This application is a National Phase filing under 35 U.S.C. §371 of PCT/EP/2008/004376 which was filed Jun. 2, 2008, and claims priority to German Application No. DE 20 2007 008 847.7 filed Jun. 25, 2007.
1. Field of the Invention
The present invention relates to a co-axial connector having an outer conductor which has a first end for insertion, and a second end for insertion in an axially opposite position from the first end for insertion of the outer conductor, and having a center conductor which has a first end for insertion, and a second end for insertion in an axially opposite position from the first end for insertion of the center conductor, as defined in the preamble to claim 1.
2. Description of Related Art
Known from DE 10 2004 044 975 A 1 is a co-axial connecting part, having an outer-conductor sleeve and a center conductor, for connecting a co-axial socket to a circuit carrier. Arranged in the center conductor is a resiliently yielding bellows made of a conductive material to keep axial and radial forces which arise on entry to the socket away from the circuit carrier. The resilient bellows is for example produced by applying a thin layer of nickel to an aluminum blank by electroplating. Despite the resilient bellows, the connecting part can be produced to give low reflection. The outline shape of the bellows is so selected that the preset standard resistance of, for example, 50Ω exists in the co-axial outer-conductor sleeve even at the point where the bellows is situated. This can be calculated and applied with the help of a 3D simulator for radio-frequency electromagnetic problems.
Known from DE 199 26 483 A1 is a co-axial interface in which a displaceable attenuating sleeve in the form of a bellows structure is arranged on an outer conductor. This attenuating sleeve is so designed that, when the connecting means is withdrawn, the outer conductor, together with the bellows structure, produces wave-guide attenuation with a lower limiting frequency of attenuation of, for example 20 GHz, thus enabling the mechanically open RF connection to be considered screened and terminated from the electrical point of view. There is not however any change in the electrical and mechanical properties when the co-axial interface is connected by insertion. On the contrary, an outer conductor sleeve is provided which makes mechanical and electric contact in the inserted state and therefore puts the bellows structure out of action electrically when in the inserted state.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide an improved co-axial connector of the above kind in respect of its frequency-related behavior and its safety and reliability of operation.
This object is achieved in accordance with the invention by a co-axial connector of the above kind which has the features given in the characterizing clause of claim 1.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
The above and other objects, which will be apparent to those skilled in the art, are achieved in the present invention which is directed to a co-axial connector having an outer conductor with first and second ends for insertion axially opposite each other, and having a center conductor with first and second ends for insertion axially opposite each other, the center conductor comprising two separate parts, with a first center-conductor part forming the first end for insertion of the center conductor and a second center-conductor part forming the second end for insertion of the center conductor. The two parts of the center conductor being so arranged and designed that they can be moved relative to one another in the axial direction. The center conductor taking the form, between the two center-conductor parts of a resilient center-conductor bellows, the resilient center-conductor bellows being so designed that, if there is a change in the length of the resilient center-conductor bellows, a varying capacitance of the resilient center-conductor bellows is compensated for by an inductance of the resilient center-conductor bellows which varies correspondingly in the opposite direction, in such a way that, if there is a change in the length of the resilient center-conductor bellows, the characteristic impedance of the co-axial connector remains substantially constant. The outer conductor may comprise two separate parts, with a first outer-conductor part forming the first end for insertion of the outer conductor and a second outer-conductor part forming the second end for insertion of the outer conductor. The two parts of the outer conductor being so arranged and designed that they can be moved relative to one another in the axial direction, there being provided on the outer conductor a first elastic resilient member which forces the two parts of the outer conductor away from one another in the axial direction. The first center-conductor part being movable in the axial direction relative to the first outer-conductor part, characterized in that the second center-conductor part is movable in the axial direction relative to the second outer-conductor part. There being provided on the center conductor a second elastic resilient member which forces the two center-conductor parts away from one another in the axial direction, at least one third stop being provided which limits the movement of the two center-conductor parts away from one another in the axial direction, a third stop being formed on each of the outer-conductor parts.
The co-axial includes having the outer conductor take the form, between the two outer-conductor parts of a resilient outer-conductor bellows, the resilient outer-conductor bellows being so designed that, if there is a change in the length of the resilient outer-conductor bellows, a varying capacitance of the resilient outer-conductor bellows is compensated for by an inductance of the resilient outer-conductor bellows which varies correspondingly in the opposite direction, in such a way that, if there is a change in the length of the resilient outer-conductor bellows, the characteristic impedance of the co-axial connector remains substantially constant.
The second elastic resilient member may comprise a coil spring. The third stops on the outer-conductor parts may be so arranged and designed that respective insulating discs which hold the center-conductor parts within the outer-conductor parts abut against these third stops.
The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
In describing the preferred embodiment of the present invention, reference will be made herein to
In a co-axial connector of the above kind, provision is made in accordance with the invention for the center conductor to comprise two separate parts, with a first center-conductor part forming the first end for insertion of the center conductor and a second center-conductor part forming the second end for insertion of the center conductor, the two parts of the center conductor being so arranged and designed that they can be moved relative to one another in the axial direction, the center conductor taking the form, between the two center-conductor parts, of a resilient center-conductor bellows, the resilient center-conductor bellows being so designed that, if there is a change in the length of the resilient center-conductor bellows, a varying capacitance of the resilient center-conductor bellows is compensated for by an inductance of the resilient center-conductor bellows which varies correspondingly in the opposite direction, in such a way that, if there is a change in the length of the resilient center-conductor bellows, the characteristic impedance of the co-axial connector remains substantially constant.
