Co-located gimbal-based dual stage actuation disk drive suspensions

Information

  • Patent Grant
  • 9001471
  • Patent Number
    9,001,471
  • Date Filed
    Monday, March 17, 2014
    10 years ago
  • Date Issued
    Tuesday, April 7, 2015
    9 years ago
Abstract
Various embodiments concern a suspension having a DSA structure on a gimbaled flexure. The suspension comprises a loadbeam and flexure attached thereto. The flexure comprises a pair of spring arms, a tongue located between the spring arms and structurally supported by the pair of spring arms, and a pair of struts. The struts are positioned respectively between the pair of spring arms and the tongue. The longitudinal axes of the struts are offset with respect to each other. The suspension further comprises a slider and a motor mounted on the flexure. The motor has a longitudinal axis that is parallel with the axes of the struts and perpendicular to a longitudinal axis of the loadbeam. Electrical activation of the motor bends the pair of struts to move the slider.
Description
TECHNICAL FIELD

The present invention relates to disk drives and suspensions for disk drives. In particular, the invention is a dual stage actuation (DSA) suspension.


BACKGROUND

DSA disk drive head suspensions and disk drives incorporating DSA suspensions are generally known and commercially available. For example, DSA suspensions having an actuation structure on the baseplate or other mounting portion of the suspension, i.e., proximal to the spring or hinge region of the suspension, are described in the Okawara U.S. Patent Publication No. 2010/0067151, the Shum U.S. Patent Publication No. 2012/0002329, the Fuchino U.S. Patent Publication No. 2011/0242708 and the Imamura U.S. Pat. No. 5,764,444. DSA suspensions having actuation structures located on the loadbeam or gimbal portions of the suspension, i.e., distal to the spring or hinge region, are also known and disclosed, for example, in the Jurgenson U.S. Pat. No. 5,657,188, the Krinke U.S. Pat. No. 7,256,968 and the Yao U.S. Patent Publication No. 2008/0144225. All of the above-identified patents and patent applications are incorporated herein by reference in their entirety and for all purposes.


There remains a continuing need for improved DSA suspensions. DSA suspensions with enhanced performance capabilities are desired. The suspensions should be capable of being efficiently manufactured.


SUMMARY

Various embodiments concern a suspension having a dual stage actuation structure on a gimbaled flexure. The suspension comprises a loadbeam having a longitudinal axis and flexure attached to the loadbeam. The flexure comprises a pair of spring arms, a tongue located between the spring arms and structurally supported by the pair of spring arms, and a pair of struts. The struts are positioned respectively between the pair of spring arms and the tongue. Each strut has a longitudinal axis. The longitudinal axes of the struts are parallel and offset with respect to each other. The suspension further comprises a slider and a motor mounted on the flexure. The motor has a longitudinal axis that is parallel with the axes of the struts and perpendicular to a longitudinal axis of the loadbeam. Electrical activation of the motor bends the pair of struts to move the slider.


Various embodiments concern a suspension having a dual stage actuation structure on a gimbaled flexure. The suspension comprises flexure which itself comprises a pair of spring arms, a tongue located between the spring arms, and a pair of struts, the pair of struts respectively connecting the pair of spring arms and the tongue. The suspension further comprises a slider mounted on the tongue. The suspension further comprises a motor having opposite ends respectively mounted on the pair of spring arms. Electrical activation of the motor bends the pair of struts to move the slider. Such activation rotates the tongue while the spring arms remain relatively stationary.


Various embodiments concern a suspension having a dual stage actuation structure on a gimbaled flexure. The flexure comprises a pair of spring arms, a tongue located between the spring arms and structurally supported by the pair of spring arms, and a pair of motor mounting pads, the motor mounting pads respectively connected to the tongue by a pair of struts. The suspension further comprises a slider and a motor having opposite ends respectively mounted on the pair of motor mounting pads, wherein the slider is mounted on the motor and electrical activation of the motor bends the pair of struts and moves the slider. The tongue remains relatively stationary while the slider is moved by electrical activation of the motor.


Further features and modifications of the various embodiments are further discussed herein and shown in the drawings. While multiple embodiments are disclosed, still other embodiments of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of this disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of the loadbeam side of a suspension having a flexure with a dual stage actuation (DSA) structure in accordance with one embodiment of the invention.



FIG. 2 is an isometric view of the loadbeam side of the distal end of the suspension shown in FIG. 1.



FIG. 3 is an isometric view of the flexure side (i.e., the side opposite that shown in FIG. 2) of the distal end of the suspension shown in FIG. 1.



FIG. 4A is an isometric view of the stainless steel side of the flexure shown in FIG. 1.



FIG. 4B is the view of FIG. 4A but with the piezoelectric motor removed.



FIG. 5A is an isometric view of the trace side (i.e., the side opposite that shown in FIG. 4A) of the flexure shown in FIG. 1.



FIG. 5B is the view of FIG. 5A but with the head slider removed.



FIG. 5C is the view of FIG. 5B but with the polyimide coverlay removed.



FIG. 5D is the view of FIG. 5C but with the conductive material layer removed.



FIG. 5E is the view of FIG. 5D but with the dielectric material layer removed.



FIG. 5F is the view of FIG. 5E but with the piezoelectric motor removed.



FIG. 6 is a side view of the distal end of the suspension shown in FIG. 1.



FIG. 7 is a closer view of the portion of FIG. 6 showing the dimple, motor, and head slider.



FIGS. 8A-8C are overhead views of the stainless steel side of the flexure shown in FIG. 1, illustrating the operation of the DSA structure.



FIG. 9 is an isometric view of the loadbeam side of a suspension having a flexure with a dual stage actuation (DSA) structure in accordance with a second embodiment (trace side version) of the invention.



FIG. 10 is an isometric view of the loadbeam side of the distal end of the suspension shown in FIG. 9.



FIG. 11 is an isometric view of the flexure side (i.e., the side opposite that shown in FIG. 10) of the distal end of the suspension shown in FIG. 9.



FIG. 12 is an isometric view of the stainless steel side of the flexure shown in FIG. 9.



FIG. 13A is an isometric view of the trace side (i.e., the side opposite that shown in FIG. 12) of the flexure shown in FIG. 9.



FIG. 13B is the view of FIG. 13A but with the head slider removed.



FIG. 13C is the view of FIG. 13B but with the motor removed.



FIG. 13D is the view g of FIG. 13C but with the coverlay removed.



FIG. 13E is the view of FIG. 13D but with the conductive material layer removed.



FIG. 13F is the view of FIG. 13E but with the dielectric material layer removed.



FIG. 14 is a side view of the distal end of the suspension shown in FIG. 9.



FIG. 15 is a closer view of the portion of FIG. 14 showing the dimple, motor, and head slider.



FIGS. 16A
1, 16B1, and 16C1 are overhead views of the stainless steel side of the flexure shown in FIG. 9.



FIGS. 16A
2, 16B2, and 16C2 are overhead views of the trace side of the flexure shown in FIGS. 16A1, 16B1, and 16C1, respectively.



FIG. 17 is an isometric view of a tri-stage actuated suspension in accordance with various embodiments of the invention.



FIG. 18 is an isometric view of a suspension in accordance with another embodiment of the invention.



FIG. 19 is an isometric view of the flexure and DSA structure of the suspension of FIG. 18.



FIG. 20 is an isometric view of the flexure from the suspension of FIG. 18.



FIG. 21 is an isometric view of the flexure and DSA structure of FIG. 19.



FIG. 22 is an isometric view of the flexure of FIG. 19.



FIG. 23 is an isometric view of the flexure of FIG. 19.



FIG. 24 is an isometric view of the flexure of FIG. 19.



FIG. 25 is an isometric view of the spring metal layer of the flexure of FIG. 19.



FIG. 26 is a side view of the suspension of FIG. 18.



FIG. 27 is a detailed view of the motor mounting of the suspension of FIG. 18.



FIG. 28 is a front view of the flexure of FIG. 19.



FIGS. 29A-C are isometric views of the flexure of FIG. 19 in different movement states.



FIG. 30 is an overhead view of a flexure that can be used in a suspension.



FIGS. 31A-C are overhead views of the flexure of FIG. 30 in different movement states.





While the subject matter of this disclosure is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit this disclosure to the particular embodiments described. On the contrary, this disclosure is intended to cover all modifications, equivalents, and alternatives falling within the scope of this disclosure as defined by the appended claims.


DESCRIPTION OF THE INVENTION


FIG. 1 is an isometric view of the loadbeam side of a suspension 10 having a flexure 12 with a co-located or gimbal-based dual stage actuation (DSA) structure 14 in accordance with a first embodiment of the invention (i.e., a stainless steel side version). FIG. 2 is a detailed isometric view of the distal end of the suspension 10. FIG. 3 is a detailed isometric view of the flexure side of the distal end of the suspension 10, which shows the side opposite that shown in FIG. 2. As shown in FIG. 1, the suspension 10 includes a baseplate 16 as a proximal mounting structure. As further shown in FIG. 1, the suspension 10 includes a loadbeam 18 having a rigid or beam region 20 coupled to the baseplate 16 along a spring or hinge region 22. The loadbeam 18 can be formed from stainless steel.


