Co-location connection service

Information

  • Patent Grant
  • 11943192
  • Patent Number
    11,943,192
  • Date Filed
    Wednesday, May 11, 2022
    2 years ago
  • Date Issued
    Tuesday, March 26, 2024
    10 months ago
Abstract
The online co-location connection service is provided by a messaging system configured to selectively pair user profiles associated with respective client devices equipped with sensors that communicate with each other within the predetermined physical proximity range. The pairing is effectuated without requiring that the two client devices, at the time of pairing, are within a communication range permitted by their respective short range communication sensors and without requiring a communication between the first client device and the second client device via a short-range wireless communication technology. Subsequent to the pairing, the messaging system monitors physical proximity of the client devices based on the sensor data obtained by the co-location connection service from the respective messaging clients executing at the respective client devices. In response to detecting that the client devices are within a predetermined physical proximity range the messaging system generates a co-location experience.
Description
TECHNICAL FIELD

The present disclosure relates generally to facilitating interactions between devices hosting a messaging application.


BACKGROUND

The popularity of computer-implemented tools that permit users to access and interact with content and other users online continues to grow. For example, various computer-implemented tools exist that permit users to share content with other users through messaging applications or to play with other users online in multiplayer video games. Some of such computer-implemented tools, termed applications or apps, can be designed to run on a mobile device such as a phone, a tablet, or a watch.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure number in which that element is first introduced. Some embodiments are illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which:



FIG. 1 is a diagrammatic representation of a networked environment in which a co-location connection service may be deployed, in accordance with some examples.



FIG. 2 is a block diagram of an architecture of a system for providing co-location experience, in accordance with some examples.



FIG. 3 is a flowchart of a method for providing co-location experience, in accordance with some examples.



FIG. 4 is a diagrammatic representation of an example co-location experience manifested on respective display devices of co-location buddies.



FIG. 5 is a diagrammatic representation of a machine in the form of a computer system within which a set of instructions may be executed for causing the machine to perform any one or more of the methodologies discussed herein, in accordance with some examples.



FIG. 6 is a diagrammatic representation of a messaging system, in accordance with some examples, that has both client-side and server-side functionality.



FIG. 7 is a diagrammatic representation of a data structure as maintained in a database, in accordance with some examples.





DETAILED DESCRIPTION

A messaging server system, which hosts backend service for an associated messaging client, is configured to detect a co-location event indicating that two devices executing respective messaging clients are located within a certain physical proximity and respond to the co-location event by unlocking one or more user experiences previously designated as co-location experiences.


The technical problem of providing an online experience to a pair of users represented by respective user profiles in the messaging server system, in a way that the experience served to the respective associated messaging clients changes based on the users' physical proximity to each other, is addressed by an online co-location connection service configured to selectively pair user profiles associated with respective client devices equipped with sensors that communicate with each other within the predetermined physical proximity range, monitor physical proximity of the client devices based on the sensor data obtained by the co-location connection service from the respective messaging clients executing at the respective client devices and, in response to detecting that the client devices are within a predetermined physical proximity range, modifying the user interface in the respective messaging clients. A predetermined physical proximity range may be referred to as the co-location range. A user interface modified in response to detecting that the client devices are within a predetermined physical proximity range is an example of a co-location experience.


The operation of pairing two user profiles associated with respective client devices comprises designating these two user profiles, in a database that stores profiles representing users in the messaging server system, as co-location buddies. For example, each of the paired profiles may include an identification of the other profile and a flag indicating that the other profile is its co-location buddy. In some embodiments, the process of pairing includes receiving, from a user, a request to be paired with another user, obtaining a consent to be paired from the other user, and determining that the respective client devices of the two users are configured to communicate with each other directly over a near field communication technology, such as, e.g., a wireless personal area network technology, radio-frequency identification (RFID), etc.


The profiles representing the two users are then designated as co-location buddies in the database. Obtaining the consent to be paired from a user may entail communicating, from the messaging server system to the associated client device, a message or a user interface including a selectable option to grant or to deny consent to be paired. The messaging server system effectuates the pairing if the option to grant consent was selected and does not effectuate the pairing if the option to deny consent was selected of if not response was received. For the purposes of this description, the messaging clients associated with the paired user profiles are referred to as paired messaging clients, and the associated client devices are referred to as paired client devices. When the paired client devices come into the co-location range within each other, a co-location event is sent from one client device to the other, and, also, the co-location event is sent to the messaging server system.


As mentioned above, an example of a co-location experience is a user interface modified in response to detecting that the client devices are within a predetermined physical proximity range, also referred to as a co-location user interface (UI). The co-location UI may include an indication of co-location of the devices, as well as a visual control actionable to activate a feature that is not otherwise made available to the users, such as, e.g., an HTML5-based app or a game. The co-location UI may, in some embodiments, include animation configured to playback overlaid over a screen of the messaging client. Such animation may be an animated image with a transparent background, e.g., of a couple engaged in an activity that in non-virtual realm is only possible when two people are in close proximity, such as hugging or dancing. Another example of such animation is a depiction of hearts or balloons floating through the screen of the messaging client. The co-location UI may show respective custom avatars representing the paired user profiles, where the avatars are modified in a manner indicating that the other person is nearby. When the messaging server system detects that paired devices are no longer within a predetermined physical proximity range, the co-location experience is made unavailable to the users of the paired messaging clients.


While some less resource-intensive co-location experiences (sharing a simple animation) may be provided by the paired messaging clients to their users directly, without a roundtrip to the messaging server system, other co-location experiences (a more complex animation or a two player game) may include interaction with the messaging server system. Furthermore, while a co-location connection service is described in the context of a messaging system, the co-location methodology described herein may be utilized beneficially in any scenario where users interact via their client devices. For example, when users are engaged in an interactive game via their client devices, co-location methodology may be used to unlock additional power-ups in response to detecting co-location of the client devices. An online co-location connection service may be provided in an online messaging system comprising a messaging client and an associated backend service, which is described with reference to FIG. 1 below.


Networked Computing Environment



FIG. 1 is a block diagram showing an example messaging system 100 for exchanging data (e.g., messages and associated content) over a network. The messaging system 100 includes multiple instances of a client device 102, each of which hosts a number of applications, including a messaging client 104. Each messaging client 104 is communicatively coupled to other instances of the messaging client 104 and a messaging server system 108 via a network 106 (e.g., the Internet).


A messaging client 104 is able to communicate and exchange data with another messaging client 104 and with the messaging server system 108 via the network 106. The data exchanged between messaging client 104, and between a messaging client 104 and the messaging server system 108, includes functions (e.g., commands to invoke functions) as well as payload data (e.g., text, audio, video or other multimedia data). A client device hosting a messaging client 104 may be equipped with sensors permitting the messaging client 104 to communicate and exchange data (e.g., a Bluetooth UUID) with another messaging client 104 over a near field communication technology, such as, e.g., Bluetooth Low Energy technology.


The messaging server system 108 provides server-side functionality via the network 106 to a particular messaging client 104. While certain functions of the messaging system 100 are described herein as being performed by either a messaging client 104 or by the messaging server system 108, the location of certain functionality either within the messaging client 104 or the messaging server system 108 may be a design choice. For example, it may be technically preferable to initially deploy certain technology and functionality within the messaging server system 108 but to later migrate this technology and functionality to the messaging client 104 where a client device 102 has sufficient processing capacity.


The messaging server system 108 supports various services and operations that are provided to the messaging client 104. Such operations include transmitting data to, receiving data from, and processing data generated by the messaging client 104. This data may include message content, client device information, geolocation information, media augmentation and overlays, message content persistence conditions, social network information, and live event information, as examples. Data exchanges within the messaging system 100 are invoked and controlled through functions available via user interfaces (UIs) of the messaging client 104.


Turning now specifically to the messaging server system 108, an Application Program Interface (API) server 110 is coupled to, and provides a programmatic interface to, application servers 112. The application servers 112 are communicatively coupled to a database server 118, which facilitates access to a database 120. A web server 124 is coupled to the application servers 112 and provides web-based interfaces to the application servers 112. To this end, the web server 124 processes incoming network requests over the Hypertext Transfer Protocol (HTTP) and several other related protocols. The database 120 stores data associated with messages processed by the application servers 112, such as, e.g., profile data about a particular entity. Where the entity is an individual, the profile data includes, for example, a user name, notification and privacy settings, as well as records related to changes made by the user to their profile data. Where a first user profile and a second user profile have been designated as co-location buddies for the purpose of accessing the co-location connection service, the first user profile includes a unique identification of the user's client device and an identification of the second user profile. The second user profile, in turn, includes a unique identification of their client device and an identification of the first user profile. An example of profile data that represents a profile paired with another user profile in the messaging system, where the paired profiles represent users of the co-location connection service is shown in FIG. 7, which is described further below.


The Application Program Interface (API) server 110 receives and transmits message data (e.g., commands and message payloads) between the client device 102 and the application servers 112. Specifically, the Application Program Interface (API) server 110 provides a set of interfaces (e.g., routines and protocols) that can be called or queried by the messaging client 104 in order to invoke functionality of the application servers 112. The Application Program Interface (API) server 110 exposes various functions supported by the application servers 112, including account registration, login functionality, the sending of messages, via the application servers 112, from a particular messaging client 104 to another messaging client 104, the sending of media files (e.g., images or video) from a messaging client 104 to a messaging server 114, and for possible access by another messaging client 104, opening an application event (e.g., relating to the messaging client 104), as well as various functions supported by developer tools provided by the messaging server system 108 for use by third party computer systems.