This has the advantage that a co-axial connector for RF applications at frequencies above 20 GHz is available which has a means of compensating for length in the outer conductor, the electrical and mechanical properties of the co-axial connector not being adversely affected even if there is a change in the length of the outer conductor but being, on the contrary, improved over a wide frequency range.
So that there is also a means of compensating for length or tolerances available in the case of the outer conductor, thus producing other, additional improvements in the electrical properties of the co-axial connector, the outer conductor comprises two separate parts, with a first outer-conductor part forming the first end for insertion of the outer conductor and a second outer-conductor part forming the second end for insertion of the outer conductor, the two parts of the outer conductor being so arranged and designed that they can be moved relative to one another in the axial direction, the outer conductor taking the form, between the two outer-conductor parts, of a resilient outer-conductor bellows, there being provided on the outer conductor a first elastic resilient member which forces the two parts of the outer conductor away from one another in the axial direction, the resilient outer-conductor bellows being so designed that, if there is a change in the length of the resilient outer-conductor bellows, a varying capacitance of the resilient outer-conductor bellows is compensated for by an inductance of the resilient outer-conductor bellows which varies correspondingly in the opposite direction, in such a way that, if there is a change in the length of the resilient outer-conductor bellows, the characteristic impedance of the co-axial connector remains substantially constant.
In an illustrative embodiment the first center-conductor part is rigidly connected to the first outer-conductor part and the second center-conductor part is rigidly connected to the second outer-conductor part.
The first elastic resilient member is for example a coil spring.
A first stop is usefully provided which limits the movement of the two outer-conductor parts away from one another in the axial direction.
In a preferred embodiment, an outer-conductor sleeve is provided which fits round the two outer-conductor parts and which has second stops which limit an axial movement of the two outer-conductor parts away from one another.
A contacting force which is independent of the outer-conductor parts is obtained at the opposite ends for insertion of the center conductor by virtue of the fact that the first center-conductor part is movable in the axial direction relative to the first outer-conductor part and the second center-conductor part is movable in the axial direction relative to the second outer-conductor part, there being provided on the center conductor a second elastic resilient member which forces the two parts of the center conductor away from one another in the axial direction.
In a preferred embodiment the second elastic resilient member is a coil spring.
At least one third stop is usefully provided which limits the movement of the two center-conductor parts away from one another in the axial direction.
A third stop is for example formed on each of the outer-conductor parts.
In a preferred embodiment, the third stops on the outer-conductor parts are so arranged and designed that respective insulating discs which hold the center-conductor parts within the outer-conductor parts abut against these third stops.
Even when there is no resilient bellows on the outer conductor and even when the outer conductor is not divided into two, provision is made in an illustrative embodiment for the two parts of the center conductor to be so arranged and designed that they can each be moved in the axial direction relative to the outer conductor. In this case, there is provided on the center conductor a second elastic resilient member which forces the two parts of the center conductor away from one another in the axial direction. The first elastic resilient member is for example a coil spring. At least one third stop is usefully provided which limits the movement of the two center-conductor parts away from one another in the axial direction. These third stops are so arranged and designed, on the outer conductor for example, that respective insulating discs which hold the center conductor within the outer conductor abut against these third stops.
The first preferred embodiment of co-axial connector 100 according to the invention which is shown in
In the embodiment shown in
The resilient center-conductor bellows 34 is so designed that it provides a means of compensating for length and tolerances by a corresponding change in length, a varying capacitance of the resilient center-conductor bellows 34 if there is a change in the length of the resilient center-conductor bellows 34 being compensated for by an inductance of the resilient center-conductor bellows 34 which varies correspondingly in the opposite direction, in such a way that if there is a change in the length of the resilient center-conductor bellows 34 the characteristic impedance of the co-axial connector 100 remains substantially constant.
In the arrangement of a plurality of co-axial connectors 100 conforming to the first embodiment which is shown in
Instead of the first stop 36 as in the first embodiment 100, what is provided in this second embodiment 300 shown in
While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
20 2007 008 847 U | Jun 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/004376 | 6/2/2008 | WO | 00 | 12/15/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/000385 | 12/31/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3315184 | Wood | Apr 1967 | A |
3416125 | Theve | Dec 1968 | A |
4227765 | Neumann et al. | Oct 1980 | A |
4789351 | Fisher et al. | Dec 1988 | A |
4815986 | Dholoo | Mar 1989 | A |
5329262 | Fisher, Jr. | Jul 1994 | A |
5516303 | Yohn et al. | May 1996 | A |
6350155 | Mullinger-Bausch et al. | Feb 2002 | B1 |
20060172561 | Clark | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
460110 | Jul 1968 | CH |
15 91 440 | Apr 1970 | DE |
10 2004 044975 | Mar 2006 | DE |
0 741 436 | Nov 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20100178798 A1 | Jul 2010 | US |