Flexure 12 includes a gimbal 24 at the distal end of the flexure 12. A DSA structure 14 is located on the gimbal 24, adjacent the distal end of the loadbeam 18. As best shown in FIG. 2, the suspension 10 includes a gimbal limiter 26 comprising a tab 28 configured to engage a stop portion 30 of the loadbeam 18. A head slider 32 is mounted to a slider mounting region or tongue 33 of the gimbal 24, on the side of the suspension 10 that is opposite the loadbeam 18. DSA structure 14 includes a motor 34, which is a PZT or other piezoelectric actuator in the illustrated embodiment, mounted to the gimbal 24 of the flexure 12 between the load beam 18 and the head slider 32. As described in greater detail below, in response to electrical drive signals applied to the motor 34, the motor drives portions of the gimbal 24, including the tongue 33 and slider 32, about a generally transverse tracking axis.



FIGS. 4A and 4B are isometric views of the stainless steel side of the flexure 12 and DSA structure 14 shown in FIG. 1. The motor 34 is not shown in FIG. 4B to show further details of the tongue 33. FIGS. 5A-5F are isometric views of the trace side (i.e., the side opposite that shown in FIGS. 4A and 4B) of the flexure 12 and DSA structure 14. Specifically, FIGS. 5A-5F show the various layers that comprise the flexure 12 and DSA structure 14. FIG. 5B is the drawing of FIG. 5A but with the head slider 32 removed to further show details of the tongue 33. FIG. 5C is the drawing of FIG. 5B but with a polyimide coverlay 46 removed to reveal a conductive material layer 44 including traces 60 and other structures formed in the conductive material layer that is otherwise underneath the polyimide coverlay 46. FIG. 5D is the drawing of FIG. 5C but with the conductive material layer 44 removed to more fully reveal the dielectric layer 42 that is otherwise underneath the conductive material layer 44. FIG. 5E is the drawing of FIG. 5D but with the dielectric material layer 42 removed to show only the stainless steel layer 40 and the motor 34. FIG. 5F is the drawing of FIG. 5E but with the motor 34 removed to illustrate only the stainless steel layer 40 of the flexure 12. It will be understood that the stainless steel layer 40 could alternatively be formed from another metal or rigid material.


As shown in FIGS. 5A-5F, the flexure 12 is formed from overlaying spring metal such as stainless steel layer 40, polyimide or other dielectric layer 42, copper or other conductive material layer 44 and polyimide coverlay 46. The dielectric layer 42 generally electrically isolates structures formed in the conductive material layer 44 from adjacent portions of the stainless steel layer 40. Coverlay 46 generally covers and protects the structures formed in the conductive material layer 44. The gimbal 24 includes base portion 50, spring arms 52, and mounting portion 54 formed in the stainless steel layer 40. The spring arms 52 extend from the base portion 50. The mounting portion 54, which is part of the tongue 33, is supported between the spring arms 52 by a pair of struts 56 that extend from support regions 58 on the distal end portions of the spring arms 52. In some embodiments, the pair of struts 56 is the only part of the stainless steel layer 40 that connects or otherwise supports the tongue 33 between the spring arms 52. Specifically, the struts 56 can be the only structural linkage between the spring arms 52 and the tongue 33. Also, the struts 56, in connecting with the tongue 33, can be the only part of the stainless steel layer 40 that connects between the spring arms 52 distal of the base portion 50. As shown, the struts 56 are offset from one another with respect to the longitudinal axis of the flexure 12 or otherwise configured so as to provide for rotational movement of the mounting portion 54 about the tracking axis with respect to the spring arms 52. As best shown in FIG. 8B (further discussed herein), one strut 56 of the pair of struts 56 is located proximally of the motor 34 while the other strut 56 of the pair of struts 56 is located distally of the motor 34 such that the motor 34 is between the pair of struts 56. Each strut 56 has a longitudinal axis that extends generally perpendicular with respect to the longitudinal axis of the suspension 10. The longitudinal axes of the struts 56 extend parallel but do not intersect or otherwise overlap with each other when the struts 56 are not stressed (e.g., not bent). As shown in FIG. 5F, the struts 56 can each be the narrowest part of the stainless steel layer 40 in an X-Y plane (as viewed from the overhead perspective of FIG. 8B) while the thickness of the stainless steel layer 40 can be consistent along the flexure 12.


As perhaps best shown in FIGS. 4A and 5E, the opposite ends of the motor 34 are attached (e.g., by structural adhesive such as epoxy) to the support regions 58 of the spring arms 52. In this way, the support regions 58 can serve as motor mounting pads. Portions of the dielectric layer 42 extend underneath the struts 56 in FIG. 4B. As shown in FIG. 5C, a plurality of traces 60 formed in the conductive material layer 44 extend between the base portion 50 and the tongue 33 over supporting portions 62 formed in the dielectric layer 42. A number of the traces 60 terminate at locations on a distal region on the tongue 33 and are configured to be electrically attached to terminals of the read/write head (not shown) on the slider 32. Other traces 60 terminate at a contact such as copper pad 64 on the tongue 33, below the motor 34. In the illustrated embodiment, the copper pad 64 is located generally centrally between the spring arms 52. As perhaps best shown in FIG. 4B, the dielectric layer 42 has an opening over the pad 64. A structural and electrical connection, e.g., using conductive adhesive, is made between the copper pad 64 and an electrical terminal on the motor 34. Another electrical connection to a terminal on the motor 34 (e.g., a ground terminal) is made through the dimple 36 (i.e., the dimple 36 is in electrical contact with the terminal on the motor 34). In other embodiments, the electrical connections to the motor 34 can be made by other approaches and structures.


As shown in FIGS. 5A and 5B, the slider 32 sits on the coverlay 46 of the tongue 33. Coverlay 46 provides protection for the traces 60. As shown in FIGS. 5A-5C, which show that the supporting portions 62 are offset with respect to the longitudinal direction of the flexure 12, portions of the traces 60 on the opposite sides of the flexure 12 are offset from each other in a manner similar to that of the struts 56 (e.g., portions of the traces overlay the struts in the illustrated embodiment). Offset traces of this type can increase the stroke performance of the DSA structure 14. Other embodiments of the invention (not shown) do not have offset traces. It is noted that, in some embodiments, the supporting portions 62 may provide negligible mechanical support to the tongue 33 relative to the struts 56.



FIGS. 6 and 7 are side views of the suspension 10, illustrating the gimbal 24 and DSA structure 14. As shown, the dimple 36, which is a structure formed in the stainless steel material that forms the loadbeam 18, and which extends from the loadbeam 18, engages the motor 34 and functions as a load point by urging the portion of the gimbal 24 to which the motor 34 is connected out of plane with respect to the base portion 50 of the flexure 12. A bend or transition in the flexure 12 can occur at any desired location along the spring arms 52 due to the urging of the gimbal 24 by the dimple 36. The dimple 36 can also provide an electrical contact to a terminal (not visible) on the portion of the motor 34 engaged by the dimple. For example, if the stainless steel loadbeam 18 is electrically grounded or otherwise part of an electrical circuit, the dimple 36 can provide an electrical ground potential or electrical connection to the terminal on the motor 34. Other embodiments of the invention (not shown) include other dimple structures such as plated structures that provide these functions. The dimple 36 can be plated with conductive material such as gold to enhance the electrical connection to the terminal of the motor 34 which can also be plated with conductive material such as gold. Still other embodiments (not shown) use structures other than the dimple 36 to provide a grounding or other electrical connection to the motor 34. In one such embodiment, for example, there is another copper pad on the end of one of the support regions 58, and an electrical connection (e.g., a ground connection) can be made by a structure such as conductive adhesive between a terminal on the motor 34 and the conductive material pad on the support region of the flexure 12. In some embodiments, the motor 34 is structurally attached to the tongue 33 at a location between the opposite lateral end portions of the tongue 33. In such embodiments, the motor 34 is attached to the tongue 33 of the gimbal 24 in addition to the motor 34 being attached to the support regions 58 of the spring arms 52.


The operation of DSA structure 14 can be described with reference to FIGS. 8A-8C that are plan views of the stainless steel side of the gimbal 24 of the flexure 12. As shown in FIG. 8B, the DSA structure 14 and tongue 33 are in a neutral, undriven state with the tongue 33 generally centrally located between the spring arms 52 when no tracking drive signal is applied to the motor 34. As shown in FIG. 8A, when a first potential (e.g., positive) tracking drive signal is applied to the motor 34, the shape of the motor changes and its length generally expands. This change in shape increases the distance between the support regions 58 as shown in FIG. 8A, which in connection with the mechanical action of the linking struts 56, causes the tongue 33 to move or rotate in a first direction with respect to the spring arms 52 about the tracking axis. As shown, the lengthening of the motor 34 stretches the gimbal 24 laterally and causes the struts 56 to bend (e.g., bow inward). Because of the offset arrangement of the struts 56, the struts 56 bend such that the tongue 33 rotates in the first direction.