The application servers 112 host a number of server applications and subsystems, including for example a messaging server 114, an image processing server 116, and a social network server 122. The messaging server 114 implements a number of message processing technologies and functions, particularly related to the aggregation and other processing of content (e.g., textual and multimedia content) included in messages received from multiple instances of the messaging client 104. The image processing server 116 that is dedicated to performing various image processing operations, typically with respect to images or video within the payload of a message sent from or received at the messaging server 114. The social network server 122 supports various social networking functions and services and makes these functions and services available to the messaging server 114.


Also shown in FIG. 1 is a co-location server 117. The co-location server 117 provides an online co-location connection service configured to selectively pair user profiles associated with respective client devices equipped with sensors that communicate with each other within the predetermined physical range, monitor physical proximity of the client devices based on the sensor data obtained by the co-location connection service from the respective messaging clients executing at the respective client devices and, in response to detecting that the client devices are within a predetermined physical proximity range, generates co-location experience by modifying the user interface in the respective messaging clients. While, as shown in FIG. 1, an online co-location connection service is provided at the co-location server 117, in some examples, an online co-location connection service may be provided at a messaging server, e.g., by the messaging server 114.


The location of a co-location functionality may be either within the messaging client 104 or the messaging server system 108 or both. An example co-location system, which is supported on the client-side by the messaging client 104 and on the sever-side by the application servers 112, is discussed below with reference to FIG. 6.


System Architecture



FIG. 6 is a block diagram illustrating further details regarding the messaging system 100, according to some examples. Specifically, the messaging system 100 is shown to comprise the messaging client 104 and the application servers 112. The messaging system 100 embodies a number of subsystems, which are supported on the client-side by the messaging client 104 and on the sever-side by the application servers 112. These subsystems include, for example, an augmentation system 606, a map system 608, a game system 610, as well as a co-location connection system 612.


The co-location connection system 612 is configured to selectively pair user profiles associated with respective client devices equipped with sensors that communicate with each other within the predetermined physical proximity range. The co-location connection system 612 monitors physical proximity of the client devices based on the sensor data obtained by the co-location connection service from the respective messaging clients executing at the respective client devices. In response to detecting that the client devices are within a predetermined co-location range, the co-location connection system 612 serves a co-location experience to the respective associated messaging clients executing at the respective client devices by modifying the user interface in the respective messaging clients. An example of a co-location experience is an augmented reality experience provided by the augmentation system 606.


The augmentation system 606 provides various functions that enable a user to augment (e.g., annotate or otherwise modify or edit) media content associated with a message. For example, the augmentation system 606 provides functions related to the generation and publishing of media overlays for messages processed by the messaging system 100. The augmentation system 606 operatively supplies a media overlay or augmentation (e.g., an image filter) to the messaging client 104 based on a geolocation of the client device 102. In another example, the augmentation system 606 operatively supplies a media overlay to the messaging client 104 based on other information, such as in response to the co-location connection system 612 detecting that the client devices are within a predetermined co-location range. A media overlay may include audio and visual content and visual effects. Examples of audio and visual content include pictures, texts, logos, animations, and sound effects. An example of a visual effect includes color overlaying. The audio and visual content or the visual effects can be applied to a media content item (e.g., a photo) at the client device 102. For example, the media overlay may include text or image that can be overlaid on top of a photograph taken by the client device 102. In another example, the media overlay includes an identification of a location overlay (e.g., Venice beach), a name of a live event, or a name of a merchant overlay (e.g., Beach Coffee House). In another example, the co-location connection system 612 and/or the augmentation system 606 cooperate with the map system 608, provides various geographic location functions, and supports the presentation of map-based media content and messages by the messaging client 104.


Other examples of co-location experiences are experiences provided by the game system 610, where the co-location connection system 612 generates a co-location UI that includes a visual control actionable to activate a game. The game system 610 provides various gaming functions within the context of the messaging client 104. The messaging client 104 provides a game interface that includes a list of available games that can be launched by a user within the context of the messaging client 104, and played with other users of the messaging system 100. The messaging system 100 further enables a particular user to invite other users to participate in the play of a specific game, by issuing invitations to such other users from the messaging client 104. The messaging client 104 also supports both the voice and text messaging (e.g., chats) within the context of gameplay, provides a leaderboard for the games, and, also, supports the provision of in-game rewards (e.g., coins and items).


In some examples, a co-location experience provided by the co-location connection system 612 includes providing access to certain external resources, e.g., applications or applets that the respective messaging clients associated with the paired client devices may launch, e.g., by accessing an HTML5 file from a third-party servers. HTML5 is used as an example technology for programming games, but applications and resources programmed based on other technologies can also be used.


As mentioned above, where two user profiles have been paired for the purpose of accessing the co-location connection service, the database that stores profile data (e.g., database 120 of FIG. 1) reflects such pairing. Example data architecture is illustrated in FIG. 7, which is discussed below.


Data Architecture



FIG. 7 is a schematic diagram illustrating data structures 700, which may be stored in the database 120 of the messaging server system 108, according to certain examples. While the content of the database 120 is shown to comprise a number of tables, it will be appreciated that the data could be stored in other types of data structures (e.g., as an object-oriented database).


The database 120 includes message data stored within a message table 702. This message data includes, for any particular one message, at least message sender data, message recipient (or receiver) data, and a payload. Further details regarding information that may be included in a message, and included within the message data stored in the message table 702 is described below with reference to FIG. 4.


An entity table 704 stores entity data, and is linked (e.g., referentially) to an entity graph 706 and profile data 708. Entities for which records are maintained within the entity table 704 may include individuals, corporate entities, organizations, objects, places, events, and so forth. Regardless of entity type, any entity regarding which the messaging server system 108 stores data may be a recognized entity. Each entity is provided with a unique identifier, as well as an entity type identifier (not shown).


The entity graph 706 stores information regarding relationships and associations between entities. Such relationships may be social, professional (e.g., work at a common corporation or organization) interested-based or activity-based, merely for example. The entity graph 706 may also store information reflecting the pairing of user profiles representing users of the co-location connection system 612 of FIG. 6.


The profile data 708 stores multiple types of profile data about a particular entity. The profile data 708 may be selectively used and presented to other users of the messaging system 100, based on privacy settings specified by a particular entity. Where the entity is an individual, the profile data 708 includes, for example, a user name, telephone number, address, settings (e.g., notification and privacy settings), as well as a user-selected avatar representation (or collection of such avatar representations). A particular user may then selectively include one or more of these avatar representations within the content of messages communicated via the messaging system 100, and on map interfaces displayed by messaging clients 104 to other users. The collection of avatar representations may include “status avatars,” which present a graphical representation of a status or activity that the user may select to communicate at a particular time. The profile data 708 that represents a profile paired with another user profile, where the paired profiles represent users of the co-location connection service 117, include, in addition to a user identification 718, a user device identification 720 and a paired user identification 722. In one example, given a user profile that includes a user identification, a user device identification and a paired user identification, the location data exchange component of the power optimization system 206 shown in FIG. 2 obtains location data of a user device (represented by the user device identification), determines the paired profile based on the paired user identification, and communicates the obtained location data of the user device to the paired device represented by a user device identification stored in the paired profile.


The database 120 also stores augmentation data, such as overlays or filters, in an augmentation table 710. The augmentation data is associated with and applied to videos (for which data is stored in a video table 714) and images (for which data is stored in an image table 716). As mentioned above, the video table 714 stores video data that, in one example, is associated with messages for which records are maintained within the message table 702. Similarly, the image table 716 stores image data associated with messages for which message data is stored in the entity table 704. The entity table 704 may associate various augmentations from the augmentation table 710 with various images and videos stored in the image table 716 and the video table 714.



FIG. 2 is a block diagram illustrating an example system 200 for providing co-location experience to users of the of the co-location connection system 612 of FIG. 6. In some examples, the system 200 corresponds to the co-location connection system 612 shown in FIG. 6. The system 200 includes a pairing component 210, a co-location detector 220, and a co-location UI generator 230. The pairing component 210 is configured to pair two user profiles. In some embodiments, only paired user profiles can access the co-location service provided by the co-location connection system 612. The pairing of a first user profile associated with a first client device and a second user profile associated with a second client device is performed online. The pairing comprises determining that the first client device and the second client device include respective short range communication sensors configured to communicate with each other within the predetermined physical range. The pairing operation may be performed without requiring that the two client devices are, at the time of pairing, are within a communication range permitted by their respective short range communication sensors and without requiring a communication between the first client device and the second client device via a short-range wireless communication technology. The pairing comprises receiving, from the first client device, a pairing request to pair the first user profile with the second user profile; in response to the pairing request, obtaining a consent response from the second device, the consent associated with the second user profile; and subsequent to the obtaining of the consent response, pairing the first user profile and the second user profile.


The co-location detector 220 is configured to detect a co-location event indicating that a first client device executing a messaging client and a second client device executing the messaging client are located within a predetermined physical range. The detecting of the co-location event comprises receiving, from the first client device an indication of a connection established between the first client device and the second client device via a short-range wireless communication technology. The co-location detector 220 is further configured to detect a distancing event with respect to two client devices and, in response to the detecting of the distancing event, communicate, to the client devices, a visual indication of the distancing event. A distancing event indicates that the first client device and the second client device are located outside of the predetermined physical range. The distancing event comprises receiving, from the first client device, an indication that a previously established connection between the first client device and the second client device via a short-range wireless communication technology has been terminated.


The co-location UI generator 230 is configured to generate, in response to the co-location detector 220 detecting of the co-location event, a co-location user interface. The co-location user interface may include, e.g., an indication of co-location of the first client device and the second client device, a visual control actionable to activate an HTML5-based application, and/or animation configured to playback overlaid over a screen of the messaging client executing at the first client device.


