such as single-walled, double-walled, and multi-walled, for example.
In some embodiments, processes of the present invention provides synthesizing a first amount of carbon nanotubes on a carbon fiber material, such that this first amount allows the carbon nanotube-infused carbon fiber material to exhibit a second group of properties that differ from a first group of properties exhibited by the carbon fiber material itself. That is, selecting an amount that can alter one or more properties of the carbon fiber material, such as tensile strength. The first group of properties and second group of properties can include at least one of the same properties, thus representing enhancing an already existing property of the carbon fiber material. In some embodiments, CNT infusion can impart a second group of properties to the carbon nanotube-infused carbon fiber material that is not included among the first group of properties exhibited by the carbon fiber material itself.
In some embodiments, a first amount of carbon nanotubes is selected such that the value of at least one property selected from the group consisting of tensile strength, Young's Modulus, shear strength, shear modulus, toughness, compression strength, compression modulus, density, EM wave absorptivity/reflectivity, acoustic transmittance, electrical conductivity, and thermal conductivity of the carbon nanotube-infused carbon fiber material differs from the value of the same property of the carbon fiber material itself.
Tensile strength can include three different measurements: 1) Yield strength which evaluates the stress at which material strain changes from elastic deformation to plastic deformation, causing the material to deform permanently; 2) Ultimate strength which evaluates the maximum stress a material can withstand when subjected to tension, compression or shearing; and 3) Breaking strength which evaluates the stress coordinate on a stress-strain curve at the point of rupture. Composite shear strength evaluates the stress at which a material fails when a load is applied perpendicular to the fiber direction. Compression strength evaluates the stress at which a material fails when a compressive load is applied.
Multiwalled carbon nanotubes, in particular, have the highest tensile strength of any material yet measured, with a tensile strength of 63 GPa having been achieved. Moreover, theoretical calculations have indicated possible tensile strengths of CNTs of about 300 GPa. Thus, CNT-infused carbon fiber materials are expected to have substantially higher ultimate strength compared to the parent carbon fiber material. As described above, the increase in tensile strength will depend on the exact nature of the CNTs used as well as the density and distribution on the carbon fiber material. CNT-infused carbon fiber materials can exhibit a tow to three times increase in tensile properties, for example. Exemplary CNT-infused carbon fiber materials can have as high as three times the shear strength as the parent unfunctionalized carbon fiber material and as high as 2.5 times the compression strength.
Young's modulus is a measure of the stiffness of an isotropic elastic material. It is defined as the ratio of the uniaxial stress over the uniaxial strain in the range of stress in which Hooke's Law holds. This can be experimentally determined from the slope of a stress-strain curve created during tensile tests conducted on a sample of the material.
Electrical conductivity or specific conductance is a measure of a material's ability to conduct an electric current. CNTs with particular structural parameters such as the degree of twist, which relates to CNT chirality, can be highly conducting, thus exhibiting metallic properties. A recognized system of nomenclature (M. S. Dresselhaus, et al. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, Calif. pp. 756-760, (1996)) has been formalized and is recognized by those skilled in the art with respect to CNT chirality. Thus, for example, CNTs are distinguished from each other by a double index (n,m) where n and m are integers that describe the cut and wrapping of hexagonal graphite so that it makes a tube when it is wrapped onto the surface of a cylinder and the edges are sealed together. When the two indices are the same, m=n, the resultant tube is said to be of the “arm-chair” (or n,n) type, since when the tube is cut perpendicular to the CNT axis only the sides of the hexagons are exposed and their pattern around the periphery of the tube edge resembles the arm and seat of an arm chair repeated n times. Arm-chair CNTs, in particular SWNTs, are metallic, and have extremely high electrical and thermal conductivity. In addition, such SWNTs have-extremely high tensile strength.
In addition to the degree of twist CNT diameter also effects electrical conductivity. As described above, CNT diameter can be controlled by use of controlled size CNT-forming catalyst nanoparticles. CNTs can also be formed as semi-conducting materials. Conductivity in multi-walled CNTs (MWNTs) can be more complex. Interwall reactions within MWNTs can redistribute current over individual tubes non-uniformly. By contrast, there is no change in current across different parts of metallic single-walled nanotubes (SWNTs). Carbon nanotubes also have very high thermal conductivity, comparable to diamond crystal and in-plane graphite sheet.
The CNT-infused carbon fiber materials can benefit from the presence of CNTs not only in the properties described above, but can also provide lighter materials in the process. Thus, such lower density and higher strength materials translates to greater strength to weight ratio. It is understood that modifications which do not substantially affect the activity of the various embodiments of this invention are also included within the definition of the invention provided herein. Accordingly, the following examples are intended to illustrate but not limit the present invention.
This example shows how a carbon fiber material can be infused with CNTs in a continuous process to target thermal and electrical conductivity improvements.
In this example, the maximum loading of CNTs on fibers is targeted. 34-700 12 k carbon fiber tow with a tex value of 800 (Grafil Inc., Sacramento, Calif.) is implemented as the carbon fiber substrate. The individual filaments in this carbon fiber tow have a diameter of approximately 7 μm.
Payout and tension station 805 includes payout bobbin 806 and tensioner 807. The payout bobbin delivers carbon fiber material 860 to the process; the fiber is tensioned via tensioner 807. For this example, the carbon fiber is processed at a linespeed of 2 ft/min.
Fiber material 860 is delivered to sizing removal and fiber spreader station 810 which includes sizing removal heaters 865 and fiber spreader 870. At this station, any “sizing” that is on fiber 860 is removed. Typically, removal is accomplished by burning the sizing off of the fiber. Any of a variety of heating means can be used for this purpose, including, for example, an infrared heater, a muffle furnace, and other non-contact heating processes. Sizing removal can also be accomplished chemically. The fiber spreader separates the individual elements of the fiber. Various techniques and apparatuses can be used to spread fiber, such as pulling the fiber over and under flat, uniform-diameter bars, or over and under variable-diameter bars, or over bars with radially-expanding grooves and a kneading roller, over a vibratory bar, etc. Spreading the fiber enhances the effectiveness of downstream operations, such as plasma application, barrier coating application, and catalyst application, by exposing more fiber surface area.
Multiple sizing removal heaters 865 can be placed throughout the fiber spreader 870 which allows for gradual, simultaneous desizing and spreading of the fibers. Payout and tension station 805 and sizing removal and fiber spreader station 810 are routinely used in the fiber industry; those skilled in the art will be familiar with their design and use.
The temperature and time required for burning off the sizing vary as a function of (1) the sizing material and (2) the commercial source/identity of carbon fiber material 860. A conventional sizing on a carbon fiber material can be removed at about 650° C. At this temperature, it can take as long as 15 minutes to ensure a complete burn off of the sizing. Increasing the temperature above this burn temperature can reduce burn-off time. Thermogravimetric analysis is used to determine minimum burn-off temperature for sizing for a particular commercial product.
Depending on the timing required for sizing removal, sizing removal heaters may not necessarily be included in the CNT-infusion process proper; rather, removal can be performed separately (e.g., in parallel, etc.). In this way, an inventory of sizing-free carbon fiber material can be accumulated and spooled for use in a CNT-infused fiber production line that does not include fiber removal heaters. The sizing-free fiber is then spooled in payout and tension station 805. This production line can be operated at higher speed than one that includes sizing removal.
Unsized fiber 880 is delivered to plasma treatment station 815. For this example, atmospheric plasma treatment is utilized in a ‘downstream’ manner from a distance of 1 mm from the spread carbon fiber material. The gaseous feedstock is comprised of 100% helium.
Plasma enhanced fiber 885 is delivered to barrier coating station 820. In this illustrative example, a siloxane-based barrier coating solution is employed in a dip coating configuration. The solution is ‘Accuglass T-11 Spin-On Glass’ (Honeywell International Inc., Morristown, N.J.) diluted in isopropyl alcohol by a dilution rate of 40 to 1 by volume. The resulting barrier coating thickness on the carbon fiber material is approximately 40 nm. The barrier coating can be applied at room temperature in the ambient environment.
Barrier coated carbon fiber 890 is delivered to air dry station 825 for partial curing of the nanoscale barrier coating. The air dry station sends a stream of heated air across the entire carbon fiber spread. Temperatures employed can be in the range of 100° C. to about 500° C.