As shown in FIG. 8C, when a second potential (e.g., negative) tracking drive signal is applied to the motor 34, the shape of the motor changes and its length generally contracts. This change in shape decreases the distance between the support regions 58 as shown in FIG. 8C, which in connection with the mechanical action of the linking struts 56, causes the tongue 33 to move or rotate in a second direction with respect to the spring arms 52 about the tracking axis. The second direction is opposite the first direction. As shown, the shortening of the motor 34 compresses the gimbal 24 laterally and causes the struts 56 to bend (e.g., bow outward). Because of the offset arrangement of the struts 56, the struts 56 bend such that the tongue 33 rotates in the second direction. Some, although relatively little, out-of-plane motion of other portions of the gimbal 24 is produced during the tracking action of DSA structure 14 as described above. With this embodiment of the invention the, flexure slider mounting region on the tongue 33 generally rotates with respect to the spring arms 52 as the spring arms 52 stay stationary or experience little movement.



FIG. 9 is an isometric view of the loadbeam-side of a suspension 110 having a flexure 112 with a co-located or gimbal-based dual stage actuation (DSA) structure 114 in accordance with a second embodiment of the invention (i.e., a trace side version). The components of the suspension 110 can be configured similarly to the previously discussed suspension 10 unless otherwise described or illustrated. FIG. 10 is an isometric view of the distal end of the suspension 110. FIG. 11 is an isometric view of the flexure-side of the distal end of the suspension 110, showing the side opposite that shown in FIG. 10. As shown in FIG. 10, the suspension 110 includes a baseplate 116 as a proximal mounting structure. As further shown in FIG. 11, the suspension 110 includes a loadbeam 118 having a rigid or beam region 20 coupled to the baseplate 116 along a spring or hinge region 122. The loadbeam 18 can be formed from stainless steel. Flexure 112 includes a gimbal 124 at its distal end. A DSA structure 114 is located on the gimbal 124, adjacent the distal end of the loadbeam 118. The illustrated embodiment of the suspension 110 also includes a gimbal limiter 126 comprising a tab 128 configured to engage a stop portion 130 of the loadbeam 118. The DSA structure 114 includes a motor 134, which is a PZT actuator in the illustrated embodiment, mounted to a motor mounting region of the tongue 133, on the side of the flexure 112 opposite the loadbeam 118. A head slider 132 is mounted to the side of the motor 134 opposite the flexure 112. As described in greater detail below, in response to electrical drive signals applied to the motor 134, the motor drives portions of the gimbal 124, including portions of the tongue 133, motor 134 and slider 132, about a generally transverse tracking axis.



FIG. 12 is a detailed isometric view of the stainless steel-side of the flexure 112 and DSA structure 14 shown in FIG. 9. FIGS. 13A-13F are isometric views of the flexure 112 and DSA structure 114 showing the side opposite that shown in FIG. 12. Specifically, FIGS. 13A-13F show the various layers that comprise the flexure 112 and DSA structure 114. FIG. 13B is the drawing of FIG. 13A but with the head slider 132 removed to further show details of the motor 134 on the tongue 133. FIG. 13C is the drawing of FIG. 13B but with the motor 134 removed to reveal details of the tongue 133. FIG. 13D is the drawing of FIG. 13C but with the coverlay 146 removed to reveal a conductive material layer 144 including traces 160 and other structures formed in the conductive material layer 144. FIG. 13E is the drawing of FIG. 13D but with the conductive material layer 144 removed to further reveal the dielectric layer 142. FIG. 13F is the drawing of FIG. 13E but with the dielectric layer 142 removed to show only the stainless steel layer 140 of the flexure 112. It will be understood that the stainless steel layer 140 could alternatively be formed from another metal or rigid material. As shown, the flexure 112 is formed from overlaying spring metal such as stainless steel layer 140, polyimide or other dielectric layer 142, copper or other conductive material layer 144, and coverlay 146. The dielectric layer 142 generally electrically isolates structures formed in the conductive material layer 144 from adjacent portions of the stainless steel layer 140. Coverlay 146 generally covers and protects the structures formed in the conductive material layer 144.


The gimbal 124 includes base portion 150, spring arms 152, and center region 154 of the tongue 133. The base portion 150, the spring arms 152, and the center region 154 are each formed from the stainless steel layer 140. The spring arms 152 extend from the base portion 150. The center region 154, which is a center part of the tongue 133, is connected to the distal ends of the spring arms 152 and is supported between the spring arms 152. Also formed in the stainless steel layer 140 is a pair of struts 153. Each of the struts 153 extends from one of the opposite lateral sides of the center region 154 and has a motor mounting flag or pad 155 on its outer end. As shown, the struts 153 are offset from one another with respect to the longitudinal axis of the flexure 112 or otherwise configured so as to provide for rotational movement of the motor 134 and the head slider 132 mounted thereto about the tracking axis with respect to the center region 154. Each strut 153 comprises a longitudinal axis that extends generally perpendicular with respect to the longitudinal axis of the suspension 110. The longitudinal axes of the struts 153 extend parallel but do not intersect or otherwise overlap with each other when the struts 153 are not stressed (e.g., not bent). The struts 153 can be the only structural linkage between the center region 154 and the pads 155 (e.g., the only part of the stainless steel layer 140 connecting the center region 154 with the pads 155 is the struts 153, a single strut 153 for each pad 155). As shown in FIG. 13F, the struts 153 can each be the narrowest part of the stainless steel layer 140 in an X-Y plane (as viewed from the overhead perspective of FIG. 16B1) while the thickness of the stainless steel layer 140 can be consistent along the flexure 112.


As shown in FIG. 13D, a plurality of traces 160 are formed in the conductive material layer 144 and extend between the base portion 150 and tongue 133 along paths generally laterally outside the spring arms 152 and over supporting portions 162 formed in the dielectric layer 142. A number of the traces 160 terminate at locations adjacent the distal region of the tongue 133 and are configured to be electrically attached to read/write head terminals (not shown) on the slider 132. A pair of power traces 161 for powering the motor 134 are also formed in the conductive material layer 144, and extend between the base portion 150 and a proximal portion of the tongue 133 along paths generally inside the spring arms 152 and over supporting portions 163 formed in the dielectric layer 142. The motor power traces 161 terminate at a first motor terminal pad 167 on one of the motor mounting pads 155. A second motor terminal pad 169 is formed in the conductive material layer 144 on the other motor mounting pad 155, and is coupled by a trace 171 to a conductive via 173 that is shown on the tongue 133 at a location between the motor mounting pads 155. As best viewed in FIG. 13D, via 173 extends through an opening 175 in the dielectric layer 142 (shown in FIG. 13E) to electrically contact the stainless steel layer 140 of the flexure 112. The motor terminal pad 169 can be electrically connected to a ground potential at the stainless steel layer 140 by the trace 171 and the via 173. As shown in FIG. 12, structures such as tabs 157 in the stainless steel layer 140 are formed out of the plane of the stainless steel layer and engage the distal portion of the trace supporting portions 162 to push the terminal ends of the traces 161 down so the terminals on the slider 132 can be correctly electrically attached (e.g., by solder bonds) to the traces while accommodating the thickness of the motor 134. FIG. 13E also illustrates other holes in the dielectric layer that can be used in connection with conductive vias to electrically connect (e.g., ground) traces and other structures in the conductive material layer 144 to the stainless steel layer 140. In other embodiments, other approaches and structures can be used to couple the tracking drive signals to the terminals on the motor 134.


The electrical terminals on the motor 134 may be on the same side (e.g., top or bottom) but opposite longitudinal ends of the motor 134. As shown in FIGS. 13B and 13C, the motor 134 can be attached to the gimbal 124 by bonding the electrical terminals of the motor 134 to the motor terminal pads 167 and 169 using conductive adhesive. By this approach, the motor 134 is both structurally and electrically connected to the gimbal 124. As shown in FIG. 13C, the motor terminal pads 167 and 169 are exposed through openings in the coverlay 146 to provide access for the conductive adhesive.



FIGS. 14 and 15 are side views of the suspension 110, illustrating the gimbal 124 and DSA structure 114. As shown, the dimple 136, which is a structure formed in the stainless steel of the loadbeam 118 and which projects from the loadbeam 118, engages the center region 154 of stainless steel layer 140 on the side of the tongue 133 opposite the motor 134. Dimple 136 functions as a load point by urging the portion of the gimbal 124 to which the motor 134 is connected out of plane with respect to the base portion 150 of the flexure 112. In the illustrated embodiment, the motor 134 is located between the tongue 133 and the head slider 132 (e.g., the motor 134 is sandwiched in a vertical axis). As shown in FIGS. 14 and 15, the slider 132 is structurally supported by the motor 134 such that the only structural linkage between the flexure 112 and the slider 132 runs through or otherwise includes the motor 134. The manner by which the stainless steel tabs 157 locate the portion of dielectric layer 142 with the terminal ends of the traces 160 at the correct z-height and adjacent to the portion of the head slider 132 that includes the read/write head terminals is shown in FIG. 15.