Each of the various components of the system 200 may be provided at the client device 102 and/or at the messaging server system 108 of FIG. 1. Further details regarding the operation of the system 200 are described below.



FIG. 3 is a flowchart of a method 300 for providing co-location experience. The method 300 may be performed by processing logic that may comprise hardware (e.g., dedicated logic, programmable logic, microcode, etc.), software, or a combination of both. In one example embodiment, some or all processing logic resides at the client device 102 of FIG. 1 and/or at the messaging server system 108 of FIG. 1. Although the described flowchart can show operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed. A process may correspond to a method, a procedure, an algorithm, etc. The operations of methods may be performed in whole or in part, may be performed in conjunction with some or all of the operations in other methods, and may be performed by any number of different systems, such as the systems described herein, or any portion thereof, such as a processor included in any of the systems.


At operation 310, the co-location detector 220 of the co-location connection system 612 detects a co-location event indicating that a first client device executing a messaging client and a second client device executing the messaging client are located within a predetermined physical range. At operation 320, the co-location UI generator 230, in response to the detecting of the co-location event, generates a co-location user interface including an indication of co-location of the first client device and the second client device. The co-location user interface is communicated to the first client device and to the second client device at operation 330.



FIG. 4 is a diagrammatic representation 400 of an example co-location experience manifested on respective display devices of co-location buddies. As shown in FIG. 4, paired client devices 410 and 420 host respective messaging clients. Respective screens 412 and 422 of the messaging clients display respective indications 414 and 424 of the client devices 410 and 420 being located within the communication range of a signal 430 and thus identified by a co-location connection service 442 hosted at a messaging server 440 as co-located. The paired client devices 410 and 420 communicate with the messaging server 440 via a network, such as, e.g., the Internet. Respective screens 412 and 422 of the messaging clients also display respective animations 416 and 426 configured to playback (e.g., float upwards) overlaid over the respective screens 412 and 422 and respective visual controls 418 and 428 actionable to activate a further application, e.g., an HTML5-based app.


Machine Architecture



FIG. 5 is a diagrammatic representation of the machine 600 within which instructions 608 (e.g., software, a program, an application, an applet, an app, or other executable code) for causing the machine 500 to perform any one or more of the methodologies discussed herein may be executed. For example, the instructions 508 may cause the machine 500 to execute any one or more of the methods described herein. The instructions 508 transform the general, non-programmed machine 500 into a particular machine 500 programmed to carry out the described and illustrated functions in the manner described. The machine 500 may operate as a standalone device or may be coupled (e.g., networked) to other machines. In a networked deployment, the machine 500 may operate in the capacity of a server machine or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine 500 may comprise, but not be limited to, a server computer, a client computer, a personal computer (PC), a tablet computer, a laptop computer, a netbook, a set-top box (STB), a personal digital assistant (PDA), an entertainment media system, a cellular telephone, a smartphone, a mobile device, a wearable device (e.g., a smartwatch), a smart home device (e.g., a smart appliance), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any machine capable of executing the instructions 508, sequentially or otherwise, that specify actions to be taken by the machine 500. Further, while only a single machine 500 is illustrated, the term “machine” shall also be taken to include a collection of machines that individually or jointly execute the instructions 508 to perform any one or more of the methodologies discussed herein. The machine 500, for example, may comprise the client device 102 or any one of a number of server devices forming part of the messaging server system 108. In some examples, the machine 500 may also comprise both client and server systems, with certain operations of a particular method or algorithm being performed on the server-side and with certain operations of the particular method or algorithm being performed on the client-side.


The machine 500 may include processors 502, memory 504, and input/output I/O components 538, which may be configured to communicate with each other via a bus 540. In an example, the processors 502 (e.g., a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) Processor, a Complex Instruction Set Computing (CISC) Processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Radio-Frequency Integrated Circuit (RFIC), another processor, or any suitable combination thereof) may include, for example, a processor 506 and a processor 510 that execute the instructions 508. The term “processor” is intended to include multi-core processors that may comprise two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously. Although FIG. 5 shows multiple processors 502, the machine 500 may include a single processor with a single-core, a single processor with multiple cores (e.g., a multi-core processor), multiple processors with a single core, multiple processors with multiples cores, or any combination thereof.


The memory 504 includes a main memory 512, a static memory 514, and a storage unit 516, both accessible to the processors 502 via the bus 540. The main memory 504, the static memory 514, and storage unit 516 store the instructions 508 embodying any one or more of the methodologies or functions described herein. The instructions 508 may also reside, completely or partially, within the main memory 512, within the static memory 514, within machine-readable medium 518 within the storage unit 515, within at least one of the processors 502 (e.g., within the Processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 500.


The I/O components 538 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components 538 that are included in a particular machine will depend on the type of machine. For example, portable machines such as mobile phones may include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 538 may include many other components that are not shown in FIG. 5. In various examples, the I/O components 538 may include user output components 524 and user input components 526. The user output components 524 may include visual components (e.g., a display such as a plasma display panel (PDP), a light-emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)), acoustic components (e.g., speakers), haptic components (e.g., a vibratory motor, resistance mechanisms), other signal generators, and so forth. The user input components 526 may include alphanumeric input components (e.g., a keyboard, a touch screen configured to receive alphanumeric input, a photo-optical keyboard, or other alphanumeric input components), point-based input components (e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or another pointing instrument), tactile input components (e.g., a physical button, a touch screen that provides location and force of touches or touch gestures, or other tactile input components), audio input components (e.g., a microphone), and the like.


In further examples, the I/O components 538 may include biometric components 528, motion components 530, environmental components 532, or position components 534, among a wide array of other components. For example, the biometric components 528 include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye-tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram-based identification), and the like. The motion components 530 include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope).


The environmental components 532 include, for example, one or cameras (with still image/photograph and video capabilities), illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometers that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detection concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment.


With respect to cameras, the client device 102 may have a camera system comprising, for example, front cameras on a front surface of the client device 102 and rear cameras on a rear surface of the client device 102. The front cameras may, for example, be used to capture still images and video of a user of the client device 102 (e.g., “selfies”), which may then be augmented with augmentation data (e.g., filters) described above. The rear cameras may, for example, be used to capture still images and videos in a more traditional camera mode, with these images similarly being augmented with augmentation data. In addition to front and rear cameras, the client device 102 may also include a 360° camera for capturing 360° photographs and videos.


Further, the camera system of a client device 102 may include dual rear cameras (e.g., a primary camera as well as a depth-sensing camera), or even triple, quad or penta rear camera configurations on the front and rear sides of the client device 102. These multiple cameras systems may include a wide camera, an ultra-wide camera, a telephoto camera, a macro camera and a depth sensor, for example.


The position components 534 include location sensor components (e.g., a GPS receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.


Communication may be implemented using a wide variety of technologies. The I/O components 538 further include communication components 536 operable to couple the machine 500 to a network 520 or devices 522 via respective coupling or connections. For example, the communication components 536 may include a network interface Component or another suitable device to interface with the network 520. In further examples, the communication components 536 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 522 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a USB).


Moreover, the communication components 636 may detect identifiers or include components operable to detect identifiers. For example, the communication components 636 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 536, such as location via Internet Protocol (IP) geolocation, location via Wi-Fi® signal triangulation, location via detecting an NFC beacon signal that may indicate a particular location, and so forth.


The various memories (e.g., main memory 512, static memory 514, and memory of the processors 502) and storage unit 516 may store one or more sets of instructions and data structures (e.g., software) embodying or used by any one or more of the methodologies or functions described herein. These instructions (e.g., the instructions 508), when executed by processors 502, cause various operations to implement the disclosed examples.


The instructions 508 may be transmitted or received over the network 520, using a transmission medium, via a network interface device (e.g., a network interface component included in the communication components 536) and using any one of several well-known transfer protocols (e.g., hypertext transfer protocol (HTTP)). Similarly, the instructions 608 may be transmitted or received using a transmission medium via a coupling (e.g., a peer-to-peer coupling) to the devices 522.


Glossary

“Carrier signal” refers to any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible media to facilitate communication of such instructions. Instructions may be transmitted or received over a network using a transmission medium via a network interface device.


“Client device” refers to any machine that interfaces to a communications network to obtain resources from one or more server systems or other client devices. A client device may be, but is not limited to, a mobile phone, desktop computer, laptop, portable digital assistants (PDAs), smartphones, tablets, ultrabooks, netbooks, laptops, multi-processor systems, microprocessor-based or programmable consumer electronics, game consoles, set-top boxes, or any other communication device that a user may use to access a network.


“Communication network” refers to one or more portions of a network that may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, a network or a portion of a network may include a wireless or cellular network and the coupling may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or other types of cellular or wireless coupling. In this example, the coupling may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE) standard, others defined by various standard-setting organizations, other long-range protocols, or other data transfer technology.