After air drying, barrier coated carbon fiber 890 is delivered to catalyst application station 830. In this example, an iron oxide-based CNT forming catalyst solution is employed in a dip coating configuration. The solution is ‘EFH-1’ (Ferrotec Corporation, Bedford, N.H.) diluted in hexane by a dilution rate of 200 to 1 by volume. A monolayer of catalyst coating is achieved on the carbon fiber material. ‘EFH-1’ prior to dilution has a nanoparticle concentration ranging from 3-15% by volume. The iron oxide nanoparticles are of composition Fe2O3 and Fe3O4 and are approximately 8 nm in diameter.
Catalyst-laden carbon fiber material 895 is delivered to solvent flash-off station 835. The solvent flash-off station sends a stream of air across the entire carbon fiber spread. In this example, room temperature air can be employed in order to flash-off all hexane left on the catalyst-laden carbon fiber material.
After solvent flash-off, catalyst-laden fiber 895 is finally advanced to CNT-infusion station 840. In this example, a rectangular reactor with a 12 inch growth zone is used to employ CVD growth at atmospheric pressure. 98.0% of the total gas flow is inert gas (Nitrogen) and the other 2.0% is the carbon feedstock (acetylene). The growth zone is held at 750° C. For the rectangular reactor mentioned above, 750° C. is a relatively high growth temperature, which allows for the highest growth rates possible.
After CNT-infusion, CNT-infused fiber 897 is re-bundled at fiber bundler station 845. This operation recombines the individual strands of the fiber, effectively reversing the spreading operation that was conducted at station 810.
The bundled, CNT-infused fiber 897 is wound about uptake fiber bobbin 850 for storage. CNT-infused fiber 897 is loaded with CNTs approximately 50 μm in length and is then ready for use in composite materials with enhanced thermal and electrical conductivity.
It is noteworthy that some of the operations described above can be conducted under inert atmosphere or vacuum for environmental isolation. For example, if sizing is being burned off of a carbon fiber material, the fiber can be environmentally isolated to contain off-gassing and prevent damage from moisture. For convenience, in system 800, environmental isolation is provided for all operations, with the exception of carbon fiber material payout and tensioning, at the beginning of the production line, and fiber uptake, at the end of the production line.
This example shows how carbon fiber material can be infused with CNTs in a continuous process to target improvements in mechanical properties, especially interfacial characteristics such as shear strength. In this case, loading of shorter CNTs on fibers is targeted. In this example, 34-700 12 k unsized carbon fiber tow with a tex value of 793 (Grafil Inc., Sacramento, Calif.) is implemented as the carbon fiber substrate. The individual filaments in this carbon fiber tow have a diameter of approximately 7 μm.
Payout and tension station 902 includes payout bobbin 904 and tensioner 906. The payout bobbin delivers carbon fiber material 901 to the process; the fiber is tensioned via tensioner 906. For this example, the carbon fiber is processed at a linespeed of 2 ft/min.
Fiber material 901 is delivered to fiber spreader station 908. As this fiber is manufactured without sizing, a sizing removal process is not incorporated as part of fiber spreader station 908. The fiber spreader separates the individual elements of the fiber in a similar manner as described in fiber spreader 870.
Fiber material 901 is delivered to plasma treatment station 910. For this example, atmospheric plasma treatment is utilized in a ‘downstream’ manner from a distance of 12 mm from the spread carbon fiber material. The gaseous feedstock is comprised of oxygen in the amount of 1.1% of the total inert gas flow (helium). Controlling the oxygen content on the surface of carbon fiber material is an effective way of enhancing the adherence of subsequent coatings, and is therefore desirable for enhancing mechanical properties of a carbon fiber composite.
Plasma enhanced fiber 911 is delivered to catalyst application station 912. In this example, an iron oxide based CNT forming catalyst solution is employed in a dip coating configuration. The solution is ‘EFH-1’ (Ferrotec Corporation, Bedford, N.H.) diluted in hexane by a dilution rate of 200 to 1 by volume. A monolayer of catalyst coating is achieved on the carbon fiber material. ‘EFH-1’ prior to dilution has a nanoparticle concentration ranging from 3-15% by volume. The iron oxide nanoparticles are of composition Fe2O3 and Fe3O4 and are approximately 8 nm in diameter.
Catalyst-laden carbon fiber material 913 is delivered to solvent flash-off station 914. The solvent flash-off station sends a stream of air across the entire carbon fiber spread. In this example, room temperature air can be employed in order to flash-off all hexane left on the catalyst-laden carbon fiber material.
After solvent flash-off, catalyst laden fiber 913 is delivered to catalyst application station 916, which is identical to catalyst application station 912. The solution is ‘EFH-1’ diluted in hexane by a dilution rate of 800 to 1 by volume. For this example, a configuration which includes multiple catalyst application stations is utilized to optimize the coverage of the catalyst on the plasma enhanced fiber 911.
Catalyst-laden carbon fiber material 917 is delivered to solvent flash-off station 918, which is identical to solvent flash-off station 914.
After solvent flash-off, catalyst-laden carbon fiber material 917 is delivered to barrier coating application station 920. In this example, a siloxane-based barrier coating solution is employed in a dip coating configuration. The solution is ‘Accuglass T-11 Spin-On Glass’ (Honeywell International Inc., Morristown, N.J.) diluted in isopropyl alcohol by a dilution rate of 40 to 1 by volume. The resulting barrier coating thickness on the carbon fiber material is approximately 40 nm. The barrier coating can be applied at room temperature in the ambient environment.
Barrier coated carbon fiber 921 is delivered to air dry station 922 for partial curing of the barrier coating. The air dry station sends a stream of heated air across the entire carbon fiber spread. Temperatures employed can be in the range of 100° C. to about 500° C.
After air drying, barrier coated carbon fiber 921 is delivered to barrier coating application station 924, which is identical to barrier coating application station 820. The solution is ‘Accuglass T-11 Spin-On Glass’ diluted in isopropyl alcohol by a dilution rate of 120 to 1 by volume. For this example, a configuration which includes multiple barrier coating application stations is utilized to optimize the coverage of the barrier coating on the catalyst-laden fiber 917.
Barrier coated carbon fiber 925 is delivered to air dry station 926 for partial curing of the barrier coating, and is identical to air dry station 922.
After air drying, barrier coated carbon fiber 925 is finally advanced to CNT-infusion station 928. In this example, a rectangular reactor with a 12 inch growth zone is used to employ CVD growth at atmospheric pressure. 97.75% of the total gas flow is inert gas (Nitrogen) and the other 2.25% is the carbon feedstock (acetylene). The growth zone is held at 650° C. For the rectangular reactor mentioned above, 650° C. is a relatively low growth temperature, which allows for the control of shorter CNT growth.
After CNT-infusion, CNT-infused fiber 929 is re-bundled at fiber bundler 930. This operation recombines the individual strands of the fiber, effectively reversing the spreading operation that was conducted at station 908.
The bundled, CNT-infused fiber 931 is wound about uptake fiber bobbin 932 for storage. CNT-infused fiber 929 is loaded with CNTs approximately 5 μm in length and is then ready for use in composite materials with enhanced mechanical properties.
In this example, the carbon fiber material passes through catalyst application stations 912 and 916 prior to barrier coating application stations 920 and 924. This ordering of coatings is in the ‘reverse’ order as illustrated in Example I, which can improve anchoring of the CNTs to the carbon fiber substrate. During the CNT growth process, the barrier coating layer is lifted off of the substrate by the CNTs, which allows for more direct contact with the carbon fiber material (via catalyst NP interface). Because increases in mechanical properties, and not thermal/electrical properties, are being targeted, a ‘reverse’ order coating configuration is desirable.
It is noteworthy that some of the operations described above can be conducted under inert atmosphere or vacuum for environmental isolation. For convenience, in system 900, environmental isolation is provided for all operations, with the exception of carbon fiber material payout and tensioning, at the beginning of the production line, and fiber uptake, at the end of the production line.
This example shows how carbon fiber material can be infused with CNTs in a continuous process to target improvements in mechanical properties, especially interfacial characteristics such as interlaminar shear.