The operation of DSA structure 114 can be described with reference to FIGS. 16A1, 16A2, 16B1, 16B2, 16C1 and 16C2 that are plan views of the gimbal 124 of the flexure 112. FIGS. 16A1, 16B1 and 16C1 illustrate the stainless steel side of the flexure 112, and FIGS. 16A2, 16B2 and 16C2 illustrate the trace side of the flexure 112, with the motor 134 and head slider 132 shown. As shown in FIGS. 16B1 and 16B2, the DSA structure 114 and tongue 133, as well as the motor 134 on the linkage formed by the motor mounting pads 155 and struts 153, are in a neutral, undriven state with the head slider positioned generally parallel to the longitudinal axis of the flexure 112 when no tracking drive signal is applied to the motor 134. The struts 153 are not bent or otherwise stressed in this state. As shown in FIGS. 16A1 and 16A2, when a first potential (e.g., positive) tracking drive signal is applied to the motor 134, the shape of the motor changes and its length generally expands. This change in shape increases the distance between the motor mounting pads 155, which in connection with the mechanical action of the linking struts 153, causes the motor 134, and therefore the head slider 132 mounted thereto, to move or rotate in a first direction with respect to the longitudinal axis of the flexure 112 about the tracking axis. As shown, the lengthening of the motor 134 stretches the struts 153 laterally and causes the struts 153 to bend (e.g., bow inward). Because of the offset arrangement of the struts 153, the struts 153 bend such that the motor 134 and the head slider 132 rotate in the first direction.


As shown in FIGS. 16C1 and 16C2, when a second potential (e.g., negative) tracking drive signal is applied to the motor 134, the shape of the motor changes and its length generally contracts. This change in shape decreases the distance between the motor mounting pads 155, which in connection with the mechanical action of the linkage including struts 153, causes the motor 134, and therefore the head slider 132 mounted thereto, to move or rotate in a second direction with respect to the longitudinal axis of the flexure 112 about the tracking axis. The second direction is opposite the first direction. As shown, the shortening of the motor 134 compresses the struts 153 laterally and causes the struts 153 to bend (e.g., bow outward). Because of the offset arrangement of the struts 153, the struts 153 bend such that the motor 134 and the head slider 132 rotate in the second direction.


Some, although relatively little, out-of-plane motion of other portions of the gimbal 124 may be produced during the tracking action of DSA structure 114. The linkage provided by the struts 153 accommodates the motion of the motor 134 so the remaining portions of the tongue 133 remain generally aligned with respect to the longitudinal axis of the flexure 112 during this tracking action. For example, the motor 134 and slider 132 rotate, but the center region 154 (or more broadly the tongue 133) does not rotate or rotates only an insignificant or trivial amount.



FIG. 17 is an illustration of a suspension 210 in accordance with another embodiment of the invention. As shown, the suspension 210 includes a co-located or gimbal-based DSA structure 214 and a loadbeam or baseplate-type DSA structure 290. In this way, the suspension 210 is a tri-stage actuated suspension. In one embodiment, the DSA structure 214 is substantially the same as the DSA structure 114 described above (e.g., is configured with any aspect described or shown in connection with FIGS. 9-16C2) except as otherwise specified or shown. In another embodiment, the DSA structure 214 is substantially the same as the DSA structure 14 described above (e.g., is configured with any aspect described or shown in connection with FIGS. 1-8C) except as otherwise specified or shown. Other embodiments of suspension 210 include other gimbal-based DSA structures. The DSA structure 290 can be any known or conventional DSA structure such as any of those described above in the background section.



FIG. 18 is a detailed isometric view of a co-located or gimbal-based DSA structure 314 on the distal end of a suspension 310. The suspension 310 can be configured similarly to the previously discussed suspension 10 unless otherwise described or illustrated. For example, the proximal end (not illustrated) of the suspension 310 can be configured similarly to the proximal end of the previously described suspension 10.


Flexure 312 includes a gimbal 324 at the distal end of the flexure 312. A DSA structure 314 is located on the gimbal 324, adjacent the distal end of the loadbeam 318. The suspension 310 includes a gimbal limiter 326 comprising a tab 328 configured to engage a stop portion 330 of the loadbeam 318. A head slider 332 is mounted to a slider mounting region or tongue 333 of the gimbal 324, on the side of the suspension 310 that is opposite the loadbeam 318. DSA structure 314 includes a motor 334, which is a PZT or other piezoelectric actuator in the illustrated embodiment, mounted to the gimbal 324 of the flexure 312 between the loadbeam 318 and the head slider 332. As described in greater detail below, in response to electrical drive signals applied to the motor 334, the motor 334 drives portions of the gimbal 324, including the tongue 333 and slider 332, about a generally transverse tracking axis.



FIG. 19 is an isometric view of the stainless steel side of the flexure 312 and DSA structure 314 shown in FIG. 18. As shown, a stiffener 339 is mounted on the motor 334. The stiffener 339 is an asymmetric stiffener. Any type of stiffener or other component or configuration referenced in U.S. provisional patent application 61/711,988, filed Oct. 10, 2012, which is hereby incorporated by reference herein in its entirety, can be used in any embodiment of the present disclosure. It is noted that some embodiments may not include the stiffener 339. FIG. 19 further shows electrical connectors 345 connecting with respective anode and cathode terminals of the motor 334. The electrical connectors 345 can connect with respective traces of the flexible circuit 349. The flexible circuit 349 can be configured similarly to the layering of the dielectric layer 42, the traces 60 of conductive material layer 44, and the coverlay 46 of the previously described suspension 10.



FIG. 20 is an isometric view of the opposite side of the flexure 312 and without the slider 332 with respect to the view of FIG. 19. FIGS. 21-25 are isometric views of the flexure 312 and DSA structure 314. Specifically, FIGS. 21-25 show the various layers that comprise the flexure 312 and DSA structure 314. FIG. 21 is the drawing of FIG. 19 but with a stiffener 339 removed from the motor 334. As shown in FIG. 21, the motor 334 includes a non-conductive section 338 on the motor 334 which can isolate the anode and cathode terminals of the motor 334. FIG. 22 is the drawing of FIG. 19 but with the motor 334 removed to further show details of the tongue 333. FIG. 22 shows the pair of struts 356. As shown in FIG. 22, the suspension 310 includes a motor pad 341 on the stainless steel layer 340. The motor pad 341 can be a viscoelastic material, and may further be adhesive to attach to the tongue 333 and/or the motor 334. The motor pad 341 can dampen vibration. The motor pad 341 or other damper can be configured as described in U.S. provisional patent application 61/711,988, filed Oct. 10, 2012, previously incorporated herein. FIG. 22 further shows two strips of adhesive 343. The adhesive 343 can be a non-conductive adhesive such as epoxy. As shown, the strips of adhesive 343 are placed on the spring arms 352 of the stainless steel layer 340. The strips of adhesive 343 can attach the motor 334 to the pair of spring arms 352. FIG. 23 is the drawing of FIG. 22 but with the electrical connectors 345 removed to reveal the conductive pads 347 respectively positioned on the spring arms 352. The electrical connectors 345 can comprise solder, conductive epoxy (e.g., silver filled), or other material for forming an electrode connection. The electrical connectors 345 can electrically connect with respective anode and cathode terminals of the motor 334. The conductive pads 347 can comprise copper surfaces on a dielectric layer. The conductive pads 347 can electrically connect with respective circuits of the flexible circuit 349 for controlling an electrical signal applied across the motor 334.



FIG. 24 is the drawing of FIG. 23 but with the motor pad 341 and the strips of adhesive 343 removed. FIG. 25 shows only the stainless steel layer 340. As shown in FIG. 25, the stainless steel layer 340 forms the spring arms 352, the struts 356, and the tongue 333. The pair of struts 356 is the only part of the stainless steel layer 340 that connects or otherwise supports the tongue 333 between the spring arms 352. Specifically, the struts 356 can be the only structural linkage between the spring arms 352 and the tongue 333. Also, the struts 356, in connecting with the tongue 333, can be the only part of the stainless steel layer 340 that connects between the spring arms 352 distal of the base portion 350. As shown, the struts 356 are offset from one another with respect to the longitudinal axis of the flexure 312 or otherwise configured so as to provide for rotational movement of the tongue 333 about the tracking axis with respect to the spring arms 352. As best shown in FIG. 22, one strut 356 of the pair of struts 356 is located proximally of the motor 334 while the other of the pair of struts 356 is located distally of the motor 334 such that the motor 334 is between the pair of struts 356. Each strut 356 has a longitudinal axis that extends generally perpendicular with the longitudinal axis of the suspension 310. The longitudinal axes of the struts 356 extend parallel but do not intersect or otherwise overlap with each other when the struts 356 are not stressed (e.g., not bent). As shown in FIG. 25, the struts 356 can each be the narrowest part of the stainless steel layer 340 in an X-Y plane while the thickness of the stainless steel layer 340 can be consistent along the flexure 312.