“Component” refers to a device, physical entity, or logic having boundaries defined by function or subroutine calls, branch points, APIs, or other technologies that provide for the partitioning or modularization of particular processing or control functions. Components may be combined via their interfaces with other components to carry out a machine process. A component may be a packaged functional hardware unit designed for use with other components and a part of a program that usually performs a particular function of related functions. Components may constitute either software components (e.g., code embodied on a machine-readable medium) or hardware components. A “hardware component” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various example embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware components of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware component that operates to perform certain operations as described herein. A hardware component may also be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware component may include dedicated circuitry or logic that is permanently configured to perform certain operations. A hardware component may be a special-purpose processor, such as a field-programmable gate array (FPGA) or an application specific integrated circuit (ASIC). A hardware component may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware component may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware components become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware component mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software), may be driven by cost and time considerations. Accordingly, the phrase “hardware component” (or “hardware-implemented component”) should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware components are temporarily configured (e.g., programmed), each of the hardware components need not be configured or instantiated at any one instance in time. For example, where a hardware component comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware components) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware component at one instance of time and to constitute a different hardware component at a different instance of time. Hardware components can provide information to, and receive information from, other hardware components. Accordingly, the described hardware components may be regarded as being communicatively coupled. Where multiple hardware components exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware components. In embodiments in which multiple hardware components are configured or instantiated at different times, communications between such hardware components may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware components have access. For example, one hardware component may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware component may then, at a later time, access the memory device to retrieve and process the stored output. Hardware components may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information). The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented components that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented component” refers to a hardware component implemented using one or more processors. Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors 1004 or processor-implemented components. Moreover, the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an API). The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processors or processor-implemented components may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the processors or processor-implemented components may be distributed across a number of geographic locations.


“Computer-readable storage medium” refers to both machine-storage media and transmission media. Thus, the terms include both storage devices/media and carrier waves/modulated data signals. The terms “machine-readable medium,” “computer-readable medium” and “device-readable medium” mean the same thing and may be used interchangeably in this disclosure.


“Machine storage medium” refers to a single or multiple storage devices and media (e.g., a centralized or distributed database, and associated caches and servers) that store executable instructions, routines and data. The term shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media, including memory internal or external to processors. Specific examples of machine-storage media, computer-storage media and device-storage media include non-volatile memory, including by way of example semiconductor memory devices, e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), FPGA, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The terms “machine-storage medium,” “device-storage medium,” “computer-storage medium” mean the same thing and may be used interchangeably in this disclosure. The terms “machine-storage media,” “computer-storage media,” and “device-storage media” specifically exclude carrier waves, modulated data signals, and other such media, at least some of which are covered under the term “signal medium.”


“Non-transitory computer-readable storage medium” refers to a tangible medium that is capable of storing, encoding, or carrying the instructions for execution by a machine.


“Signal medium” refers to any intangible medium that is capable of storing, encoding, or carrying the instructions for execution by a machine and includes digital or analog communications signals or other intangible media to facilitate communication of software or data. The term “signal medium” shall be taken to include any form of a modulated data signal, carrier wave, and so forth. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a matter as to encode information in the signal. The terms “transmission medium” and “signal medium” mean the same thing and may be used interchangeably in this disclosure.

Claims
  • 1. A method comprising: in an online messaging system comprising a messaging client and a messaging server, the online messaging system maintaining user profiles representing users of the online messaging system and providing a co-location connection service accessible from a client device via the messaging client:at the messaging server, designating a first profile from the user profiles and a second profile from the user profiles as paired profiles, the first profile associated with a first client device and the second profile associated with a second client device, the first client device and the second client device executing respective instances of the messaging client and equipped with short range communication sensors that communicate with each other within a predetermined physical proximity range; andin response to the designating, commencing monitoring a physical distance between the first client device and the second client device based on sensor data obtained by the respective instances of the messaging client from the short range communication sensors of the respective client devices to determine whether to generate a co-location experience of the co-location connection service that modifies a user interface in the respective instances of the messaging client.
  • 2. The method of claim 1, comprising: receiving, from the first client device, a pairing request to pair the first profile with the second profile; andin response to the pairing request, communicating from the messaging server to the second client device a request for a consent response.
  • 3. The method of claim 2, wherein the communicating of the request for the consent response comprises communicating a selectable option to grant or to deny consent to be paired.
  • 4. The method of claim 3, wherein the designating of the first profile and the second profile as paired profiles is in response to determining that the selectable option to grant consent was selected.
  • 5. The method of claim 1, wherein the designating of the first profile and the second profile as paired profiles is in response to determining that the first client device and the second client device include the short range communication sensors.
  • 6. The method of claim 1, comprising: detecting a co-location event indicating that the first client device and the second client device transgressed the predetermined physical proximity range;in response to the detecting of the co-location event, generating the co-location experience by modifying the user interface to provide a co-location user interface, the co-location user interface including an indication of co-location of the first client device and the second client device; andcausing presentation of the co-location user interface to the first client device and to the second client device.
  • 7. The method of claim 6, wherein the detecting of the co-location event comprises receiving, from the first client device, an indication of a connection established between the first client device and the second client device via a short-range wireless communication technology.
  • 8. The method of claim 6, wherein the providing of the co-location user interface comprises including, in the co-location user interface, a visual control actionable to activate a further application.
  • 9. The method of claim 6, wherein the providing of the co-location user interface comprises including, in the co-location user interface, animation configured to playback overlaid over a screen of the messaging client executing at the first client device.
  • 10. The method of claim 6, further comprising: detecting a distancing event indicating that the first client device and the second client device are located outside of the predetermined physical proximity range; andin response to the detecting of the distancing event, communicating, to the first client device and to the second client device, a visual indication of the distancing event.
  • 11. A system comprising: one or more processors; anda non-transitory computer readable storage medium comprising instructions that when executed by the one or more processors cause the one or more processors to perform operations comprising:in an online messaging system comprising a messaging client and a messaging server, the online messaging system maintaining user profiles representing users of the online messaging system and providing a co-location connection service accessible from a client device via the messaging client:at the messaging server, designating a first profile from the user profiles and a second profile from the user profiles as paired profiles, the first profile associated with a first client device and the second profile associated with a second client device, the first client device and the second client device executing respective instances of the messaging client and equipped with short range communication sensors that communicate with each other within a predetermined physical proximity range; andin response to the designating, commencing monitoring a physical distance between the first client device and the second client device based on sensor data obtained by the respective instances of the messaging client from the short range communication sensors of the respective client devices to determine whether to generate a co-location experience of the co-location connection service that modifies a user interface in the respective instances of the messaging client.
  • 12. The system of claim 11, wherein the operations caused by instructions executed by the one or more processors include: receiving, from the first client device, a pairing request to pair the first profile with the second profile; andin response to the pairing request, communicating from the messaging server to the second client device a request for a consent response.
  • 13. The system of claim 12, wherein the communicating of the request for the consent response comprises communicating a selectable option to grant or to deny consent to be paired.
  • 14. The system of claim 13, wherein the designating of the first profile and the second profile as paired profiles is in response to determining that the selectable option to grant consent was selected.
  • 15. The system of claim 11, wherein the designating of the first profile and the second profile as paired profiles is in response to determining that the first client device and the second client device include the short range communication sensors.
  • 16. The system of claim 11, wherein the operations caused by instructions executed by the one or more processors include: detecting a co-location event indicating that the first client device and the second client device transgressed the predetermined physical proximity range;in response to the detecting of the co-location event, generating the co-location experience by modifying the user interface to provide a co-location user interface, the co-location user interface including an indication of co-location of the first client device and the second client device; andcausing presentation of the co-location user interface to the first client device and to the second client device.
  • 17. The system of claim 16, wherein the detecting of the co-location event comprises receiving, from the first client device, an indication of a connection established between the first client device and the second client device via a short-range wireless communication technology.
  • 18. The system of claim 16, wherein the providing of the co-location user interface comprises including, in the co-location user interface, a visual control actionable to activate a further application.
  • 19. The system of claim 16, wherein the providing of the co-location user interface comprises including, in the co-location user interface, animation configured to playback overlaid over a screen of the messaging client executing at the first client device.
  • 20. A machine-readable non-transitory storage medium having instruction data executable by a machine to cause the machine to perform operations comprising: in an online messaging system comprising a messaging client and a messaging server, the online messaging system maintaining user profiles representing users of the online messaging system and providing a co-location connection service accessible from a client device via the messaging client:at the messaging server, designating a first profile from the user profiles and a second profile from the user profiles as paired profiles, the first profile associated with a first client device and the second profile associated with a second client device, the first client device and the second client device executing respective instances of the messaging client and equipped with short range communication sensors that communicate with each other within a predetermined physical proximity range; andin response to the designating, commencing monitoring a physical distance between the first client device and the second client device based on sensor data obtained by the respective instances of the messaging client from the short range communication sensors of the respective client devices to determine whether to generate a co-location experience of the co-location connection service that modifies a user interface in the respective instances of the messaging client.
CLAIM OF PRIORITY

This application is a continuation of U.S. patent application Ser. No. 17/247,053, filed on Nov. 25, 2020, which is a continuation-in-part of U.S. patent application Ser. No. 17/007,961, filed on Aug. 31, 2020, each of which are incorporated herein by reference in their entireties.