In this example, loading of shorter CNTs on fibers is targeted. In this example, 34-700 12 k unsized carbon fiber tow with a tex value of 793 (Grafil Inc., Sacramento, Calif.) is implemented as the carbon fiber substrate. The individual filaments in this carbon fiber tow have a diameter of approximately 7 μm.
Payout and tension station 1002 includes payout bobbin 1004 and tensioner 1006. The payout bobbin delivers carbon fiber material 1001 to the process; the fiber is tensioned via tensioner 1006. For this example, the carbon fiber is processed at a linespeed of 5 ft/min.
Fiber material 1001 is delivered to fiber spreader station 1008. As this fiber is manufactured without sizing, a sizing removal process is not incorporated as part of fiber spreader station 1008. The fiber spreader separates the individual elements of the fiber in a similar manner as described in fiber spreader 870.
Fiber material 1001 is delivered to plasma treatment station 1010. For this example, atmospheric plasma treatment is utilized in a ‘downstream’ manner from a distance of 12 mm from the spread carbon fiber material. The gaseous feedstock is comprised of oxygen in the amount of 1.1% of the total inert gas flow (helium). Controlling the oxygen content on the surface of carbon fiber material is an effective way of enhancing the adherence of subsequent coatings, and is therefore desirable for enhancing mechanical properties of a carbon fiber composite.
Plasma enhanced fiber 1011 is delivered to coating application station 1012. In this example, an iron oxide based catalyst and a barrier coating material is combined into a single ‘hybrid’ solution and is employed in a dip coating configuration. The ‘hybrid’ solution is 1-part-by-volume ‘EFH-1’, 5-parts ‘Accuglass T-11 Spin-On Glass’, 24-parts hexane, 24-parts isopropyl alcohol, and 146-parts tetrahydrofuran. The benefit of employing such a ‘hybrid’ coating is that it marginalizes the effect of fiber degradation at high temperatures. Without being bound by theory, degradation to carbon fiber materials is intensified by the sintering of catalyst NPs at high temperatures (the same temperatures vital to the growth of CNTs). By encapsulating each catalyst NP with its own barrier coating, it is possible to control this effect. Because increases in mechanical properties, and not thermal/electrical properties, is being targeted, it is desirable to maintain the integrity of the carbon fiber base-material, therefore a ‘hybrid’ coating can be employed.
Catalyst-laden and barrier coated carbon fiber material 1013 is delivered to air dry station 1014 for partial curing of the barrier coating. The air dry station sends a stream of heated air across the entire carbon fiber spread. Temperatures employed can be in the range of 100° C. to about 500° C.
After air drying, the catalyst and barrier coating-laden carbon fiber 1013 is delivered to coating application station 1016, which is identical to coating application station 1012. The same ‘hybrid’ solution is used (1-part-by-volume ‘EFH-1’, 5-parts ‘Accuglass T-11 Spin-On Glass’, 24-parts hexane, 24-parts isopropyl alcohol, and 146-parts tetrahydrofuran). For this example, a configuration which includes multiple coating application stations is utilized to optimized the coverage of the ‘hybrid’ coating on the plasma enhanced fiber 1011.
Catalyst and barrier coating-laden carbon fiber 1017 is delivered to air dry station 1018 for partial curing of the barrier coating, and is identical to air dry station 1014.
After air drying, catalyst and barrier coating-laden carbon fiber 1017 is finally advanced to CNT-infusion station 1020. In this example, a rectangular reactor with a 12 inch growth zone is used to employ CVD growth at atmospheric pressure. 98.7% of the total gas flow is inert gas (Nitrogen) and the other 1.3% is the carbon feedstock (acetylene). The growth zone is held at 675° C. For the rectangular reactor mentioned above, 675° C. is a relatively low growth temperature, which allows for the control of shorter CNT growth.
After CNT-infusion, CNT-infused fiber 1021 is re-bundled at fiber bundler 1022. This operation recombines the individual strands of the fiber, effectively reversing the spreading operation that was conducted at station 1008.
The bundled, CNT-infused fiber 1021 is wound about uptake fiber bobbin 1024 for storage. CNT-infused fiber 1021 is loaded with CNTs approximately 2 μm in length and is then ready for use in composite materials with enhanced mechanical properties.
It is noteworthy that some of the operations described above can be conducted under inert atmosphere or vacuum for environmental isolation. For convenience, in system 1000, environmental isolation is provided for all operations, with the exception of carbon fiber material payout and tensioning, at the beginning of the production line, and fiber uptake, at the end of the production line.
It is to be understood that the above-described embodiments are merely illustrative of the present invention and that many variations of the above-described embodiments can be devised by those skilled in the art without departing from the scope of the invention. For example, in this Specification, numerous specific details are provided in order to provide a thorough description and understanding of the illustrative embodiments of the present invention. Those skilled in the art will recognize, however, that the invention can be practiced without one or more of those details, or with other processes, materials, components, etc.
Furthermore, in some instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the illustrative embodiments. It is understood that the various embodiments shown in the Figures are illustrative, and are not necessarily drawn to scale. Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that a particular feature, structure, material, or characteristic described in connection with the embodiment(s) is included in at least one embodiment of the present invention, but not necessarily all embodiments. Consequently, the appearances of the phrase “in one embodiment,” “in an embodiment,” or “in some embodiments” in various places throughout the Specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, materials, or characteristics can be combined in any suitable manner in one or more embodiments. It is therefore intended that such variations be included within the scope of the following claims and their equivalents.