FIG. 26 is a side view of the suspension 310, illustrating the gimbal 324 and DSA structure 314. As shown, the dimple 36, which is a structure formed in the stainless steel of the loadbeam 318 and which extends from the loadbeam 318, engages the stiffener 339 or, alternatively, the motor 334, and functions as a load point by urging the portion of the gimbal 324 to which the motor 334 is connected out of plane with respect to the base portion 350 of the flexure 312. A bend or transition in the flexure 312 can occur at any desired location along the spring arms 352 due to the urging of the gimbal 324 by the dimple 336. In some embodiments, the motor 334 is structurally attached to the tongue 333 at a location between the opposite lateral end portions of the tongue 333. In such embodiments, the motor 334 can be attached to the tongue 333 in addition to the motor 334 being attached to the spring arms 352. In some other embodiments, the motor 334 is attached to the spring arms 352 but is not attached to the tongue 333 to allow the motor 334 to move relative to the tongue 333.



FIG. 27 shows a detailed view of the motor 334 mounted on the flexure 312. As shown, the electrical connectors 345 are bonded to the conductive pads 347 and wrap around to the top of the motor 334 to mechanically and electrically connect with terminals of the motor 334. FIG. 28 shows a front view of the flexure 312 which further shows the electrical connectors 345 wrapping around to the top of the motor 334. As shown in FIG. 28, the stiffener comprises a top layer 348 and a bottom layer 351. The top layer 348 can comprises a layer of metal material, such as stainless steel. The bottom layer 351 can comprises an adhesive, the adhesive separating and coupling the top layer 348 and the top side of the motor 334.


The operation of DSA structure 314 can be described with reference to FIGS. 29A-29C, each showing an overhead view of the flexure 312 during some stage of activation or non-activation of the motor 334. As shown in FIG. 29B, the DSA structure 314 and tongue 333 are in a neutral, undriven state with the tongue 333 generally centrally located between the spring arms 352 when no tracking drive signal is applied to the motor 334. As shown in FIG. 29A, when a first potential (e.g., positive) tracking drive signal is applied to the motor 334, the shape of the motor changes and its length generally expands. This change in shape, in connection with the mechanical action of the linkage including struts 356, causes the tongue 333 to move or rotate in a first direction with respect to the spring arms 352 about the tracking axis. As shown, the lengthening of the motor 334 stretches the gimbal 324 laterally and causes the struts 356 to bend (e.g., bow inward). Because of the offset arrangement of the struts 356, the struts 356 bend such that the tongue 333 rotates in the first direction.


As shown in FIG. 29C, when a second potential (e.g., negative) tracking drive signal is applied to the motor 334, the shape of the motor changes and its length generally contracts. This change in shape, in connection with the mechanical action of the linking struts 356, causes the tongue 333 to move or rotate in a second direction with respect to the spring arms 352 about the tracking axis. The second direction is opposite the first direction. As shown, the shortening of the motor 334 compresses the gimbal 324 laterally and causes the struts 356 to bend (e.g., bow outward). Because of the offset arrangement of the struts 356, the struts 356 bend such that the tongue 333 rotates in the second direction. Some, although relatively little, out-of-plane motion of other portions of the gimbal 324 may be produced during the tracking action of DSA structure 314 as described above. With this embodiment of the invention, the flexure slider mounting region on the tongue 333 generally rotates with respect to the spring arms 352 as the spring arms 352 stay stationary or experience little movement.



FIG. 30 shows an overhead view of a flexure 412. The flexure 412 can be embodied in the suspension 10 of FIGS. 1-8C or other suspension. The flexure 412 can be configured similarly to the flexure 12 of FIGS. 1-8C except as otherwise described or shown. FIGS. 31A-C are overhead views of the stainless steel side of the gimbal 424 of the flexure 412 shown in different movement states and without a motor 434 to reveal further aspects of the flexure 412. The flexure 412 includes a base portion 450 and spring arms 452 branching therefrom. The spring arms 452 include support regions 458, which can respectively serve as motor mounting pads. As shown in FIG. 30, a motor 434 is mounted on the flexure 412. Specifically, opposite longitudinal ends of the motor 434 are mounted on the support regions 458. Adhesive can be used to mount the motor 434 as described herein. A slider (not shown) can be mounted to the tongue 433 in any manner referenced herein, such as similarly to the embodiment of FIGS. 1-8C. For example, the slider can be located on the opposite side of the flexure 412 with respect to the motor 434.


As shown in FIG. 31A, the tongue 433 is connected to the spring arms 452 (specifically the support regions 458) by a pair of struts 456. The tongue 433, struts 456, spring arms 452, and base portion 450 can be formed from a stainless steel layer 440 (or other type of metal). The flexure 412 includes a gimbal 424 which can function as other gimbals discussed herein. While the flexure 12 of FIGS. 1-8C show struts 56 having respective longitudinal axes that are parallel with each other and parallel with a longitudinal axis of the motor 34, the struts 456 of the flexure 412 have respective longitudinal axes that are parallel with respect to each other but that are not parallel with respect to the longitudinal axis of the motor 434. In yet another embodiment, a flexure can be similar to that shown in FIG. 31A except that the longitudinal axes of the struts of the flexure do not extend parallel with respect to each other and neither of the longitudinal axes of the struts extend parallel with the longitudinal axis of the motor. Returning to the embodiment of FIG. 31A, the pair of struts 456 is the only part of the stainless steel layer 440 that connects or otherwise structurally supports the tongue 433 between the spring arms 452. Specifically, the struts 456 can be the only structural linkage between the spring arms 452 and the tongue 433. Also, the struts 456, in connecting with the tongue 433, can be the only part of the stainless steel layer 440 that connects between the spring arms 452 distal of the base portion 450.


The operation of the DSA structure of the flexure 412 can be described with reference to FIGS. 31A-C. As shown in FIG. 31A, the tongue 433 is in a neutral, undriven state with the tongue 433 generally centrally located between the spring arms 452 when no tracking drive signal is applied to the motor 434 (shown in FIG. 30 but not shown in FIGS. 31A-C). When a first potential (e.g., positive) tracking drive signal is applied to the motor 434, the shape of the motor changes and its length generally expands. This change in shape increases the distance between the support regions 458 as shown in FIG. 31B, which in connection with the mechanical action of the linking struts 456 causes the tongue 433 to move or rotate in a first direction with respect to the spring arms 452 about the tracking axis. As shown, the lengthening of the motor 434 stretches the gimbal 424 laterally and causes the struts 456 to bend (e.g., bow inward). Because of the offset arrangement of the struts 456, the struts 456 bend such that the tongue 433 rotates in the first direction.


When a second potential (e.g., negative) tracking drive signal is applied to the motor 434, the shape of the motor changes and its length generally contracts. This change in shape decreases the distance between the support regions 458 as shown in FIG. 31C, which in connection with the mechanical action of the linking struts 456 causes the tongue 433 to move or rotate in a second direction with respect to the spring arms 452 about the tracking axis. The second direction is opposite the first direction. As shown, the shortening of the motor 434 compresses the gimbal 424 laterally and causes the struts 456 to bend (e.g., bow outward). Because of the offset arrangement of the struts 456, the struts 456 bend such that the tongue 433 rotates in the second direction. Some, although relatively little, out-of-plane motion of other portions of the gimbal 424 is produced during the tracking action as described above. With this embodiment of the invention the, flexure slider mounting region on the tongue 433 generally rotates with respect to the spring arms 452 as the spring arms 452 stay stationary or experience little movement.


It is noted that the embodiments of FIGS. 1-31C show various DSA structures that are actuated by a single motor. It will be understood, however, that multiple motors could alternatively be used in various embodiments while utilizing aspects of the invention.


Embodiments of the invention offer important advantages. For example, in some cases they can significantly increase servo bandwidth (e.g., from about 3-4 kHz for baseplate or loadbeam based DSA structures to 5-8 kHz or more). Stroke can be increased. The DSA structures can be efficiently manufactured.


Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the invention. Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the above-described features.