US Referenced Citations (621)
Number Name Date Kind
666223 Shedlock Jan 1901 A
4581634 Williams Apr 1986 A
4975690 Torres Dec 1990 A
5072412 Henderson, Jr. et al. Dec 1991 A
5493692 Theimer et al. Feb 1996 A
5713073 Warsta Jan 1998 A
5754939 Herz et al. May 1998 A
5855008 Goldhaber et al. Dec 1998 A
5883639 Walton et al. Mar 1999 A
5999932 Paul Dec 1999 A
6012098 Bayeh et al. Jan 2000 A
6014090 Rosen et al. Jan 2000 A
6029141 Bezos et al. Feb 2000 A
6038295 Mattes Mar 2000 A
6049711 Yehezkel et al. Apr 2000 A
6154764 Nitta et al. Nov 2000 A
6167435 Druckenmiller et al. Dec 2000 A
6204840 Petelycky et al. Mar 2001 B1
6205432 Gabbard et al. Mar 2001 B1
6216141 Straub et al. Apr 2001 B1
6285381 Sawano et al. Sep 2001 B1
6285987 Roth et al. Sep 2001 B1
6310694 Okimoto et al. Oct 2001 B1
6317789 Rakavy et al. Nov 2001 B1
6334149 Davis, Jr. et al. Dec 2001 B1
6349203 Asaoka et al. Feb 2002 B1
6353170 Eyzaguirre et al. Mar 2002 B1
6446004 Cao et al. Sep 2002 B1
6449657 Stanbach et al. Sep 2002 B2
6456852 Bar et al. Sep 2002 B2
6484196 Maurille Nov 2002 B1
6487601 Hubacher et al. Nov 2002 B1
6523008 Avrunin Feb 2003 B1
6542749 Tanaka et al. Apr 2003 B2
6549768 Fraccaroli Apr 2003 B1
6618593 Drutman et al. Sep 2003 B1
6622174 Ukita et al. Sep 2003 B1
6631463 Floyd et al. Oct 2003 B1
6636247 Hamzy et al. Oct 2003 B1
6636855 Holloway et al. Oct 2003 B2
6643684 Malkin et al. Nov 2003 B1
6658095 Yoakum et al. Dec 2003 B1
6665531 Soderbacka et al. Dec 2003 B1
6668173 Greene Dec 2003 B2
6684238 Dutta Jan 2004 B1
6684257 Camut et al. Jan 2004 B1
6698020 Zigmond et al. Feb 2004 B1
6700506 Winkler Mar 2004 B1
6720860 Narayanaswami Apr 2004 B1
6724403 Santoro et al. Apr 2004 B1
6757713 Ogilvie et al. Jun 2004 B1
6832222 Zimowski Dec 2004 B1
6834195 Brandenberg et al. Dec 2004 B2
6836792 Chen Dec 2004 B1
6898626 Ohashi May 2005 B2
6959324 Kubik et al. Oct 2005 B1
6970088 Kovach Nov 2005 B2
6970907 Ullmann et al. Nov 2005 B1
6980909 Root et al. Dec 2005 B2
6981040 Konig et al. Dec 2005 B1
7020494 Spriestersbach et al. Mar 2006 B2
7027124 Foote et al. Apr 2006 B2
7072963 Anderson et al. Jul 2006 B2
7085571 Kalhan et al. Aug 2006 B2
7110744 Freeny, Jr. Sep 2006 B2
7124164 Chemtob Oct 2006 B1
7149893 Leonard et al. Dec 2006 B1
7173651 Knowles Feb 2007 B1
7188143 Szeto Mar 2007 B2
7203380 Chiu et al. Apr 2007 B2
7206568 Sudit Apr 2007 B2
7227937 Yoakum et al. Jun 2007 B1
7237002 Estrada et al. Jun 2007 B1
7240089 Boudreau Jul 2007 B2
7269426 Kokkonen et al. Sep 2007 B2
7280658 Amini et al. Oct 2007 B2
7315823 Brondrup Jan 2008 B2
7349768 Bruce et al. Mar 2008 B2
7356564 Hartselle et al. Apr 2008 B2
7394345 Ehlinger et al. Jul 2008 B1
7411493 Smith Aug 2008 B2
7423580 Markhovsky et al. Sep 2008 B2
7454442 Cobleigh et al. Nov 2008 B2
7508419 Toyama et al. Mar 2009 B2
7519670 Hagale et al. Apr 2009 B2
7535890 Rojas May 2009 B2
7546554 Chiu et al. Jun 2009 B2
7607096 Oreizy et al. Oct 2009 B2
7639943 Kalajan Dec 2009 B1
7650231 Gadler Jan 2010 B2
7668537 DeVries Feb 2010 B2
7770137 Forbes et al. Aug 2010 B2
7778973 Choi Aug 2010 B2
7779444 Glad Aug 2010 B2
7787886 Markhovsky et al. Aug 2010 B2
7796946 Eisenbach Sep 2010 B2
7801954 Cadiz et al. Sep 2010 B2
7856360 Kramer et al. Dec 2010 B2
8001204 Burtner et al. Aug 2011 B2
8032586 Challenger et al. Oct 2011 B2
8082255 Carlson, Jr. et al. Dec 2011 B1
8090351 Klein Jan 2012 B2
8098904 Loffe et al. Jan 2012 B2
8099109 Altman et al. Jan 2012 B2
8112716 Kobayashi Feb 2012 B2
8131597 Hudetz Mar 2012 B2
8135166 Rhoads Mar 2012 B2
8136028 Loeb et al. Mar 2012 B1
8146001 Reese Mar 2012 B1
8161115 Yamamoto Apr 2012 B2
8161417 Lee Apr 2012 B1
8195203 Tseng Jun 2012 B1
8199747 Rojas et al. Jun 2012 B2
8208943 Petersen Jun 2012 B2
8214443 Hamburg Jul 2012 B2
8234350 Gu et al. Jul 2012 B1
8276092 Narayanan et al. Sep 2012 B1
8279319 Date Oct 2012 B2
8280406 Ziskind et al. Oct 2012 B2
8285199 Hsu et al. Oct 2012 B2
8287380 Nguyen et al. Oct 2012 B2
8301159 Hamynen et al. Oct 2012 B2
8306922 Kunal et al. Nov 2012 B1
8312086 Velusamy et al. Nov 2012 B2
8312097 Siegel et al. Nov 2012 B1
8326315 Phillips et al. Dec 2012 B2
8326327 Hymel et al. Dec 2012 B2
8332475 Rosen et al. Dec 2012 B2
8352546 Dollard Jan 2013 B1
8379130 Forutanpour et al. Feb 2013 B2
8385950 Wagner et al. Feb 2013 B1
8402097 Szeto Mar 2013 B2
8405773 Hayashi et al. Mar 2013 B2
8418067 Cheng et al. Apr 2013 B2
8423409 Rao Apr 2013 B2
8471914 Sakiyama et al. Jun 2013 B2
8472935 Fujisaki Jun 2013 B1
8510383 Hurley et al. Aug 2013 B2
8527345 Rothschild et al. Sep 2013 B2
8554627 Svendsen et al. Oct 2013 B2
8560612 Kilmer et al. Oct 2013 B2
8594680 Ledlie et al. Nov 2013 B2
8613089 Holloway et al. Dec 2013 B1
8660358 Bergboer et al. Feb 2014 B1
8660369 Llano et al. Feb 2014 B2
8660793 Ngo et al. Feb 2014 B2
8682350 Altman et al. Mar 2014 B2
8718333 Wolf et al. May 2014 B2
8724622 Rojas May 2014 B2
8732168 Johnson May 2014 B2
8744523 Fan et al. Jun 2014 B2
8745132 Obradovich Jun 2014 B2
8761800 Kuwahara Jun 2014 B2
8768876 Shim et al. Jul 2014 B2
8775972 Spiegel Jul 2014 B2
8788680 Naik Jul 2014 B1
8790187 Walker et al. Jul 2014 B2
8797415 Arnold Aug 2014 B2
8798646 Wang et al. Aug 2014 B1
8856349 Jain et al. Oct 2014 B2
8874677 Rosen et al. Oct 2014 B2
8886227 Schmidt et al. Nov 2014 B2
8909679 Root et al. Dec 2014 B2
8909725 Sehn Dec 2014 B1
8972357 Shim et al. Mar 2015 B2
8995433 Rojas Mar 2015 B2
9015285 Ebsen et al. Apr 2015 B1
9020745 Johnston et al. Apr 2015 B2
9040574 Wang et al. May 2015 B2
9055416 Rosen et al. Jun 2015 B2
9094137 Sehn et al. Jul 2015 B1
9100806 Rosen et al. Aug 2015 B2
9100807 Rosen et al. Aug 2015 B2
9113301 Spiegel et al. Aug 2015 B1
9119027 Sharon et al. Aug 2015 B2
9123074 Jacobs et al. Sep 2015 B2
9143382 Bhogal et al. Sep 2015 B2
9143681 Ebsen et al. Sep 2015 B1
9152477 Campbell et al. Oct 2015 B1
9191776 Root et al. Nov 2015 B2
9204252 Root Dec 2015 B2
9225897 Sehn et al. Dec 2015 B1
9258459 Hartley Feb 2016 B2
9344606 Hartley et al. May 2016 B2
9385983 Sehn Jul 2016 B1
9396354 Murphy et al. Jul 2016 B1
9407712 Sehn Aug 2016 B1
9407816 Sehn Aug 2016 B1
9430783 Sehn Aug 2016 B1
9439041 Parvizi et al. Sep 2016 B2
9443227 Evans et al. Sep 2016 B2
9450907 Pridmore et al. Sep 2016 B2
9459778 Hogeg et al. Oct 2016 B2
9489661 Evans et al. Nov 2016 B2
9491134 Rosen et al. Nov 2016 B2
9532171 Allen et al. Dec 2016 B2
9537811 Allen et al. Jan 2017 B2
9628950 Noeth et al. Apr 2017 B1
9710821 Heath Jul 2017 B2
9854219 Sehn Dec 2017 B2
10674311 Bouba et al. Jun 2020 B1
10893385 Berardino et al. Jan 2021 B1
10936066 Jaureguiberry et al. Mar 2021 B1
10939246 Dancie et al. Mar 2021 B1
10945098 Dancie et al. Mar 2021 B2
11032670 Baylin et al. Jun 2021 B1
11039270 Bouba et al. Jun 2021 B2
11166123 Guillaume Nov 2021 B1
11275439 Jaureguiberry et al. Mar 2022 B2
11294936 Jaureguiberry Apr 2022 B1
11307747 Dancie et al. Apr 2022 B2
11349797 Monroy-Hernandez et al. May 2022 B2
20020047868 Miyazawa Apr 2002 A1
20020078456 Hudson et al. Jun 2002 A1
20020087631 Sharma Jul 2002 A1