This application is a divisional of U.S. patent application Ser. No. 12/611,101, filed Nov. 2, 2009, which is a continuation-in-part of U.S. Pat. No. 8,158,217, filed on Jan. 3, 2007 and issued on Apr. 17, 2012. This application claims the benefit of priority under 35 U.S.C. §119 to U.S. Provisional Application Nos. 61/168,516, filed Apr. 10, 2009; 61/169,055 filed Apr. 14, 2009; 61/155,935, filed Feb. 27, 2009; 61/157,096, filed Mar. 3, 2009; and 61/182,153, filed May 29, 2009, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2412707 | Barnett | Dec 1946 | A |
3304855 | Oebell | Feb 1967 | A |
4300821 | Mignen | Nov 1981 | A |
4515107 | Fournier et al. | May 1985 | A |
4530750 | Aisenberg et al. | Jul 1985 | A |
4566969 | Klein | Jan 1986 | A |
4707349 | Hjersted | Nov 1987 | A |
4759950 | Stevens | Jul 1988 | A |
4797378 | Sowman | Jan 1989 | A |
4920917 | Nakatani et al. | May 1990 | A |
5093155 | Miyazaki et al. | Mar 1992 | A |
5130194 | Baker et al. | Jul 1992 | A |
5173367 | Liimatta et al. | Dec 1992 | A |
5221605 | Bard et al. | Jun 1993 | A |
5225659 | Kusano et al. | Jul 1993 | A |
5238808 | Bard et al. | Aug 1993 | A |
5246794 | Blomgren et al. | Sep 1993 | A |
5310687 | Bard et al. | May 1994 | A |
5470408 | Nielson et al. | Nov 1995 | A |
5514217 | Niino et al. | May 1996 | A |
5547525 | Bennett et al. | Aug 1996 | A |
5571749 | Matsuda et al. | Nov 1996 | A |
5589007 | Fujioka et al. | Dec 1996 | A |
5595750 | Jacobson et al. | Jan 1997 | A |
5639984 | Nielson | Jun 1997 | A |
5714089 | Bard et al. | Feb 1998 | A |
5731147 | Bard et al. | Mar 1998 | A |
5764004 | Rabinowitz | Jun 1998 | A |
5780101 | Nolan et al. | Jul 1998 | A |
5908585 | Shibuta | Jun 1999 | A |
5968274 | Fujioka et al. | Oct 1999 | A |
5997832 | Lieber et al. | Dec 1999 | A |
6072930 | Kornreich et al. | Jun 2000 | A |
6140138 | Bard et al. | Oct 2000 | A |
6146462 | Yializis et al. | Nov 2000 | A |
6146642 | Garcia-Sastre et al. | Nov 2000 | A |
6184280 | Shibuta | Feb 2001 | B1 |
6221154 | Lee et al. | Apr 2001 | B1 |
6232706 | Dai et al. | May 2001 | B1 |
6251520 | Blizzard et al. | Jun 2001 | B1 |
6270897 | Flautt et al. | Aug 2001 | B1 |
6331209 | Jang et al. | Dec 2001 | B1 |
6333016 | Resasco et al. | Dec 2001 | B1 |
6344232 | Jones et al. | Feb 2002 | B1 |
6346189 | Dai et al. | Feb 2002 | B1 |
6361861 | Gao et al. | Mar 2002 | B2 |
6413487 | Resasco et al. | Jul 2002 | B1 |
6420293 | Chang et al. | Jul 2002 | B1 |
6440277 | D'Amato | Aug 2002 | B1 |
6455021 | Saito | Sep 2002 | B1 |
6465057 | Nakahigashi et al. | Oct 2002 | B1 |
6479028 | Kaner et al. | Nov 2002 | B1 |
6491789 | Niu | Dec 2002 | B2 |
6495258 | Chen et al. | Dec 2002 | B1 |
6528572 | Patel et al. | Mar 2003 | B1 |
6564744 | Nakahigashi et al. | May 2003 | B2 |
6653619 | Chin et al. | Nov 2003 | B2 |
6673392 | Lee et al. | Jan 2004 | B2 |
6692717 | Smalley et al. | Feb 2004 | B1 |
6765949 | Chang | Jul 2004 | B2 |
6790425 | Smalley et al. | Sep 2004 | B1 |
6818821 | Fujieda et al. | Nov 2004 | B2 |
6837928 | Zhang et al. | Jan 2005 | B1 |
6852410 | Veedu et al. | Feb 2005 | B2 |
6863942 | Ren et al. | Mar 2005 | B2 |
6887451 | Dodelet et al. | May 2005 | B2 |
6900264 | Kumar et al. | May 2005 | B2 |
6900580 | Dai et al. | May 2005 | B2 |
6908572 | Derbyshire et al. | Jun 2005 | B1 |
6913075 | Knowles et al. | Jul 2005 | B1 |
6934600 | Jang et al. | Aug 2005 | B2 |
6936653 | McElrath et al. | Aug 2005 | B2 |
6955800 | Resasco et al. | Oct 2005 | B2 |
6962892 | Resasco et al. | Nov 2005 | B2 |
6967013 | Someya et al. | Nov 2005 | B2 |
6979709 | Smalley et al. | Dec 2005 | B2 |
6986853 | Glatkowski et al. | Jan 2006 | B2 |
6986877 | Takikawa et al. | Jan 2006 | B2 |
6994907 | Resasco et al. | Feb 2006 | B2 |
7011760 | Wang et al. | Mar 2006 | B2 |
7018600 | Yanagisawa et al. | Mar 2006 | B2 |
7022776 | Bastiaens et al. | Apr 2006 | B2 |
7045108 | Jiang et al. | May 2006 | B2 |
7056452 | Niu et al. | Jun 2006 | B2 |
7074294 | Dubrow | Jul 2006 | B2 |
7094386 | Resasco et al. | Aug 2006 | B2 |
7105596 | Smalley et al. | Sep 2006 | B2 |
7108841 | Smalley et al. | Sep 2006 | B2 |
7118693 | Glatkowski et al. | Oct 2006 | B2 |
7125533 | Khabashesku et al. | Oct 2006 | B2 |
7125534 | Smalley et al. | Oct 2006 | B1 |
7132621 | Kumar et al. | Nov 2006 | B2 |
7144563 | Rao et al. | Dec 2006 | B2 |
7148619 | Den et al. | Dec 2006 | B2 |
7151129 | Ishikawa et al. | Dec 2006 | B2 |
7153452 | Ogale et al. | Dec 2006 | B2 |
7157068 | Li et al. | Jan 2007 | B2 |
7160531 | Jacques et al. | Jan 2007 | B1 |
7160532 | Liu et al. | Jan 2007 | B2 |
7211320 | Cooper et al. | May 2007 | B1 |
7226643 | Juang et al. | Jun 2007 | B2 |
7235159 | Gu et al. | Jun 2007 | B2 |
7239073 | Takikawa et al. | Jul 2007 | B2 |
7253442 | Huang et al. | Aug 2007 | B2 |
7261779 | Gardner | Aug 2007 | B2 |
7265174 | Carroll et al. | Sep 2007 | B2 |
7265175 | Winey et al. | Sep 2007 | B2 |
7278324 | Smits et al. | Oct 2007 | B2 |
7294302 | Koide et al. | Nov 2007 | B2 |
7329698 | Noguchi et al. | Feb 2008 | B2 |
7338684 | Curliss et al. | Mar 2008 | B1 |
7354881 | Resasco et al. | Apr 2008 | B2 |
7354988 | Charati et al. | Apr 2008 | B2 |
7372880 | Jablonski et al. | May 2008 | B2 |
7384663 | Olry et al. | Jun 2008 | B2 |
7399794 | Harmon et al. | Jul 2008 | B2 |
7407640 | Barrera et al. | Aug 2008 | B2 |
7407901 | Bystricky et al. | Aug 2008 | B2 |
7410628 | Bening et al. | Aug 2008 | B2 |
7419601 | Cooper et al. | Sep 2008 | B2 |
7431965 | Grigorian et al. | Oct 2008 | B2 |
7445817 | Kumar et al. | Nov 2008 | B2 |
7448441 | Hendricks et al. | Nov 2008 | B2 |
7448931 | Liu et al. | Nov 2008 | B2 |
7459627 | Lee et al. | Dec 2008 | B2 |
7465605 | Raravikar et al. | Dec 2008 | B2 |
7473466 | Muradov | Jan 2009 | B1 |
7479052 | Kim et al. | Jan 2009 | B2 |
7488455 | Dai et al. | Feb 2009 | B2 |
7494639 | Marek et al. | Feb 2009 | B2 |
7504078 | Jacques et al. | Mar 2009 | B1 |
7510695 | Smalley et al. | Mar 2009 | B2 |
7534486 | Boerstoel et al. | May 2009 | B2 |
7563411 | Jiang et al. | Jul 2009 | B2 |
7563428 | Resasco et al. | Jul 2009 | B2 |
7569425 | Huang et al. | Aug 2009 | B2 |
7588700 | Kwon et al. | Sep 2009 | B2 |
7592248 | Ventzek et al. | Sep 2009 | B2 |
7597869 | Hsiao | Oct 2009 | B2 |
7608798 | Kumar et al. | Oct 2009 | B2 |
7611579 | Lashmore et al. | Nov 2009 | B2 |
7615204 | Ajayan et al. | Nov 2009 | B2 |
7615205 | Jiang et al. | Nov 2009 | B2 |
7632550 | Mizuno et al. | Dec 2009 | B2 |