Claims
  • 1. A gimbaled flexure having a dual stage actuation (DSA) structure, comprising: a flexure comprising: a pair of spring arms;a tongue located between the spring arms and structurally supported by the pair of spring arms; anda pair of struts, the struts positioned respectively between the pair of spring arms and the tongue, each strut connecting a respective one of the pair of spring arms to the tongue, the struts orientated offset with respect to each other;a slider mounting; anda motor mounted on the flexure, a first one of the pair of struts distal of the motor while a second one of the pair of struts proximal of the motor, the pair of struts outside of the perimeter of the motor, wherein electrical activation of the motor bends the pair of struts to rotate the tongue and the slider mounting about a tracking axis.
  • 2. The gimbaled flexure of claim 1, wherein each of the spring arms, the tongue, and the pair of struts are formed from a layer of metal.
  • 3. The gimbaled flexure of claim 1, wherein the flexure is cantilevered from a loadbeam and gimbaled about a dimple of the loadbeam.
  • 4. The gimbaled flexure of claim 1, wherein opposite ends of the motor are respectively mounted on the spring arms.
  • 5. The gimbaled flexure of claim 1, wherein the slider mounting is a surface on a first side of the tongue and the motor is positioned on a second side of the tongue that is opposite the first side of the tongue.
  • 6. The gimbaled flexure of claim 1, further comprising a slider mounted on the slider mounting.
  • 7. The gimbaled flexure of claim 1, wherein the tongue rotates and the pair of spring arms remain relatively stationary when the motor is electrically activated.
  • 8. The gimbaled flexure of claim 1, further comprising a loadbeam, the loadbeam comprising a dimple, wherein the flexure gimbals about the dimple, and the dimple impinges on the motor.
  • 9. The gimbaled flexure of claim 1, wherein an electrical connection is made with a terminal on the motor through contact between the dimple and the terminal.
  • 10. The gimbaled flexure of claim 1, wherein each of the pair of spring arms, the tongue, and the pair of struts are formed from a layer of metal, and the pair of struts is the only part of the layer of metal that connects the spring arms to the tongue.
  • 11. The gimbaled flexure of claim 1, wherein the slider mounting is a surface on the motor.
  • 12. A gimbaled flexure having a dual stage actuation (DSA) structure, comprising: a flexure comprising: a pair of spring arms;a tongue located between the spring arms; anda pair of struts, the struts positioned respectively between the pair of spring arms and the tongue, each strut connecting a respective one of the pair of spring arms to the tongue, wherein each of the pair of spring arms, the tongue, and the pair of struts are formed from a layer of metal, and the pair of struts is the only part of the layer of metal that connects the spring arms to the tongue;a slider mounting; anda motor mounted on the flexure, a first one of the pair of struts distal of a second one of the pair of struts, wherein electrical activation of the motor bends the pair of struts to rotate the tongue and the slider mounting about a tracking axis.
  • 13. The gimbaled flexure of claim 12, wherein the flexure is cantilevered from a loadbeam and gimbaled about a dimple of the loadbeam.
  • 14. The gimbaled flexure of claim 12, wherein opposite ends of the motor are respectively mounted on the spring arms.
  • 15. The gimbaled flexure of claim 12, wherein the slider mounting is a surface on a first side of the tongue and the motor is positioned on a second side of the tongue that is opposite the first side of the tongue.
  • 16. The gimbaled flexure of claim 12, further comprising a slider mounted on the slider mounting.
  • 17. The gimbaled flexure of claim 12, wherein the tongue rotates and the pair of spring arms remain relatively stationary when the motor is electrically activated.
  • 18. The gimbaled flexure of claim 12, further comprising a loadbeam, the loadbeam comprising a dimple, wherein the flexure gimbals about the dimple, and the dimple impinges on the motor.
  • 19. The gimbaled flexure of claim 18, wherein an electrical connection is made with a terminal on the motor through contact between the dimple and the terminal.
  • 20. The gimbaled flexure of claim 12, wherein the slider mounting is a surface on the motor.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 14/026,427, filed Sep. 13, 2013, issuing as U.S. Pat. No. 8,681,456, on Mar. 25, 2014, which claims the benefit of U.S. Provisional Application No. 61/700,972, filed Sep. 14, 2012, which is herein incorporated by reference in its entirety and for all purposes.