20020097257 Miller et al. Jul 2002 A1
20020122659 Mcgrath et al. Sep 2002 A1
20020128047 Gates Sep 2002 A1
20020144154 Tomkow Oct 2002 A1
20030001846 Davis et al. Jan 2003 A1
20030016247 Lai et al. Jan 2003 A1
20030017823 Mager et al. Jan 2003 A1
20030020623 Cao et al. Jan 2003 A1
20030023874 Prokupets et al. Jan 2003 A1
20030037124 Yamaura et al. Feb 2003 A1
20030052925 Daimon et al. Mar 2003 A1
20030101230 Benschoter et al. May 2003 A1
20030110503 Perkes Jun 2003 A1
20030126215 Udell Jul 2003 A1
20030148773 Spriestersbach et al. Aug 2003 A1
20030164856 Prager et al. Sep 2003 A1
20030229607 Zellweger et al. Dec 2003 A1
20040027371 Jaeger Feb 2004 A1
20040064429 Hirstius et al. Apr 2004 A1
20040078367 Anderson et al. Apr 2004 A1
20040111467 Willis Jun 2004 A1
20040158739 Wakai et al. Aug 2004 A1
20040189465 Capobianco et al. Sep 2004 A1
20040203959 Coombes Oct 2004 A1
20040215625 Svendsen et al. Oct 2004 A1
20040243531 Dean Dec 2004 A1
20040243688 Wugofski Dec 2004 A1
20050021444 Bauer et al. Jan 2005 A1
20050022211 Veselov et al. Jan 2005 A1
20050048989 Jung Mar 2005 A1
20050078804 Yomoda Apr 2005 A1
20050097176 Schatz et al. May 2005 A1
20050102381 Jiang et al. May 2005 A1
20050104976 Currans May 2005 A1
20050114783 Szeto May 2005 A1
20050119936 Buchanan et al. Jun 2005 A1
20050122405 Voss et al. Jun 2005 A1
20050193340 Amburgey et al. Sep 2005 A1
20050193345 Klassen et al. Sep 2005 A1
20050198128 Anderson Sep 2005 A1
20050223066 Buchheit et al. Oct 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20060026067 Nicholas et al. Feb 2006 A1
20060107297 Toyama et al. May 2006 A1
20060114338 Rothschild Jun 2006 A1
20060119882 Harris et al. Jun 2006 A1
20060242239 Morishima et al. Oct 2006 A1
20060252438 Ansamaa et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060270419 Crowley et al. Nov 2006 A1
20060287878 Wadhwa et al. Dec 2006 A1
20070004426 Pfleging et al. Jan 2007 A1
20070038715 Collins et al. Feb 2007 A1
20070040931 Nishizawa Feb 2007 A1
20070073517 Panje Mar 2007 A1
20070073823 Cohen et al. Mar 2007 A1
20070075898 Markhovsky et al. Apr 2007 A1
20070082707 Flynt et al. Apr 2007 A1
20070136228 Petersen Jun 2007 A1
20070192128 Celestini Aug 2007 A1
20070198340 Lucovsky et al. Aug 2007 A1
20070198495 Buron et al. Aug 2007 A1
20070208751 Cowan et al. Sep 2007 A1
20070210936 Nicholson Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070214216 Carrer et al. Sep 2007 A1
20070233556 Koningstein Oct 2007 A1
20070233801 Eren et al. Oct 2007 A1
20070233859 Zhao et al. Oct 2007 A1
20070243887 Bandhole et al. Oct 2007 A1
20070244750 Grannan et al. Oct 2007 A1
20070255456 Funayama Nov 2007 A1
20070281690 Altman et al. Dec 2007 A1
20080022329 Glad Jan 2008 A1
20080025701 Ikeda Jan 2008 A1
20080032703 Krumm et al. Feb 2008 A1
20080033930 Warren Feb 2008 A1
20080043041 Hedenstroem et al. Feb 2008 A2
20080049704 Witteman et al. Feb 2008 A1
20080062141 Chandhri Mar 2008 A1
20080076505 Ngyen et al. Mar 2008 A1
20080092233 Tian et al. Apr 2008 A1
20080094387 Chen Apr 2008 A1
20080104503 Beall et al. May 2008 A1
20080109844 Baldeschweiler et al. May 2008 A1
20080120409 Sun et al. May 2008 A1
20080147730 Lee et al. Jun 2008 A1
20080148150 Mall Jun 2008 A1
20080158230 Sharma et al. Jul 2008 A1
20080168033 Ott et al. Jul 2008 A1
20080168489 Schraga Jul 2008 A1
20080189177 Anderton et al. Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208692 Garaventi et al. Aug 2008 A1
20080214210 Rasanen et al. Sep 2008 A1
20080222545 Lemay Sep 2008 A1
20080255976 Altberg et al. Oct 2008 A1
20080256446 Yamamoto Oct 2008 A1
20080256577 Funaki et al. Oct 2008 A1
20080266421 Takahata et al. Oct 2008 A1
20080270938 Carlson Oct 2008 A1
20080288338 Wiseman et al. Nov 2008 A1
20080306826 Kramer et al. Dec 2008 A1
20080313329 Wang et al. Dec 2008 A1
20080313346 Kujawa et al. Dec 2008 A1
20080318616 Chipalkatti et al. Dec 2008 A1
20090006191 Arankalle et al. Jan 2009 A1
20090006565 Velusamy et al. Jan 2009 A1
20090015703 Kim et al. Jan 2009 A1
20090024956 Kobayashi Jan 2009 A1
20090030774 Rothschild et al. Jan 2009 A1
20090030999 Gatzke et al. Jan 2009 A1
20090040324 Nonaka Feb 2009 A1
20090042588 Lottin et al. Feb 2009 A1
20090058822 Chaudhri Mar 2009 A1
20090079846 Chou Mar 2009 A1
20090089678 Sacco et al. Apr 2009 A1
20090089710 Wood et al. Apr 2009 A1
20090093261 Ziskind Apr 2009 A1
20090132341 Klinger May 2009 A1
20090132453 Hangartner et al. May 2009 A1
20090132665 Thomsen et al. May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090153492 Popp Jun 2009 A1
20090157450 Athsani et al. Jun 2009 A1
20090157752 Gonzalez Jun 2009 A1
20090160970 Fredlund et al. Jun 2009 A1
20090163182 Gatti et al. Jun 2009 A1
20090177299 Van De Sluis Jul 2009 A1
20090192900 Collision Jul 2009 A1
20090199242 Johnson et al. Aug 2009 A1
20090215469 Fisher et al. Aug 2009 A1
20090232354 Camp, Jr. et al. Sep 2009 A1
20090234815 Boerries et al. Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090265647 Martin et al. Oct 2009 A1
20090288022 Almstrand et al. Nov 2009 A1
20090291672 Treves et al. Nov 2009 A1
20090292608 Polachek Nov 2009 A1
20090319607 Belz et al. Dec 2009 A1
20090327073 Li Dec 2009 A1
20100062794 Han Mar 2010 A1
20100082427 Burgener et al. Apr 2010 A1
20100082693 Hugg et al. Apr 2010 A1
20100100568 Papin et al. Apr 2010 A1
20100113065 Narayan et al. May 2010 A1
20100130233 Lansing May 2010 A1
20100131880 Lee et al. May 2010 A1
20100131895 Wohlert May 2010 A1
20100153144 Miller et al. Jun 2010 A1
20100159944 Pascal et al. Jun 2010 A1
20100161658 Hamynen et al. Jun 2010 A1
20100161831 Haas et al. Jun 2010 A1
20100162149 Sheleheda et al. Jun 2010 A1
20100183280 Beauregard et al. Jul 2010 A1
20100185552 Deluca et al. Jul 2010 A1
20100185665 Horn et al. Jul 2010 A1
20100191631 Weidmann Jul 2010 A1
20100197318 Petersen et al. Aug 2010 A1
20100197319 Petersen et al. Aug 2010 A1
20100198683 Aarabi Aug 2010 A1
20100198694 Muthukrishnan Aug 2010 A1
20100198826 Petersen et al. Aug 2010 A1
20100198828 Petersen et al. Aug 2010 A1
20100198862 Jennings et al. Aug 2010 A1
20100198870 Petersen et al. Aug 2010 A1
20100198917 Petersen et al. Aug 2010 A1
20100201482 Robertson et al. Aug 2010 A1
20100201536 Robertson et al. Aug 2010 A1
20100214436 Kim et al. Aug 2010 A1
20100223128 Dukellis et al. Sep 2010 A1
20100223343 Bosan et al. Sep 2010 A1
20100250109 Johnston et al. Sep 2010 A1
20100257196 Waters et al. Oct 2010 A1
20100259386 Holley et al. Oct 2010 A1
20100273509 Sweeney et al. Oct 2010 A1
20100281045 Dean Nov 2010 A1
20100306669 Della Pasqua Dec 2010 A1
20110004071 Faiola et al. Jan 2011 A1
20110010205 Richards Jan 2011 A1
20110029512 Folgner et al. Feb 2011 A1
20110040783 Uemichi et al. Feb 2011 A1
20110040804 Peirce et al. Feb 2011 A1
20110050909 Ellenby et al. Mar 2011 A1
20110050915 Wang et al. Mar 2011 A1
20110064388 Brown et al. Mar 2011 A1
20110066743 Hurley et al. Mar 2011 A1
20110083101 Sharon et al. Apr 2011 A1
20110102630 Rukes May 2011 A1