7632569 | Smalley et al. | Dec 2009 | B2 |
7656027 | Dangelo et al. | Feb 2010 | B2 |
7666915 | Zhang et al. | Feb 2010 | B2 |
7687981 | Parsapour | Mar 2010 | B2 |
7700943 | Raravikar et al. | Apr 2010 | B2 |
7709087 | Majidi et al. | May 2010 | B2 |
7718220 | D'Silva et al. | May 2010 | B2 |
7771798 | Grosse et al. | Aug 2010 | B1 |
7776777 | Kim et al. | Aug 2010 | B2 |
7811632 | Eres | Oct 2010 | B2 |
7815820 | Tan et al. | Oct 2010 | B2 |
7816709 | Balzano et al. | Oct 2010 | B2 |
7862795 | Zhang et al. | Jan 2011 | B2 |
7871591 | Harutyunyan et al. | Jan 2011 | B2 |
7880376 | Takai et al. | Feb 2011 | B2 |
7927701 | Curliss et al. | Apr 2011 | B2 |
8148276 | Nejhad et al. | Apr 2012 | B2 |
8168291 | Shah et al. | May 2012 | B2 |
20020035170 | Glatkowski et al. | Mar 2002 | A1 |
20020085968 | Smalley et al. | Jul 2002 | A1 |
20020102201 | Colbert et al. | Aug 2002 | A1 |
20020197474 | Reynolds | Dec 2002 | A1 |
20030024884 | Petrik | Feb 2003 | A1 |
20030042147 | Talin et al. | Mar 2003 | A1 |
20030068432 | Dai et al. | Apr 2003 | A1 |
20030102585 | Poulin et al. | Jun 2003 | A1 |
20030111333 | Montgomery et al. | Jun 2003 | A1 |
20030157378 | Mizuno et al. | Aug 2003 | A1 |
20030175003 | Gasca et al. | Sep 2003 | A1 |
20040007955 | Yaniv et al. | Jan 2004 | A1 |
20040009115 | Wee et al. | Jan 2004 | A1 |
20040026234 | Vanden Brande et al. | Feb 2004 | A1 |
20040037767 | Adderton et al. | Feb 2004 | A1 |
20040079278 | Kamins et al. | Apr 2004 | A1 |
20040082247 | Desai et al. | Apr 2004 | A1 |
20040089237 | Pruett et al. | May 2004 | A1 |
20040105807 | Fan et al. | Jun 2004 | A1 |
20040173506 | Doktycz et al. | Sep 2004 | A1 |
20040184981 | Liu et al. | Sep 2004 | A1 |
20040194707 | Takahashi et al. | Oct 2004 | A1 |
20040245088 | Gardner | Dec 2004 | A1 |
20040247808 | Cooper et al. | Dec 2004 | A1 |
20040253167 | Silva et al. | Dec 2004 | A1 |
20050009694 | Watts et al. | Jan 2005 | A1 |
20050026778 | Axtell et al. | Feb 2005 | A1 |
20050090176 | Dean et al. | Apr 2005 | A1 |
20050093458 | Babayan et al. | May 2005 | A1 |
20050100501 | Veedu et al. | May 2005 | A1 |
20050112052 | Gu et al. | May 2005 | A1 |
20050119105 | Zimmer et al. | Jun 2005 | A1 |
20050119371 | Drzal et al. | Jun 2005 | A1 |
20050147553 | Wong et al. | Jul 2005 | A1 |
20050164169 | Malak | Jul 2005 | A1 |
20050170089 | Lashmore et al. | Aug 2005 | A1 |
20050172370 | Haq et al. | Aug 2005 | A1 |
20050176329 | Olry et al. | Aug 2005 | A1 |
20050188727 | Greywall | Sep 2005 | A1 |
20050191490 | Ton-That et al. | Sep 2005 | A1 |
20050215164 | Mueller et al. | Sep 2005 | A1 |
20050238566 | Rao et al. | Oct 2005 | A1 |
20050245622 | Beijense et al. | Nov 2005 | A1 |
20050260412 | Gardner | Nov 2005 | A1 |
20050263456 | Cooper et al. | Dec 2005 | A1 |
20050279274 | Niu et al. | Dec 2005 | A1 |
20050287064 | Mayne et al. | Dec 2005 | A1 |
20060002844 | Suenaga et al. | Jan 2006 | A1 |
20060052509 | Saitoh | Mar 2006 | A1 |
20060062944 | Gardner et al. | Mar 2006 | A1 |
20060067871 | Hart et al. | Mar 2006 | A1 |
20060083674 | Maruyama et al. | Apr 2006 | A1 |
20060083927 | Von Ehr | Apr 2006 | A1 |
20060104890 | Harutyunyan et al. | May 2006 | A1 |
20060108906 | Gosain et al. | May 2006 | A1 |
20060110599 | Honma et al. | May 2006 | A1 |
20060121275 | Poulin et al. | Jun 2006 | A1 |
20060134329 | Wei et al. | Jun 2006 | A1 |
20060159916 | Dubrow et al. | Jul 2006 | A1 |
20060165914 | Abrahamson | Jul 2006 | A1 |
20060166003 | Khabashesku et al. | Jul 2006 | A1 |
20060172179 | Gu et al. | Aug 2006 | A1 |
20060177602 | Dijon et al. | Aug 2006 | A1 |
20060198956 | Eres | Sep 2006 | A1 |
20060205304 | Marzolin et al. | Sep 2006 | A1 |
20060239894 | Kurachi et al. | Oct 2006 | A1 |
20070009421 | Kittrell et al. | Jan 2007 | A1 |
20070020167 | Han et al. | Jan 2007 | A1 |
20070035226 | Ganapathiraman et al. | Feb 2007 | A1 |
20070048521 | Istvan | Mar 2007 | A1 |
20070053824 | Subramanya et al. | Mar 2007 | A1 |
20070054105 | Hsiao | Mar 2007 | A1 |
20070090489 | Hart et al. | Apr 2007 | A1 |
20070092431 | Resasco et al. | Apr 2007 | A1 |
20070099527 | Brun et al. | May 2007 | A1 |
20070103048 | Liu et al. | May 2007 | A1 |
20070104892 | Ishida et al. | May 2007 | A1 |
20070110977 | Al-Haik et al. | May 2007 | A1 |
20070128960 | Ghasemi Nejhad et al. | Jun 2007 | A1 |
20070135588 | Diakoumakos et al. | Jun 2007 | A1 |
20070141114 | Muisener et al. | Jun 2007 | A1 |
20070148340 | Kalkanoglu et al. | Jun 2007 | A1 |
20070148429 | McGrath et al. | Jun 2007 | A1 |
20070183959 | Charlier et al. | Aug 2007 | A1 |
20070189953 | Bai et al. | Aug 2007 | A1 |
20070205394 | Furman et al. | Sep 2007 | A1 |
20070218280 | Yabuki et al. | Sep 2007 | A1 |
20070253890 | Nakayama et al. | Nov 2007 | A1 |
20070254488 | Huotari et al. | Nov 2007 | A1 |
20070259128 | Parsapour | Nov 2007 | A1 |
20070298669 | Barrera et al. | Dec 2007 | A1 |
20080014431 | Lashmore et al. | Jan 2008 | A1 |
20080017845 | Drndic et al. | Jan 2008 | A1 |
20080020193 | Jang et al. | Jan 2008 | A1 |
20080023396 | Fugetsu | Jan 2008 | A1 |
20080048364 | Armeniades et al. | Feb 2008 | A1 |
20080053922 | Honsinger et al. | Mar 2008 | A1 |
20080069760 | O'Brien et al. | Mar 2008 | A1 |
20080075954 | Wardle | Mar 2008 | A1 |
20080118753 | Poulin et al. | May 2008 | A1 |
20080135815 | Glatkowski et al. | Jun 2008 | A1 |
20080155888 | Vick et al. | Jul 2008 | A1 |
20080160286 | Asrar et al. | Jul 2008 | A1 |
20080160302 | Asrar et al. | Jul 2008 | A1 |
20080164801 | Min et al. | Jul 2008 | A1 |
20080170982 | Zhang et al. | Jul 2008 | A1 |
20080178924 | Kempa et al. | Jul 2008 | A1 |
20080182108 | Curliss et al. | Jul 2008 | A1 |
20080187648 | Hart et al. | Aug 2008 | A1 |
20080213498 | Drzal et al. | Sep 2008 | A1 |
20080247938 | Tsai et al. | Oct 2008 | A1 |
20080247939 | Iyuke | Oct 2008 | A1 |
20080274036 | Resasco et al. | Nov 2008 | A1 |
20080279753 | Harutyunyan | Nov 2008 | A1 |
20080280031 | Drzal et al. | Nov 2008 | A1 |
20080280136 | Zachariah | Nov 2008 | A1 |
20080286564 | Tsotsis | Nov 2008 | A1 |
20080287598 | Lee | Nov 2008 | A1 |
20080290787 | Cok | Nov 2008 | A1 |
20080305329 | D'Silva et al. | Dec 2008 | A1 |
20080308209 | Loutfy et al. | Dec 2008 | A1 |
20090017301 | Moireau | Jan 2009 | A1 |
20090020734 | Jang et al. | Jan 2009 | A1 |
20090021136 | Coll et al. | Jan 2009 | A1 |
20090047453 | Folaron et al. | Feb 2009 | A1 |
20090047502 | Folaron et al. | Feb 2009 | A1 |