US Referenced Citations (343)
Number Name Date Kind
3320556 Schneider May 1967 A
4418239 Larson et al. Nov 1983 A
4422906 Kobayashi Dec 1983 A
4659438 Kuhn et al. Apr 1987 A
5140288 Grunwell Aug 1992 A
5320272 Melton et al. Jun 1994 A
5321568 Hatam-Tabrizi Jun 1994 A
5333085 Prentice et al. Jul 1994 A
5427848 Baer et al. Jun 1995 A
5459921 Hudson et al. Oct 1995 A
5485053 Baz Jan 1996 A
5491597 Bennin et al. Feb 1996 A
5521778 Boutaghou et al. May 1996 A
5598307 Bennin Jan 1997 A
5608590 Ziegler et al. Mar 1997 A
5608591 Klaassen Mar 1997 A
5631786 Erpelding May 1997 A
5636089 Jurgenson et al. Jun 1997 A
5657186 Kudo et al. Aug 1997 A
5657188 Jurgenson et al. Aug 1997 A
5666241 Summers Sep 1997 A
5666717 Matsumoto et al. Sep 1997 A
5694270 Sone et al. Dec 1997 A
5717547 Young Feb 1998 A
5734526 Symons Mar 1998 A
5737152 Balakrishnan Apr 1998 A
5754368 Shiraishi et al. May 1998 A
5764444 Imamura et al. Jun 1998 A
5773889 Love et al. Jun 1998 A
5790347 Girard Aug 1998 A
5796552 Akin, Jr. et al. Aug 1998 A
5805382 Lee et al. Sep 1998 A
5812344 Balakrishnan Sep 1998 A
5818662 Shum Oct 1998 A
5862010 Simmons et al. Jan 1999 A
5889137 Hutchings et al. Mar 1999 A
5892637 Brooks, Jr. et al. Apr 1999 A
5898544 Krinke et al. Apr 1999 A
5914834 Gustafson Jun 1999 A
5921131 Stange Jul 1999 A
5924187 Matz Jul 1999 A
5973882 Tangren Oct 1999 A
5973884 Hagen Oct 1999 A
5986853 Simmons et al. Nov 1999 A
5995328 Balakrishnan Nov 1999 A
6011671 Masse et al. Jan 2000 A
6038102 Balakrishnan et al. Mar 2000 A
6046887 Uozumi et al. Apr 2000 A
6055132 Arya et al. Apr 2000 A
6075676 Hiraoka et al. Jun 2000 A
6078470 Danielson et al. Jun 2000 A
6108175 Hawwa et al. Aug 2000 A
6118637 Wright et al. Sep 2000 A
6144531 Sawai Nov 2000 A
6146813 Girard et al. Nov 2000 A
6156982 Dawson Dec 2000 A
6157522 Murphy et al. Dec 2000 A
6172853 Davis et al. Jan 2001 B1
6195227 Fan et al. Feb 2001 B1
6215622 Ruiz et al. Apr 2001 B1
6229673 Shinohara et al. May 2001 B1
6233124 Budde et al. May 2001 B1
6239953 Mei May 2001 B1
6246546 Tangren Jun 2001 B1
6246552 Soeno et al. Jun 2001 B1
6249404 Doundakov et al. Jun 2001 B1
6262868 Arya et al. Jul 2001 B1
6275358 Balakrishnan et al. Aug 2001 B1
6278587 Mei Aug 2001 B1
6282062 Shiraishi Aug 2001 B1
6295185 Stefansky Sep 2001 B1
6297936 Kant et al. Oct 2001 B1
6300846 Brunker Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6320730 Stefansky et al. Nov 2001 B1
6330132 Honda Dec 2001 B1
6349017 Schott Feb 2002 B1
6376964 Young et al. Apr 2002 B1
6396667 Zhang et al. May 2002 B1
6399899 Ohkawa et al. Jun 2002 B1
6400532 Mei Jun 2002 B1
6404594 Maruyama et al. Jun 2002 B1
6424500 Coon et al. Jul 2002 B1
6445546 Coon Sep 2002 B1
6459549 Tsuchiya et al. Oct 2002 B1
6490228 Killam Dec 2002 B2
6493190 Coon Dec 2002 B1
6493192 Crane et al. Dec 2002 B2
6539609 Palmer et al. Apr 2003 B2
6549376 Scura et al. Apr 2003 B1
6549736 Miyabe et al. Apr 2003 B2
6563676 Chew et al. May 2003 B1
6596184 Shum et al. Jul 2003 B1
6597541 Nishida et al. Jul 2003 B2
6600631 Berding et al. Jul 2003 B1
6621653 Schirle Sep 2003 B1
6621658 Nashif Sep 2003 B1
6636388 Stefansky Oct 2003 B2
6639761 Boutaghou et al. Oct 2003 B1
6647621 Roen et al. Nov 2003 B1
6661617 Hipwell, Jr. et al. Dec 2003 B1
6661618 Fujiwara et al. Dec 2003 B2
6704157 Himes et al. Mar 2004 B2
6704158 Hawwa et al. Mar 2004 B2
6714384 Himes et al. Mar 2004 B2
6714385 Even et al. Mar 2004 B1
6724580 Irie et al. Apr 2004 B2
6728057 Putnam Apr 2004 B2
6728077 Murphy Apr 2004 B1
6731472 Okamoto et al. May 2004 B2
6735052 Dunn et al. May 2004 B2
6735055 Crane et al. May 2004 B1
6737931 Amparan et al. May 2004 B2
6738225 Summers et al. May 2004 B1
6741424 Danielson et al. May 2004 B1
6751062 Kasajima et al. Jun 2004 B2
6760182 Bement et al. Jul 2004 B2
6760194 Shiraishi et al. Jul 2004 B2
6760196 Niu et al. Jul 2004 B1
6762913 Even et al. Jul 2004 B1
6765761 Arya Jul 2004 B2
6771466 Kasajima et al. Aug 2004 B2
6771467 Kasajima et al. Aug 2004 B2
6791802 Watanabe et al. Sep 2004 B2
6798597 Aram et al. Sep 2004 B1
6801402 Subrahmanyam et al. Oct 2004 B1
6831539 Hipwell, Jr. et al. Dec 2004 B1
6833978 Shum et al. Dec 2004 B2
6839204 Shiraishi et al. Jan 2005 B2
6841737 Komatsubara et al. Jan 2005 B2
6856075 Houk et al. Feb 2005 B1
6898042 Subrahmanyan May 2005 B2
6900967 Coon et al. May 2005 B1
6922305 Price Jul 2005 B2
6934127 Yao et al. Aug 2005 B2
6942817 Yagi et al. Sep 2005 B2
6943991 Yao et al. Sep 2005 B2
6950288 Yao et al. Sep 2005 B2
6963471 Arai et al. Nov 2005 B2
6975488 Kulangara et al. Dec 2005 B1
6977790 Chen et al. Dec 2005 B1
7006333 Summers Feb 2006 B1
7016159 Bjorstrom et al. Mar 2006 B1
7020949 Muramatsu et al. Apr 2006 B2
7023667 Shum Apr 2006 B2
7050267 Koh et al. May 2006 B2
7057857 Niu et al. Jun 2006 B1
7064928 Fu et al. Jun 2006 B2
7079357 Kulangara et al. Jul 2006 B1
7082670 Boismier et al. Aug 2006 B2
7092215 Someya et al. Aug 2006 B2
7130159 Shimizu et al. Oct 2006 B2
7132607 Yoshimi et al. Nov 2006 B2
7142395 Swanson et al. Nov 2006 B2
7144687 Fujisaki et al. Dec 2006 B2
7159300 Yao et al. Jan 2007 B2
7161765 Ichikawa et al. Jan 2007 B2
7161767 Hernandez et al. Jan 2007 B2
7177119 Bennin et al. Feb 2007 B1
7218481 Bennin et al. May 2007 B1
7256968 Krinke Aug 2007 B1
7271958 Yoon et al. Sep 2007 B2
7292413 Coon Nov 2007 B1
7307817 Mei Dec 2007 B1
7322241 Kai Jan 2008 B2
7336436 Sharma et al. Feb 2008 B2
7342750 Yang et al. Mar 2008 B2
7345851 Hirano et al. Mar 2008 B2
7375930 Yang et al. May 2008 B2
7379274 Yao et al. May 2008 B2
7382582 Cuevas Jun 2008 B1
7385788 Kubota et al. Jun 2008 B2
7391594 Fu et al. Jun 2008 B2
7403357 Williams Jul 2008 B1
7408745 Yao et al. Aug 2008 B2
7417830 Kulangara Aug 2008 B1
7420778 Sassine et al. Sep 2008 B2
7459835 Mei et al. Dec 2008 B1
7460337 Mei Dec 2008 B1
7466520 White et al. Dec 2008 B2
7499246 Nakagawa Mar 2009 B2
7509859 Kai Mar 2009 B2
7518830 Panchal et al. Apr 2009 B1
7567410 Zhang et al. Jul 2009 B1
7595965 Kulangara et al. Sep 2009 B1
7625654 Vyas et al. Dec 2009 B2
7643252 Arai et al. Jan 2010 B2
7649254 Graydon et al. Jan 2010 B2
7663841 Budde et al. Feb 2010 B2
7667921 Satoh et al. Feb 2010 B2
7675713 Ogawa et al. Mar 2010 B2
7688552 Yao et al. Mar 2010 B2
7692899 Arai et al. Apr 2010 B2
7701673 Wang et al. Apr 2010 B2
7701674 Arai Apr 2010 B2
7719798 Yao May 2010 B2
7724478 Deguchi et al. May 2010 B2
7751153 Kulangara et al. Jul 2010 B1
7768746 Yao et al. Aug 2010 B2
7782572 Pro Aug 2010 B2
7821742 Mei Oct 2010 B1
7832082 Hentges et al. Nov 2010 B1
7835113 Douglas Nov 2010 B1
7872344 Fjelstad et al. Jan 2011 B2
7875804 Tronnes et al. Jan 2011 B1
7914926 Kimura et al. Mar 2011 B2
7923644 Ishii et al. Apr 2011 B2
7924530 Chocholaty Apr 2011 B1
7929252 Hentges et al. Apr 2011 B1
7983008 Liao et al. Jul 2011 B2
7986494 Pro Jul 2011 B2
8004798 Dunn Aug 2011 B1
8085508 Hatch Dec 2011 B2
8089728 Yao et al. Jan 2012 B2
8120878 Drape et al. Feb 2012 B1
8125736 Nojima et al. Feb 2012 B2
8125741 Shelor Feb 2012 B2
8144436 Iriuchijima et al. Mar 2012 B2
8149542 Ando Apr 2012 B2
8151440 Tsutsumi et al. Apr 2012 B2
8161626 Ikeji Apr 2012 B2
8169746 Rice et al. May 2012 B1
8174797 Iriuchijima May 2012 B2
8189301 Schreiber May 2012 B2
8194359 Yao et al. Jun 2012 B2
8199441 Nojima Jun 2012 B2
8228642 Hahn et al. Jul 2012 B1
8248731 Fuchino Aug 2012 B2
8248734 Fuchino Aug 2012 B2
8248735 Fujimoto et al. Aug 2012 B2
8248736 Hanya et al. Aug 2012 B2
8254062 Greminger Aug 2012 B2
8259416 Davis et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8289652 Zambri et al. Oct 2012 B2
8289656 Huber Oct 2012 B1
8295012 Tian et al. Oct 2012 B1
8300362 Virmani et al. Oct 2012 B2
8310790 Fanslau, Jr. Nov 2012 B1
8331061 Hanya et al. Dec 2012 B2
8339748 Shum et al. Dec 2012 B2
8351160 Fujimoto Jan 2013 B2
8363361 Hanya et al. Jan 2013 B2
8379349 Pro et al. Feb 2013 B1
8446694 Tian et al. May 2013 B1
8456780 Ruiz Jun 2013 B1
8498082 Padeski et al. Jul 2013 B1
8526142 Dejkoonmak et al. Sep 2013 B1
8542465 Liu et al. Sep 2013 B2
8559137 Imuta Oct 2013 B2
8665565 Pro et al. Mar 2014 B2
8675314 Bjorstrom et al. Mar 2014 B1
8681456 Miller et al. Mar 2014 B1
20010012181 Inoue et al. Aug 2001 A1
20010013993 Coon Aug 2001 A1
20010030838 Takadera et al. Oct 2001 A1
20010043443 Okamoto et al. Nov 2001 A1
20020075606 Nishida et al. Jun 2002 A1
20020118492 Watanabe et al. Aug 2002 A1
20020149888 Motonishi et al. Oct 2002 A1
20030011118 Kasajima et al. Jan 2003 A1
20030011936 Himes et al. Jan 2003 A1
20030053258 Dunn et al. Mar 2003 A1
20030135985 Yao et al. Jul 2003 A1
20030174445 Luo Sep 2003 A1
20030202293 Nakamura et al. Oct 2003 A1
20030210499 Arya Nov 2003 A1
20040027727 Shimizu et al. Feb 2004 A1
20040027728 Coffey et al. Feb 2004 A1
20040070884 Someya et al. Apr 2004 A1
20040125508 Yang et al. Jul 2004 A1
20040181932 Yao et al. Sep 2004 A1
20040207957 Kasajima et al. Oct 2004 A1
20050061542 Aonuma et al. Mar 2005 A1
20050063097 Maruyama et al. Mar 2005 A1