20110119133 Igelman et al. May 2011 A1
20110137881 Cheng et al. Jun 2011 A1
20110145564 Moshir et al. Jun 2011 A1
20110159890 Fortescue et al. Jun 2011 A1
20110164163 Bilbrey et al. Jul 2011 A1
20110197194 D'Angelo et al. Aug 2011 A1
20110202598 Evans et al. Aug 2011 A1
20110202968 Nurmi Aug 2011 A1
20110211534 Schmidt et al. Sep 2011 A1
20110213845 Logan et al. Sep 2011 A1
20110215966 Kim et al. Sep 2011 A1
20110225048 Nair Sep 2011 A1
20110238763 Shin et al. Sep 2011 A1
20110255736 Thompson et al. Oct 2011 A1
20110273575 Lee Nov 2011 A1
20110282799 Huston Nov 2011 A1
20110283188 Farrenkopf Nov 2011 A1
20110314419 Dunn et al. Dec 2011 A1
20110320373 Lee et al. Dec 2011 A1
20120028659 Whitney et al. Feb 2012 A1
20120033718 Kauffman et al. Feb 2012 A1
20120036015 Sheikh Feb 2012 A1
20120036443 Ohmori et al. Feb 2012 A1
20120046862 Griffin et al. Feb 2012 A1
20120054797 Skog et al. Mar 2012 A1
20120059722 Rao Mar 2012 A1
20120062805 Candelore Mar 2012 A1
20120084731 Filman et al. Apr 2012 A1
20120084835 Thomas et al. Apr 2012 A1
20120099800 Llano et al. Apr 2012 A1
20120108293 Law et al. May 2012 A1
20120110096 Smarr et al. May 2012 A1
20120113143 Adhikari et al. May 2012 A1
20120113272 Hata May 2012 A1
20120123830 Svendsen et al. May 2012 A1
20120123871 Svendsen et al. May 2012 A1
20120123875 Svendsen et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120124176 Curtis et al. May 2012 A1
20120124458 Cruzada May 2012 A1
20120131507 Sparandara et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120143760 Abulafia et al. Jun 2012 A1
20120150978 Monaco Jun 2012 A1
20120165100 Lalancette et al. Jun 2012 A1
20120166971 Sachson et al. Jun 2012 A1
20120169855 Oh Jul 2012 A1
20120172062 Altman et al. Jul 2012 A1
20120173991 Roberts et al. Jul 2012 A1
20120176401 Hayward et al. Jul 2012 A1
20120184248 Speede Jul 2012 A1
20120197724 Kendall Aug 2012 A1
20120200743 Blanchflower et al. Aug 2012 A1
20120209924 Evans et al. Aug 2012 A1
20120210244 De Francisco Lopez et al. Aug 2012 A1
20120212632 Mate et al. Aug 2012 A1
20120220264 Kawabata Aug 2012 A1
20120226748 Bosworth et al. Sep 2012 A1
20120233000 Fisher et al. Sep 2012 A1
20120236162 Imamura Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120250951 Chen Oct 2012 A1
20120252418 Kandekar et al. Oct 2012 A1
20120254325 Majeti et al. Oct 2012 A1
20120278387 Garcia et al. Nov 2012 A1
20120278692 Shi Nov 2012 A1
20120290637 Perantatos et al. Nov 2012 A1
20120299954 Wada et al. Nov 2012 A1
20120304052 Tanaka et al. Nov 2012 A1
20120304080 Wormald et al. Nov 2012 A1
20120307096 Ford et al. Dec 2012 A1
20120307112 Kunishige et al. Dec 2012 A1
20120319904 Lee et al. Dec 2012 A1
20120323933 He et al. Dec 2012 A1
20120324018 Metcalf et al. Dec 2012 A1
20130006759 Srivastava et al. Jan 2013 A1
20130024757 Doll et al. Jan 2013 A1
20130036364 Johnson Feb 2013 A1
20130045753 Obermeyer et al. Feb 2013 A1
20130050260 Reitan Feb 2013 A1
20130055083 Fino Feb 2013 A1
20130057587 Leonard et al. Mar 2013 A1
20130059607 Herz et al. Mar 2013 A1
20130060690 Oskolkov et al. Mar 2013 A1
20130063369 Malhotra et al. Mar 2013 A1
20130067027 Song et al. Mar 2013 A1
20130071093 Hanks et al. Mar 2013 A1
20130080254 Thramann Mar 2013 A1
20130085790 Palmer et al. Apr 2013 A1
20130086072 Peng et al. Apr 2013 A1
20130090171 Holton et al. Apr 2013 A1
20130095857 Garcia et al. Apr 2013 A1
20130104053 Thornton et al. Apr 2013 A1
20130110885 Brundrett, III May 2013 A1
20130111514 Slavin et al. May 2013 A1
20130128059 Kristensson May 2013 A1
20130129252 Lauper May 2013 A1
20130132477 Bosworth et al. May 2013 A1
20130145286 Feng et al. Jun 2013 A1
20130159110 Rajaram et al. Jun 2013 A1
20130159919 Leydon Jun 2013 A1
20130169822 Zhu et al. Jul 2013 A1
20130173729 Starenky et al. Jul 2013 A1
20130182133 Tanabe Jul 2013 A1
20130185131 Sinha et al. Jul 2013 A1
20130191198 Carlson et al. Jul 2013 A1
20130194301 Robbins et al. Aug 2013 A1
20130196602 Rothschild Aug 2013 A1
20130198176 Kim Aug 2013 A1
20130218965 Abrol et al. Aug 2013 A1
20130218968 Mcevilly et al. Aug 2013 A1
20130222323 Mckenzie Aug 2013 A1
20130227476 Frey Aug 2013 A1
20130232194 Knapp et al. Sep 2013 A1
20130263031 Oshiro et al. Oct 2013 A1
20130265450 Barnes, Jr. Oct 2013 A1
20130267253 Case et al. Oct 2013 A1
20130275505 Gauglitz et al. Oct 2013 A1
20130290443 Collins et al. Oct 2013 A1
20130304646 De Geer Nov 2013 A1
20130311255 Cummins et al. Nov 2013 A1
20130325964 Berberat Dec 2013 A1
20130344896 Kirmse et al. Dec 2013 A1
20130346869 Asver et al. Dec 2013 A1
20130346877 Borovoy et al. Dec 2013 A1
20140006129 Heath Jan 2014 A1
20140011538 Mulcahy et al. Jan 2014 A1
20140019264 Wachman et al. Jan 2014 A1
20140032682 Prado et al. Jan 2014 A1
20140043204 Basnayake et al. Feb 2014 A1
20140045530 Gordon et al. Feb 2014 A1
20140047016 Rao Feb 2014 A1
20140047045 Baldwin et al. Feb 2014 A1
20140047335 Lewis et al. Feb 2014 A1
20140049652 Moon et al. Feb 2014 A1
20140052485 Shidfar Feb 2014 A1
20140052633 Gandhi Feb 2014 A1
20140057660 Wager Feb 2014 A1
20140082651 Sharifi Mar 2014 A1
20140092130 Anderson et al. Apr 2014 A1
20140096029 Schultz Apr 2014 A1
20140114565 Aziz et al. Apr 2014 A1
20140122658 Haeger et al. May 2014 A1
20140122787 Shalvi et al. May 2014 A1
20140129953 Spiegel May 2014 A1
20140143143 Fasoli et al. May 2014 A1
20140149519 Redfern et al. May 2014 A1
20140155102 Cooper et al. Jun 2014 A1
20140173424 Hogeg et al. Jun 2014 A1
20140173457 Wang et al. Jun 2014 A1
20140189592 Benchenaa et al. Jul 2014 A1
20140207679 Cho Jul 2014 A1
20140214471 Schreiner, III Jul 2014 A1
20140222564 Kranendonk et al. Aug 2014 A1
20140258405 Perkin Sep 2014 A1
20140265359 Cheng et al. Sep 2014 A1
20140266703 Dalley, Jr. et al. Sep 2014 A1
20140279061 Elimeliah et al. Sep 2014 A1
20140279436 Dorsey et al. Sep 2014 A1
20140279540 Jackson Sep 2014 A1
20140280537 Pridmore et al. Sep 2014 A1
20140282096 Rubinstein et al. Sep 2014 A1
20140287779 O'keefe et al. Sep 2014 A1
20140289833 Briceno Sep 2014 A1
20140306986 Gottesman et al. Oct 2014 A1
20140317302 Naik Oct 2014 A1
20140324627 Haver et al. Oct 2014 A1
20140324629 Jacobs Oct 2014 A1
20140325383 Brown et al. Oct 2014 A1
20150020086 Chen et al. Jan 2015 A1
20150046278 Pei et al. Feb 2015 A1
20150071619 Brough Mar 2015 A1
20150087263 Branscomb et al. Mar 2015 A1
20150088622 Ganschow et al. Mar 2015 A1
20150095020 Leydon Apr 2015 A1
20150096042 Mizrachi Apr 2015 A1
20150116529 Wu et al. Apr 2015 A1
20150169827 Laborde Jun 2015 A1
20150172534 Miyakawa et al. Jun 2015 A1
20150178260 Brunson Jun 2015 A1
20150222814 Li et al. Aug 2015 A1
20150261917 Smith Sep 2015 A1
20150312184 Langholz et al. Oct 2015 A1
20150350136 Flynn, III et al. Dec 2015 A1
20150365795 Allen et al. Dec 2015 A1
20150378502 Hu et al. Dec 2015 A1
20160006927 Sehn Jan 2016 A1
20160014063 Hogeg et al. Jan 2016 A1
20160085773 Chang et al. Mar 2016 A1
20160085863 Allen et al. Mar 2016 A1
20160099901 Allen et al. Apr 2016 A1
20160180887 Sehn Jun 2016 A1
20160182422 Sehn et al. Jun 2016 A1