20090068387 | Panzer et al. | Mar 2009 | A1 |
20090068461 | Reneker et al. | Mar 2009 | A1 |
20090072222 | Radisic et al. | Mar 2009 | A1 |
20090081383 | Alberding et al. | Mar 2009 | A1 |
20090081441 | Shah et al. | Mar 2009 | A1 |
20090092832 | Moireau | Apr 2009 | A1 |
20090099016 | Carruthers et al. | Apr 2009 | A1 |
20090116798 | Blanchandin et al. | May 2009 | A1 |
20090121219 | Song et al. | May 2009 | A1 |
20090126783 | Lin et al. | May 2009 | A1 |
20090136707 | Ueno | May 2009 | A1 |
20090140098 | Lengsfeld et al. | Jun 2009 | A1 |
20090155451 | Ylitalo et al. | Jun 2009 | A1 |
20090176100 | Higashi et al. | Jul 2009 | A1 |
20090176112 | Kruckenberg et al. | Jul 2009 | A1 |
20090186214 | Lafdi et al. | Jul 2009 | A1 |
20090191352 | DuFaux et al. | Jul 2009 | A1 |
20090192241 | Raravikar et al. | Jul 2009 | A1 |
20090202422 | Kajiura et al. | Aug 2009 | A1 |
20090212430 | Wyland | Aug 2009 | A1 |
20090214800 | Saito | Aug 2009 | A1 |
20090220409 | Curliss | Sep 2009 | A1 |
20090258164 | Nakai et al. | Oct 2009 | A1 |
20090286079 | Barker et al. | Nov 2009 | A1 |
20090294753 | Hauge et al. | Dec 2009 | A1 |
20090311166 | Hart et al. | Dec 2009 | A1 |
20090311168 | Duvall | Dec 2009 | A1 |
20090318614 | Chevalier | Dec 2009 | A1 |
20090325377 | DiJon et al. | Dec 2009 | A1 |
20100000770 | Gupta et al. | Jan 2010 | A1 |
20100059243 | Chang | Mar 2010 | A1 |
20100074834 | Kim | Mar 2010 | A1 |
20100081769 | Ma | Apr 2010 | A1 |
20100092841 | Lopez et al. | Apr 2010 | A1 |
20100098931 | Daniel et al. | Apr 2010 | A1 |
20100099319 | Lashmore et al. | Apr 2010 | A1 |
20100117764 | Wang et al. | May 2010 | A1 |
20100159240 | Shah et al. | Jun 2010 | A1 |
20100178825 | Shah et al. | Jul 2010 | A1 |
20100188833 | Liang et al. | Jul 2010 | A1 |
20100192851 | Shah et al. | Aug 2010 | A1 |
20100196697 | D'Silva et al. | Aug 2010 | A1 |
20100197848 | Verghese et al. | Aug 2010 | A1 |
20100200208 | Cola et al. | Aug 2010 | A1 |
20100206504 | Akiyama et al. | Aug 2010 | A1 |
20100210159 | Zhu | Aug 2010 | A1 |
20100221424 | Malecki et al. | Sep 2010 | A1 |
20100224129 | Malecki et al. | Sep 2010 | A1 |
20100227134 | Shah et al. | Sep 2010 | A1 |
20100254885 | Menchhofer et al. | Oct 2010 | A1 |
20100260931 | Malecki et al. | Oct 2010 | A1 |
20100260933 | Malecki et al. | Oct 2010 | A1 |
20100260998 | Waicukauski et al. | Oct 2010 | A1 |
20100261058 | Lopatin et al. | Oct 2010 | A1 |
20100271253 | Shah et al. | Oct 2010 | A1 |
20100272891 | Malecki et al. | Oct 2010 | A1 |
20100276072 | Shah et al. | Nov 2010 | A1 |
20100279569 | Shah et al. | Nov 2010 | A1 |
20100311866 | Huang et al. | Dec 2010 | A1 |
20110014446 | Saito | Jan 2011 | A1 |
20110024409 | Shah et al. | Feb 2011 | A1 |
20110024694 | Shah et al. | Feb 2011 | A1 |
20110132245 | Shah et al. | Jun 2011 | A1 |
20110186775 | Shah et al. | Aug 2011 | A1 |
20110203927 | Draper et al. | Aug 2011 | A1 |
20110241244 | Liu | Oct 2011 | A1 |
20110242731 | Fleischer et al. | Oct 2011 | A1 |
20110256336 | Koike | Oct 2011 | A1 |
20120065300 | Shah et al. | Mar 2012 | A1 |
20120070667 | Malet et al. | Mar 2012 | A1 |
20120122020 | Hata et al. | May 2012 | A1 |
20120247800 | Shah et al. | Oct 2012 | A1 |
20120251432 | Cooper et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
2476881 | Sep 2003 | CA |
1345694 | Apr 2002 | CN |
1379740 | Nov 2002 | CN |
1418260 | May 2003 | CN |
1477260 | Feb 2004 | CN |
1502553 | Jun 2004 | CN |
1504407 | Jun 2004 | CN |
1558441 | Dec 2004 | CN |
1696337 | Nov 2005 | CN |
1826286 | Aug 2006 | CN |
1919727 | Feb 2007 | CN |
101012621 | Aug 2007 | CN |
101049927 | Oct 2007 | CN |
101070250 | Nov 2007 | CN |
101095230 | Dec 2007 | CN |
101173386 | May 2008 | CN |
101177803 | May 2008 | CN |
101365830 | Feb 2009 | CN |
101372327 | Feb 2009 | CN |
101372329 | Feb 2009 | CN |
101378988 | Mar 2009 | CN |
101541860 | Sep 2009 | CN |
101698975 | Apr 2010 | CN |
101746717 | Jun 2010 | CN |
0098315 | Jan 1984 | EP |
1637828 | Mar 2006 | EP |
1939149 | Jul 2008 | EP |
2399092 | Sep 2004 | GB |
2458776 | Oct 2009 | GB |
01900DE2008 | Aug 2008 | IN |
60-027700 | Feb 1985 | JP |
01-283376 | Nov 1989 | JP |
H04-334823 | Nov 1992 | JP |
08-192044 | Jul 1996 | JP |
09-012343 | Jan 1997 | JP |
H11-139815 | May 1999 | JP |
2000-058158 | Feb 2000 | JP |
2000-309870 | Nov 2000 | JP |
2002-115071 | Apr 2002 | JP |
2003-502507 | Jan 2003 | JP |
2003-171108 | Jun 2003 | JP |
2003-239171 | Aug 2003 | JP |
2004-002182 | Jan 2004 | JP |
2004-015600 | Jan 2004 | JP |
2004-059428 | Feb 2004 | JP |
2004-261875 | Sep 2004 | JP |
2004-265600 | Sep 2004 | JP |
2004-284919 | Oct 2004 | JP |
2004-284921 | Oct 2004 | JP |
2004-327085 | Nov 2004 | JP |
2005-162571 | Jun 2005 | JP |
2005-213700 | Aug 2005 | JP |
2006-007213 | Jan 2006 | JP |
2006-026533 | Feb 2006 | JP |
2006-057231 | Mar 2006 | JP |
2006-069816 | Mar 2006 | JP |
2006-255817 | Sep 2006 | JP |
2006-342011 | Dec 2006 | JP |
2007-091556 | Apr 2007 | JP |
2007-117881 | May 2007 | JP |
2007-523033 | Aug 2007 | JP |
2007-523822 | Aug 2007 | JP |
2007-524774 | Aug 2007 | JP |
2007-230832 | Sep 2007 | JP |
2008-063196 | Mar 2008 | JP |
2008-063718 | Mar 2008 | JP |
2008-520429 | Jun 2008 | JP |
2008-535752 | Sep 2008 | JP |
2008-535763 | Sep 2008 | JP |
2008-266057 | Nov 2008 | JP |
2008-296338 | Dec 2008 | JP |
2008-544939 | Dec 2008 | JP |
2009-021038 | Jan 2009 | JP |
2009-517531 | Apr 2009 | JP |
2009-215146 | Sep 2009 | JP |
2009-535530 | Oct 2009 | JP |
2009-537439 | Oct 2009 | JP |
2011-071049 | Apr 2011 | JP |
2012-503128 | Feb 2012 | JP |
100829001 | May 2008 | KR |
2090833861 | Aug 2008 | TW |
201217827 | May 2012 | TW |
WO-9958756 | Nov 1999 | WO |
WO-01039970 | Jun 2001 | WO |
WO-03082733 | Oct 2003 | WO |
WO-2004071654 | Aug 2004 | WO |
WO-2005007564 | Jan 2005 | WO |
WO-2005012171 | Feb 2005 | WO |
WO-2005028174 | Mar 2005 | WO |
WO-2005037470 | Apr 2005 | WO |
WO-2005044723 | May 2005 | WO |
WO-2005075341 | Aug 2005 | WO |
WO-2006048531 | May 2006 | WO |
WO-2006064760 | Jun 2006 | WO |
WO-2006107144 | Oct 2006 | WO |
WO-2006115486 | Nov 2006 | WO |
WO-2007015710 | Feb 2007 | WO |
WO-2007020362 | Feb 2007 | WO |
WO-2007061854 | May 2007 | WO |
WO-2007089118 | Aug 2007 | WO |
WO-2007130979 | Nov 2007 | WO |
WO-2007136755 | Nov 2007 | WO |
WO-2007136613 | Nov 2007 | WO |
WO-2007149109 | Dec 2007 | WO |
WO-2008025750 | Mar 2008 | WO |
WO-2008041183 | Apr 2008 | WO |
WO-2008054541 | May 2008 | WO |
WO-2008060665 | May 2008 | WO |