20050105217 Kwon et al. May 2005 A1
20050254175 Swanson et al. Nov 2005 A1
20050280944 Yang et al. Dec 2005 A1
20060044698 Hirano et al. Mar 2006 A1
20060077594 White et al. Apr 2006 A1
20060181812 Kwon et al. Aug 2006 A1
20060193086 Zhu et al. Aug 2006 A1
20060209465 Takikawa et al. Sep 2006 A1
20060238924 Gatzen Oct 2006 A1
20060274452 Arya Dec 2006 A1
20060274453 Arya Dec 2006 A1
20060279880 Boutaghou et al. Dec 2006 A1
20070133128 Arai Jun 2007 A1
20070153430 Park et al. Jul 2007 A1
20070223146 Yao et al. Sep 2007 A1
20070227769 Brodsky et al. Oct 2007 A1
20070253176 Ishii et al. Nov 2007 A1
20080084638 Bonin Apr 2008 A1
20080144225 Yao et al. Jun 2008 A1
20080192384 Danielson et al. Aug 2008 A1
20080198511 Hirano et al. Aug 2008 A1
20080273266 Pro Nov 2008 A1
20080273269 Pro Nov 2008 A1
20090080117 Shimizu et al. Mar 2009 A1
20090135523 Nishiyama et al. May 2009 A1
20090147407 Huang et al. Jun 2009 A1
20090176120 Wang Jul 2009 A1
20090190263 Miura et al. Jul 2009 A1
20090244786 Hatch Oct 2009 A1
20090294740 Kurtz et al. Dec 2009 A1
20100067151 Okawara et al. Mar 2010 A1
20100073825 Okawara Mar 2010 A1
20100097726 Greminger et al. Apr 2010 A1
20100143743 Yamasaki et al. Jun 2010 A1
20100165515 Ando Jul 2010 A1
20100165516 Fuchino Jul 2010 A1
20100177445 Fuchino Jul 2010 A1
20100195252 Kashima Aug 2010 A1
20100208390 Hanya et al. Aug 2010 A1
20100220414 Klarqvist et al. Sep 2010 A1
20100246071 Nojima et al. Sep 2010 A1
20100271735 Schreiber Oct 2010 A1
20100290158 Hanya et al. Nov 2010 A1
20110013319 Soga et al. Jan 2011 A1
20110058282 Fujimoto et al. Mar 2011 A1
20110096438 Takada et al. Apr 2011 A1
20110123145 Nishio May 2011 A1
20110141624 Fuchino et al. Jun 2011 A1
20110228425 Liu et al. Sep 2011 A1
20110242708 Fuchino Oct 2011 A1
20110279929 Kin Nov 2011 A1
20110299197 Eguchi Dec 2011 A1
20120002329 Shum et al. Jan 2012 A1
20120087041 Ohsawa Apr 2012 A1
20120113547 Sugimoto May 2012 A1
20120281316 Fujimoto et al. Nov 2012 A1
20130020112 Ohsawa Jan 2013 A1
20130242434 Bjorstrom et al. Sep 2013 A1
20130242436 Yonekura et al. Sep 2013 A1
20130265674 Fanslau Oct 2013 A1
20140022670 Takikawa et al. Jan 2014 A1
20140022671 Takikawa et al. Jan 2014 A1
20140022674 Takikawa et al. Jan 2014 A1
20140022675 Hanya et al. Jan 2014 A1
20140063660 Bjorstrom et al. Mar 2014 A1
20140078621 Miller et al. Mar 2014 A1
20140098440 Miller et al. Apr 2014 A1
20140168821 Miller Jun 2014 A1
Foreign Referenced Citations (14)
Number Date Country
0591954 Apr 1994 EP
0834867 May 2007 EP
9198825 Jul 1997 JP
10003632 Jan 1998 JP
2001057039 Feb 2001 JP
2001202731 Jul 2001 JP
2001307442 Nov 2001 JP
2002050140 Feb 2002 JP
2002170607 Jun 2002 JP
2003223771 Aug 2003 JP
2004039056 Feb 2004 JP
2004300489 Oct 2004 JP
2005209336 Aug 2005 JP
WO9820485 May 1998 WO
Non-Patent Literature Citations (43)
Entry
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Non-Final Office Action issued on Mar. 24, 2014, 7 pages.
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Non-Final Office Action issued on Oct. 29, 2013, 9 pages.
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Notice of Allowance issued on Jan. 7, 2014, 6 pages.
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Notice of Allowance issued on May 6, 2014, 5 pages.
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Response filed Apr. 18, 2014 to Non-Final Office Action issued on Mar. 24, 2014, 9 pages.
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Response filed Nov. 19, 2013 to Non-Final Office Action issued on Oct. 29, 2013, 11 pages.
U.S. Appl. No. 13/972,137, to Bjorstrom, Jacob D. et al., Non-Final Office Action issued Nov. 5, 2013.
U.S. Appl. No. 13/972,137, to Bjorstrom, Jacob D. et al., Notice of Allowance issued on Jan. 17, 2014, 5 pages.
U.S. Appl. No. 13/972,137, to Bjorstrom, Jacob D. et al., Response filed Dec. 2, 2013 to Non-Final Office Action issued Nov. 5, 2013, 12 pages.
U.S. Appl. No. 14/044,238 to Miller, Mark A., Non-Final Office Action issued on Feb. 6, 2014, 9 pages.
U.S. Appl. No. 14/044,238, to Miller, Mark A., Response filed Apr. 22, 2014 to Non-Final Office Action issued on Feb. 6, 2014, 11 pages.
U.S. Appl. No. 14/050,660, to Miller, Mark A. et al., Non-Final Office Action issued on Mar. 31, 2014, 9 pages.
Pozar, David M. Microwave Engineering, 4th Edition, copyright 2012 by John Wiley & Sons, Inc., pp. 422-426.
U.S. Appl. No. 14/146,760 to Roen, Michael E. entitled Balanced Multi-Trace Transmission in a Hard Disk Drive Flexure, filed Jan. 3, 2014, 32 pages.
International Search Report and Written Opinion issued in PCT/US2013/059702, dated Mar. 28, 2014, 9 pages.
Cheng, Yang-Tse, “Vapor deposited thin gold coatings for high temperature electrical contacts”, Electrical Contacts, 1996, Joint with the 18th International Conference on Electrical Contacts, Proceedings of the Forty-Second IEEE Holm Conference, Sep. 16-20, 1996 (abstract only).
Fu, Yao, “Design of a Hybrid Magnetic and Piezoelectric Polymer Microactuator”, a thesis submitted to Industrial Research Institute Swinburne (IRIS), Swinburne University of Technology, Hawthorn, Victoria, Australia, Dec. 2005.
Harris, N.R. et al., “A Multilayer Thick-film PZT Actuator for MEMs Applications”, Sensors and Actuators A: Physical, vol. 132, No. 1, Nov. 8, 2006, pp. 311-316.
International Search Report and Written Opinion issued in PCT/US2013/031484, mailed May 30, 2013, 13 pages.
International Search Report and Written Opinion issued in PCT/US2013/052885, mailed Feb. 7, 2014, 13 pages.
International Search Report and Written Opinion issued in PCT/US2013/064314, dated Apr. 18, 2014, 10 pages.
Jing, Yang, “Fabrication of piezoelectric ceramic micro-actuator and its reliability for hard disk drives”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE, vol. 51, No. 11, Nov. 2004, pp. 1470-1476 (abstract only).
Kon, Stanley et al., “Piezoresistive and Piezoelectric MEMS Strain Sensors for Vibration Detection”, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007, Proc. of SPIE vol. 6529.
Lengert, David et al., “Design of suspension-based and collocated dual stage actuated suspensions”, Microsyst Technol (2012) 18:1615-1622.
Li, Longqiu et al., “An experimental study of the dimple-gimbal interface in a hard disk drive”, Microsyst Technol (2011) 17:863-868.
Pichonat, Tristan et al., “Recent developments in MEMS-based miniature fuel cells”, Microsyst Technol (2007) 13:1671-1678.
Raeymaekers, B. et al., “Investigation of fretting wear at the dimple/gimbal interface in a hard disk drive suspension”, Wear, vol. 268, Issues 11-12, May 12, 2010, pp. 1347-1353.
Raeymaekers, Bart et al., “Fretting Wear Between a Hollow Sphere and Flat Surface”, Proceedings of the STLE/ASME International Joint Tribology Conference, Oct. 19-21, 2009, Memphis, TN USA, 4 pages.
Rajagopal, Indira et al., “Gold Plating of Critical Components for Space Applications: Challenges and Solutions”, Gold Bull., 1992, 25(2), pp. 55-66.
U.S. Appl. No. 13/365,443 entitled Elongated Trace Tethers for Disk Drive Head Suspension Flexures, filed Feb. 3, 2012.
U.S. Appl. No. 13/690,883 entitled Microstructure Patterned Surfaces for Integrated Lead Head Suspensions, filed Nov. 30, 2012.
U.S. Appl. No. 13/827,622 entitled Mid-Loadbeam Dual Stage Actuated (DSA) Disk Drive Head Suspension, filed Mar. 14, 2013.
U.S. Appl. No. 14/056,481 entitled Two-Motor Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Motor Stiffeners, filed Oct. 17, 2013.
U.S. Appl. No. 14/103,955 entitled Electrical Contacts to Motors in Dual Stage Actuated Suspensions, filed Dec. 12, 2013.
U.S. Appl. No. 14/141,617 entitled Disk Drive Suspension Assembly Having a Partially Flangeless Load Point Dimple, filed Dec. 27, 2013, 53 pages.
U.S. Appl. No. 14/145,515 entitled Balanced Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions, filed Dec. 31, 2013, 39 pages.
U.S. Appl. No. 61/396,239 entitled Low Resistance Ground Joints for Dual Stage Actuation Disk Drive Suspensions, filed May 24, 2010, 16 pages.
U.S. Appl. No. 13/955,204 entitled Damped Dual Stage Actuation Disk Drive Suspensions, filed Jul. 31, 2013.
U.S. Appl. No. 13/972,137 entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Offset Motors, filed Aug. 21, 2013.
U.S. Appl. No. 14/026,427 entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions, filed Sep. 13, 2013.
U.S. Appl. No. 14/044,238 entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Motor Stifeners, filed Oct. 2, 2013.
U.S. Appl. No. 14/050,060 entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Dampers, filed Oct. 10, 2013.
Yoon, Wonseok et al., “Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells”, The Journal of Power Sources, vol. 179, No. 1, Apr. 15, 2008, pp. 265-273.
Related Publications (1)
Number Date Country
20140198412 A1 Jul 2014 US
Provisional Applications (1)
Number Date Country
61700972 Sep 2012 US
Continuations (1)
Number Date Country
Parent 14026427 Sep 2013 US
Child 14216288 US