20160182875 Sehn Jun 2016 A1
20160239248 Sehn Aug 2016 A1
20160277419 Allen et al. Sep 2016 A1
20160321708 Sehn Nov 2016 A1
20160342774 Henkel-Wallace Nov 2016 A1
20170006094 Abou Mahmoud et al. Jan 2017 A1
20170019855 Gu Jan 2017 A1
20170061308 Chen et al. Mar 2017 A1
20170124296 Baldwin et al. May 2017 A1
20170287006 Azmoodeh et al. Oct 2017 A1
20200213298 Ericson Jul 2020 A1
20200314586 Bouba et al. Oct 2020 A1
20200382912 Dancie et al. Dec 2020 A1
20200401225 Jaureguiberry et al. Dec 2020 A1
20210011612 Dancie et al. Jan 2021 A1
20210152979 Berardino et al. May 2021 A1
20210266704 Dancie et al. Aug 2021 A1
20210377693 Bouba et al. Dec 2021 A1
20210409904 Baylin Dec 2021 A1
20220070126 Monroy-Hernández et al. Mar 2022 A1
20220174455 Guillaume Jun 2022 A1
20220269345 Jaureguiberry et al. Aug 2022 A1
Foreign Referenced Citations (33)
Number Date Country
2887596 Jul 2015 CA
116584083 Aug 2023 CN
2051480 Apr 2009 EP
2151797 Feb 2010 EP
2399928 Sep 2004 GB
19990073076 Oct 1999 KR
20010078417 Aug 2001 KR
WO-1996024213 Aug 1996 WO
WO-1999063453 Dec 1999 WO
WO-2000058882 Oct 2000 WO
WO-2001029642 Apr 2001 WO
WO-2001050703 Jul 2001 WO
WO-2006118755 Nov 2006 WO
WO-2007092668 Aug 2007 WO
WO-2009043020 Apr 2009 WO
WO-2011040821 Apr 2011 WO
WO-2011119407 Sep 2011 WO
WO-2013008238 Jan 2013 WO
WO-2013045753 Apr 2013 WO
WO-2014006129 Jan 2014 WO
WO-2014068573 May 2014 WO
WO-2014115136 Jul 2014 WO
WO-2014194262 Dec 2014 WO
WO-2015192026 Dec 2015 WO
WO-2016044424 Mar 2016 WO
WO-2016054562 Apr 2016 WO
WO-2016065131 Apr 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100342 Jun 2016 WO
WO-2016149594 Sep 2016 WO
WO-2016179166 Nov 2016 WO
WO-2022115308 Jun 2022 WO
Non-Patent Literature Citations (31)
Entry
“U.S. Appl. No. 17/007,961, Non Final Office Action dated Jul. 9, 2021”, 35 pgs.
“U.S. Appl. No. 17/247,053, Corrected Notice of Allowability dated May 3, 2022”, 5 pgs.
“U.S. Appl. No. 17/247,053, Examiner Interview Summary dated Oct. 1, 2021”, 2 pgs.
“U.S. Appl. No. 17/247,053, Non Final Office Action dated Jul. 9, 2021”, 34 pgs.
“U.S. Appl. No. 17/247,053, Notice of Allowance dated Jan. 21, 2022”, 9 pgs.
“U.S. Appl. No. 17/247,053, Response filed Oct. 8, 2021 to Non Final Office Action dated Jul. 9, 2021”, 11 pgs.
“International Application Serial No. PCT/US2021/059895, International Search Report dated Mar. 14, 2022”, 4 pgs.
“International Application Serial No. PCT/US2021/059895, Written Opinion dated Mar. 14, 2022”, 6 pgs.
U.S. Appl. No. 17/007,961, filed Aug. 31, 2020, Co-location Connection Service.
U.S. Appl. No. 17/247,053, filed Nov. 25, 2020, Co-location Connection Service.
“A Whole New Story”, Snap, Inc., [Online] Retrieved from the Internet: <URL: https://www.snap.com/en-US/news/>, (2017), 13 pgs.
“Adding photos to your listing”, eBay, [Online] Retrieved from the Internet: <URL: http://pages.ebay.com/help/sell/pictures.html>, (accessed May 24, 2017), 4 pgs.
“BlogStomp”, StompSoftware, [Online] Retrieved from the Internet: <URL: http://stompsoftware.com/blogstomp>, (accessed May 24, 2017), 12 pgs.
“Cup Magic Starbucks Holiday Red Cups come to life with AR app”, Blast Radius, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20160711202454/http://www.blastradius.com/work/cup-magic>, (2016), 7 pgs.
“Daily App: InstaPlace (iOS/Android): Give Pictures a Sense of Place”, TechPP, [Online] Retrieved from the Internet: <URL: http://techpp.com/2013/02/15/instaplace-app-review>, (2013), 13 pgs.
“InstaPlace Photo App Tell The Whole Story”, [Online] Retrieved from the Internet: <URL: youtu.be/uF_gFkg1hBM>, (Nov. 8, 2013), 113 pgs., 1:02 min.
“International Application Serial No. PCT/US2015/037251, International Search Report dated Sep. 29, 2015”, 2 pgs.
“International Application Serial No. PCT/US2021/059895, International Preliminary Report on Patentability dated Jun. 8, 2023”, 8 pgs.
“Introducing Snapchat Stories”, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20131026084921/https://www.youtube.com/watch?v=88Cu3yN-LIM>, (Oct. 3, 2013), 92 pgs.; 00:47 min.
“Macy's Believe-o-Magic”, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190422101854/https://www.youtube.com/watch?v=xvzRXy3J0Z0&feature=youtu.be>, (Nov. 7, 2011), 102 pgs.; 00:51 min.
“Macy's Introduces Augmented Reality Experience in Stores across Country as Part of Its 2011 Believe Campaign”, Business Wire, [Online] Retrieved from the Internet: <URL: https://www.businesswire.com/news/home/20111102006759/en/Macys-Introduces-Augmented-Reality-Experience-Stores-Country>, (Nov. 2, 2011), 6 pgs.
“Starbucks Cup Magic”, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=RWwQXi9RGOw>, (Nov. 8, 2011), 87 pgs.; 00:47 min.
“Starbucks Cup Magic for Valentine's Day”, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=8nvqOzjq10w>, (Feb. 6, 2012), 88 pgs.; 00:45 min.
“Starbucks Holiday Red Cups Come to Life, Signaling the Return of the Merriest Season”, Business Wire, [Online] Retrieved from the Internet: <URL: http://www.businesswire.com/news/home/20111115005744/en/2479513/Starbucks-Holiday-Red-Cups-Life-Signaling-Return>, (Nov. 15, 2011), 5 pgs.
Carthy, Roi, “Dear All Photo Apps: Mobli Just Won Filters”, TechCrunch, [Online] Retrieved from the Internet: <URL: https://techcrunch.com/2011/09/08/mobli-filters>, (Sep. 8, 2011), 10 pgs.
Janthong, Isaranu, “Instaplace ready on Android Google Play store”, Android App Review Thailand, [Online] Retrieved from the Internet: <URL: http://www.android-free-app-review.com/2013/01/instaplace-android-google-play-store.html>, (Jan. 23, 2013), 9 pgs.
Macleod, Duncan, “Macys Believe-o-Magic App”, [Online] Retrieved from the Internet: <URL: http://theinspirationroom.com/daily/2011/macys-believe-o-magic-app>, (Nov. 14, 2011), 10 pgs.
Macleod, Duncan, “Starbucks Cup Magic Lets Merry”, [Online] Retrieved from the Internet: <URL: http://theinspirationroom.com/daily/2011/starbucks-cup-magic>, (Nov. 12, 2011), 8 pgs.
Notopoulos, Katie, “A Guide To The New Snapchat Filters And Big Fonts”, [Online] Retrieved from the Internet: <URL: https://www.buzzfeed.com/katienotopoulos/a-guide-to-the-new-snapchat-filters-and-big-fonts?utm_term =.bkQ9qVZWe#.nv58YXpkV>, (Dec. 22, 2013), 13 pgs.
Panzarino, Matthew, “Snapchat Adds Filters, A Replay Function And For Whatever Reason, Time, Temperature And Speed Overlays”, TechCrunch, [Online] Retrieved form the Internet: <URL: https://techcrunch.com/2013/12/20/snapchat-adds-filters-new-font-and-for-some-reason-time-temperature-and-speed-overlays/>, (Dec. 20, 2013), 12 pgs.
Tripathi, Rohit, “Watermark Images in PHP And Save File on Server”, [Online] Retrieved from the Internet: <URL: http://code.rohitink.com/2012/12/28/watermark-images-in-php-and-save-file-on-server>, (Dec. 28, 2012), 4 pgs.
Related Publications (1)
Number Date Country
20220272065 A1 Aug 2022 US
Continuations (1)
Number Date Country
Parent 17247053 Nov 2020 US
Child 17662981 US
Continuation in Parts (1)
Number Date Country
Parent 17007961 Aug 2020 US
Child 17247053 US