WO-2008085634 | Jul 2008 | WO |
WO-2008106143 | Sep 2008 | WO |
WO-2008115640 | Sep 2008 | WO |
WO-2008153609 | Dec 2008 | WO |
WO-2009004346 | Jan 2009 | WO |
WO-2009004348 | Jan 2009 | WO |
WO-2009008291 | Jan 2009 | WO |
WO-2009027133 | Mar 2009 | WO |
WO-2009110885 | Sep 2009 | WO |
WO-2010007163 | Jan 2010 | WO |
WO-2010081769 | Jul 2010 | WO |
WO-2010087903 | Aug 2010 | WO |
WO-2010129234 | Nov 2010 | WO |
WO-2011108492 | Sep 2011 | WO |
Entry |
---|
Smith, Jr., “Nanocomposite Films Derived from Alkoxysilane Terminated Amide Acid Oligomers and Carbon Nanotubes,” Mat. Res. Soc. Symp. Proc., 2002, pp. T3.5.1-T3.5.5, Vot 733E. |
Lu, “Rheological Behavior of Carbon Nanotube-Alumina Nanoparticle Dispersion Systems,” Powder Technology, 2007, pp. 154-161; vol. 177. |
“Aramid Fibers,” DuPont Nemours Inc. Apr. 30, 2001, <http://www.chem.uwec.edu/Chem405—S01/malenirt/project.html>. |
“Conformal coating,” The Free Dictionary by Farlex, last viewed Jan. 15, 2013, retrieved from <http://encyclopedia.thefreedictionary.com/conformal+coating>. |
Rowell, et al., “Organic Solar Cells with Carbon Nanotube Network Electrodes,” online Jun. 6, 2006, vol. 88, Iss 33, p. 233506. |
Ago, et al., “Colloidal Solution of Metal nanoparticles as a Catalyst for Carbon Nanotube Growth,” Proceedings Materials Research Society, Fall 2000, pp. A13.18.13.18.5, vol. 633, Materials Research Society. |
Andrews, et al., “Continuous Production of Aliogned Carbon Nanotubes: A Step Closer to Commercial Realization,” Chemical Physics Lettrs, Apr. 16, 1999, vol. 303, Iss 5-6, pp. 467-474. |
Bradford, et al., “Electrical Conductivity Study of Carbon Nanotube yarns, 3-D Hybrids and their Composites,” Journal of Composite Materials, pp. 1533-1545, vol. 42, No. 15, Sage Productions, Los Angeles, London, New Delhi and Singapore. |
Bubert, et al., “Basis analytical investigation of plasma-chemically modified carbon fibers,” Spectrochimica Acta Part B, 2002, pp. 1601-1610, vol. 57, Elsevier Science B.V. |
Chae, et al., “A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber,” Polymer, Nov. 21, 2005, pp. 10925-10935, vol. 46, No. 24, Elsevier Ltd. |
Che, et al., “Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method,” Chem Mater, 1998, pp. 260-267, vol. 10, American Chemical Society. |
Chen, et a., “Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes,” Electrochemistry Communications, Jun. 2007, pp. 1348-1354, vol. 9, Elsevier B.V. |
Chen, et al., “Basalt fiber-epoxy laminates with functionalized multi-walled carbon nanotubes,” Composites, Part A 2009, pp. 1082-1089 vol. 40, Elsevier Ltd. |
Ci, et al., “Direct growth of carbon nanotubes on the surface of ceramic fibers,” Carbon, Jan. 2005, vol. 43, No. 4, pp. 883-886. |
Definition of nanoparticle provided by Dictionary.com <http://dictionary.reference/.com/browse/nanoparticle>, accessed Nov. 2, 2012. |
Emmenegger, et al., “Synthesis of Carbon Nanotubes over Fe Catalyst on Aluminum and Suggested Growth Mechanism,” Carbon 2003, vol. 41, pp. 539-547. |
Franz, et al., “Carbon Single-Wall nanotube Growth in a Volumetrically Confined Arc Discharge System,” U.S. Department of Energy Journal of Undergraduate Research, pp. 66-69, publication date unknown. |
Garcia, et al., “Aligned Carbon Nanotube Reinforcement of Advanced Composite Ply Interfaces,” 49th AIAA/ASCE/ASC Structures, Structural Dynamics, and Materials Conference, Apr. 7-10, 2008, Schaumburg, IL, MIT American Institute of Aeronautics and Astronautics, Inc. |
Hart, et al., “Rapid Growth and Flow-Mediated Nucleation of Millimeter-Scale Aligned Carbon Nanotube Structures from a Thin-Film Catalyst,” J of Physical Chemistry B, online Mar. 11, 2006, vol. 110, Iss 6, pp. 8250-8257. |
Homma, et al., “Growth of Suspended Carbon Nanotube Networks on 100-nm Scale Silicon Pillars,” Applied Physics Letters, Sep. 16, 2002, vol. 81, No. 12, pp. 2261-2263. |
Hsu, et al., “Optical Absorption and Thermal Transport of Individual Suspended Carbon Nanotube Bundles,” Nano Lett 2009, pp. 590-594, vol. 9, No. 2, American Chemical Society, Publication Date (Web): Jan. 13, 2009. |
Huang, et al., “Growth of Large Periodic Arrays of Carbon Nanotubes,” Applied Physics Letters, Jan. 20, 2003, vol. 82, No. 3, pp. 460-463. |
Jiang, et al., “Carbon nanotube-coated solid phase microextraction metal fiber based on sol-gel technique,” Journal of Chromatography A., May 29, 2009, pp. 4641-4647, vol. 1216, Elsevier B.V. |
Jiang, et al., “Plasma-Enhanced Deposition of Silver Nanoparticles onto Polymer and Metal Surfaces for the generation of Antimicrobial Characteristics,” Journal of Applied Polymer Science 2004, pp. 1411-1422, vol. 93, Wiley Periodicals, Inc. |
Jung, et al., “Fabrication of radar absorbing structure (RAS) using GFR-nano composite and spring-back compensation of hybrid composite RAS shells,” Composite Structures 2006, pp. 571-576, vol. 75, Elsevier Ltd. |
Keyvani, “Huge Opportuinities for Industry of Nanofibrous Concrete Technology,” International Journal of Nanoscience and Nanotechnology, vol. 3, No. 1, Dec. 2007, pp. 1-11. |
Kim, et al., “Processing, characterization and modeling of carbon nanotube-reinforced multiscale composites,” Composites Science and Technology 2009, pp. 335-342, vol. 69, Elsevier Ltd. |
Kim, et al., “Vertical Alignment of Printed Carbon Nanotubes by Multiple Field Emission Cycles,” Applied Physics Letters, online Jun. 17, 2004, vol. 84, No. 26, pp. 5350-5352. |
Kind, et al., “Patterned Films of Nanotubes Using Microcontact Printing of Catalysts,” Adv Mater 1999, pp. 1285-1289, vol. 11, No. 15, Wiley-VCH Verlag GmbH. |
Kramer, et al., “Constrained Iron Catalysts for Single-Walled Carbon Nanotube Growth,” Langmuir 2005, 21, 8466-8470, <http://pubs.acs.org/dol/abs/10.1021/Ia0506729>. |
Laachachi, et al., “A chemical method to graft carbon nanotubes onto a carbon fiber,” materials Letters 2008, pp. 394-397, vol. 62, Elsevier B.V. |
Lee, “Syntheses and properties of fluorinated carbon materials,” Journal of Fluorine Chemistry 2007, pp. 392-403, vol. 128, Elsevier B.V. |
Lee, et al., “Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites,” Composite Structures 2006, pp. 397-405, vol. 76, Elsevier Ltd. |
Li, et al., “A Miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate,” Electrochemistry Communications, Jun. 2008, pp. 851-854, vol. 10, Elsevier B.V. |
Li, et al., “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,” Nano Lett 2006, pp. 1141-1145, vol. 6, No. 6, American Chemical Society. |
Makris, et al., “Carbon Nanotubes Growth and Anchorage to Carbon Fibres,” Carbon Nanotubes 2006, pp. 57-58, vol. 222, Springer , the Netherlands. |
Mayya, et al., “Diameter Controlled Synthesis of Carbon Nanotubes by CVD Using Steric-Stabilized Nanoparticle Catalysts”, NSTI-Nanotech, 2006, vol. 1, pp. 98-101. |
Meyyappan, et al., “Carbon nanotube growth by PECVD: a review,” Plasma Sources Sci Technol 2003, pp. 205-216, vol. 12,IOP Publishing Ltd, UK. |
Mylvaganam, “Fabrication and Application of Polymer Composites Comprising Carbon Nanotubes,” Recent Pat nanotechnol 2007, pp. 59-65, vol. 1, Bentham Science Publishers. |
Panhuis, et al., “Carbon Nanotube Mediated Reduction in Optical Activity in Polyaniline Composite Materials,” J. Phys Chem C 2008, pp. 1441-1445, vol. 112, American Chemical Society. |
Pisco, et al., “Hollow fibers integrated with single walled carbon nanotubes: Bandgap modification and chemical sensing capability,” Sensors and Actuators B 2008, 163-170, vol. 129, Elsevier B.V. |
Qu, et al., “Carbon Microfibers Sheathed with Aligned Carbon Nanotubes: Towards Multidimensional Multicomponent and Multifunctional Nanomaterials,” Small, 2006, pp. 1052-1059, vol. 2, No. 8-9. |
Rackauskas, “Carbon nanotube growth and use in energy sector,” Energetika 2006, pp. 43-46, vol. 2. |
Satishkumar, et al., “Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures: role of the metal nanoparticles produced in situ,” Chemical Physical Letters 1999, pp. 158-162, vol. 307, Elsevier Science B.V. |
Schmidt, et al., “Thin Solid Films Roll Up into Nanotubes,” Nature, Mar. 8, 2001, vol. 410 No. 6825, p. 168. |
Singh, et al, “Production of Controlled Architectures of Aligned Carbon Nanotubes by an Injection Chemical Vapour Deposition Method,” Carbon, online Dec. 7, 2002, vol. 41, Iss 2, pp. 359-368. |
Suh, et al., “Highly ordered two-dimensional carbon nanotube arrays,” Applied Physics Letters, Oct. 4, 2002, pp. 2047-2049, vol. 75, No. 14, American Institute of Physics. |
Thostenson, et al., “Carbon nanotube/carbon fiber hybrid multiscale composites,” J Appl Phys 2002, pp. 6034-6037, vol. 91, No. 9, American Institute of Physics. |
Wang, et al., “Penetration depth of atmospheric pressure plasma surface modification into multiple layers of polyester fabrics,” Surface and Coating Technology 2007, pp. 77-83, vol. 202, Elsevier B.V. |
Wang, et al., “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Composites, Part A 2004, pp. 1225-1232, vol. 35, Elsevier Ltd. |
Wichmann, et al., “Glass-fibre-reinforced composites with enhanced mechanical and electrical properties—Benefits and limitations of a nanoparticle modified matrix,” Engineering Fracture Mechanics 2006, pp. 2346-2359, vol. 73, Elsevier Ltd. |
Xu, et al., “Bone-shaped Nanomaterials for Nanocomposite Applications,” Nano Lett 2003, pp. 1135-1139, vol. 3, No. 8, American Chemical Society. |
Yabe, et al., “Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method,” Diamond and Related Materials 2004, pp. 1292-1295, vol. 13, Elsevier B.V. |
Yamamoto, et al., “High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites,” Carbon, Mar. 2009, vol. 47, No. 3, pp. 551-560. |
Yanagishita, et al., “Carbon Nanotubes with a Triangular Cross-=section, Fabricated Using Anodic Porous Alumina as the Temple,” Adv Mater 2004, pp. 429-432, vol. 16, No. 5, Wiley-VCH Vertag GmbH. |
Yang, et al., “Electrical Conductivity and Electromagnetic Interference Shielding of Multi-walled Carbon Nanotube Filled Polymer Composites,” Mater Res Soc Symp Proc 2005, pp. HH5.3.1-HJH.5.3.5 vol. 858E, Materials Research Society. |
Yeh, et al., “Mechanical properties of phenolic-based nanocomposites reinforced by multi-walled carbon nanotubes and carbon fibers,” Composites: Part A 2008, pp. 677-684, vol. 39, No. 4. |
Zhang et al., “Integration and characterization of aligned carbon nanotubes on metal/silicon substrates and effects of water”, Applied Surface Science 255 (2009) 5003-5008. |
Zhang, et al., “In situ growth of carbon nanotubes on inorganic fibers with different surface properties,” Materials Chemistry and Physics 2008, pp. 317-321, vol. 107, Science direct. |
Zhao, et al., “Growth of multi-walled carbon nanotubes with different morphologies on carbon fibers,” Carbon 2005, pp. 651-673, vol. 43, Elsevier Ltd. |
Zhao, et al., “The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers,” Carbon 2550, pp. 651-673, vol. 43, Elsevier Ltd. |
Zhong, et al., “Growth Kinetics of 0.5 cm Vertically Aligned Single-Wealled Carbon Nanotubes,” The Journal of Physical Chemistry B (Letters), Feb. 6, 2007, pp. 1907-1910, vol. 111, No. 8. |
Zhu, et al., “Carbon nanotube growth on carbon fibers,” Diamond and Related Materials 2003, p. 1825 vol. 12, Elsevier B.V. |
Zhu, et al., “Synthesis of single walled carbon nanotubes by the vertical floating catalyst method,” Chinese Science Bulletin 2002, pp. 159-162, vol. 47, No. 2. |
Emmenegger,et al., “Carbon Nanotube Synthesized on Metallic Substrate,” Applied Surface Science, 2000, pp. 452-456. |
Hart, et al., “Desktop Growth of Carbon-Nanotube Monoliths with in Situ Optical Imaging,” Small, 2007, pp. 772-777, vol. 3, No. 5. |
Hasegawa, et al., “Millimeter-Tall Single-Walled Carbon Nanotubes Rapidly Grown with and without Water,” ACS Nano, 2011, pp. 975-984, vol. 5, No. 2. |
Medalia, et al., “Redox Recipes. I. Reaction between Ferrous Iron and Peroxides. General Considerations,” Journal of Polymer Science, 1949, pp. 377-398, vol. IV. |
Hart, et al., “Growth of conformal single-walled carbon nanotube films from MO/Fe/AL2O3 deposited by electron beam evaporation,” Carbon (2006) vol. 44, pp. 348-359. |
Hou, et al., “Carbon nanotubes formed on carbonized electrospun polymer nanofibers,” Polymer Preprints, 2003, pp. 63-64, vol. 44, No. 2. |
Callender, et al., “Aqueous Synthesis of Water-Soluble Alumoxanes: Environmentally Benign Precursors to Alumina and Aluminum-Based Ceramics,” Chem. Mater. 1997, pp. 2418-2433, vol. 9. |
Number | Date | Country | |
---|---|---|---|
20160130744 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
61168516 | Apr 2009 | US | |
61169055 | Apr 2009 | US | |
61155935 | Feb 2009 | US | |
61157096 | Mar 2009 | US | |
61182153 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12611101 | Nov 2009 | US |
Child | 14581908 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11619327 | Jan 2007 | US |
Child | 12611101 | US |