The present invention relates to a missile component, and more particularly, a method of manufacturing the missile component.
Different types of missiles have been produced in response to varying defense needs. Some missiles are designed for tactical uses, while others are designed for strategic uses. Typically, tactical missiles are relatively simple in design, may be produced in large quantities, and may be used for shorter flight missions. Strategic missiles, on the other hand, are employed for long duration operation and thus, are generally more complex in design. Strategic missiles may be relatively expensive to produce, and thus, produced in small quantities. As the demand for these types of missiles has risen, the desire for added capabilities has also increased. In particular, tactical and strategic missiles having precision guidance capabilities are now desired.
In the past, precision guidance systems have been used to guide launch vehicles and have been relatively expensive to produce. The high cost of manufacture has been due, in part, to the need to construct components from materials capable of withstanding high temperatures and erosion. In recent years, refractory metals have been used to construct the guidance system components, using conventional means and methods. For instance, the components have been formed or machined from refractory metals, or made in several pieces and subsequently adhered or welded together. These refractory metals are relatively heavy and expensive, and the use of large amounts of these metals has not been practical.
To defray costs, yet maintain the desirable properties of refractory metals, the system components have also been constructed from other materials, such as insulating materials, in conjunction with the refractory metals. Components manufactured by these materials are constructed by shaping the insulating material into a desired shape, shaping the refractory metal into an outer shell, and then coupling the shell to the shaped insulating material.
Although these methods have been sufficient for manufacturing precision guidance systems for use with launch vehicles, they have not been adequate for missile implementation. In particular, missiles are generally smaller than launch vehicles and thus, have space constraints. Conventional manufacturing methods have not been as successful in constructing high quality components having the requisite dimensions and complex shapes needed for desired precision guidance capabilities in these space constraints. Moreover, manufacturing costs of precision guidance systems are still high and inclusion of these costly methods in the manufacture of missiles increases the cost of the missiles.
Thus, there is a need for a method of manufacturing a missile that is cost-efficient and reliable. It is desirable to have a method for manufacturing a missile that may be implemented for mass production of precisely-dimensioned missile components. The present invention addresses one or more of these needs.
The present invention provides a method and apparatus for manufacturing a missile component for use in a high temperature environment where the missile component has a flow passage therethrough and the flow passage has a shape.
In one embodiment, and by way of example only, the method comprises the steps of depositing a first metal onto a mandrel having the shape of the flow passage to create a first metal layer, applying an insulating material on to the first metal layer to create an insulating layer, machining a predetermined shape into at least a portion of the insulating layer, and applying a second metal onto the machined insulating layer to create an outer shell layer.
An apparatus is also provided for use in a high temperature environment. The apparatus is a valve component that comprises an inner liner, wherein at least a portion of the inner liner comprises a refractory metal, an insulating layer coupled to the inner liner, and an outer shell coupled to the insulating layer.
Other independent features and advantages of the preferred method will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention. For illustration purposes only, the invention is described herein as being used to manufacture a thrust assembly component that may be employed on a precision guidance missile, however, it will be understood that the method may be used to manufacture any component that may be exposed to extreme high temperatures, such as for tactical, strategic, or long range missiles, or any other type of thrust-propelled craft, such as spacecraft and torpedoes.
The motor 102 generally includes a tubular motor case 110 that defines a space within which a fuel source 112 may be disposed. The fuel source 112 may be any one of numerous types of fuels, including, but not limited to a solid fuel source. When the fuel source 112 is ignited within the motor case 110, propellant gases are produced and directed into the blast tube 104.
The blast tube 104 is generally cylindrical in shape and includes a channel 114 therethrough that is configured to receive the propellant gases from the motor 102. In the depicted embodiment, a portion of the propellant gases are directed through the blast tube 104 to the nozzle 106. As will be discussed more fully below, the remaining portion of the propellant gases are directed into the thrust assembly 108.
The nozzle 106 is coupled to the blast tube 104. In the depicted embodiment, the nozzle 106 is generally funnel-shaped and includes an inlet throat 118 in fluid communication with the blast tube 104 and an outlet 120 through which the propellant gases that enter the nozzle 106 may escape. When the propellant gases escape through the outlet 120, thrust is generated that propels the missile.
As was noted above, another portion of the propellant gases produced in the motor 102 is directed to the thrust assembly 108. A close up of the thrust assembly 108 is provided in
The lateral direction of the missile may be further controlled by at least one valve. The valve is used to regulate the amount of gas that escapes out of the valve nozzle 124 by controlling gas flow through the flow passage 126. Any one of numerous types of valves configured to enable the opening and closing of the flow passage 126 may be employed. In the embodiment depicted in
When two or more thrust assemblies 108 are used on a missile, lateral movement control of the missile is further increased. In such instances, the thrust assemblies 108 are preferably spaced apart such that when a first thrust assembly 108 is in an open position and a second thrust assembly 108 is in a closed position, the missile is directed in a first direction. Likewise, if the first thrust assembly 108 is in a closed position and the second thrust assembly 108 is in an open position, the missile is directed in a second direction.
The flow passage 126, which as previously mentioned, extends at least partially through thrust assembly components such as the main inlet duct 122 and the valve nozzle 124, can have a complex shape and is in direct contact with the propellant gases. Consequently, the thrust assembly components that make up the flow passage 126 are preferably constructed according to the inventive method. With reference to
The overall process 200 is illustrated in
Before discussing the process steps in more detail, it will be appreciated that, the mandrel 300 is preferably a mold having a shape substantially identical to at least a portion of the flow passage 126 of the component to be constructed. Because various material layers are deposited onto mandrel 300 during at least a portion of the manufacturing process, the mandrel 300 is preferably made of a hard material capable of withstanding high pressures and capable of being mechanically or chemically removed from the interior of the component at some point during or at the completion of the process. Examples of suitable materials include, but not limited to, graphite, carbon-carbon, or molybdenum. The mandrel 300 may be machined, molded, or formed into the shape of the flow passage 126.
Returning now to a discussion of the process steps, as was noted above, the initial process step is the deposition of the first metal layer 302 onto the mandrel 300 (204). Preferably, the first metal layer 302 has a minimal thickness that may be determined by structural or erosion conditions of the thrust assembly 108. In one exemplary embodiment, the thickness of the first metal layer 302 is between about 0.001 and 0.100 inches. The first metal layer 302 serves as an inner liner of the component being constructed and may be deposited by any conventional known metal deposition method, such as, for example, by chemical vapor deposition, plasma etch chemical vapor deposition, or electroplating. Because the component will most likely be subjected to a harsh, high temperature environment, the first metal is preferably a material that can be shaped and then maintain its shape during exposure to extreme heat. Materials having erosion-resistance and the capability of withstanding thermal shock are preferable. Additionally, it is preferable that the materials have an operating capability at temperatures greater than about 5000° F., and more preferably, an operating capability at temperatures greater about 6000° F. In one embodiment, the first metal is a refractory metal, such as rhenium, tungsten, molybdenum, tantalum, niobium, and/or alloys of these or other refractory metals. In yet another embodiment, the first metal is a refractory metal alloy that contains refractory and non-refractory metals. In yet other embodiments, nickel or cobalt alloys are employed for use in environments having a temperature of less than 3000° F.
In another exemplary embodiment, the outer surface of the metal layer 302 is treated to improve the ability of subsequently deposited layers to adhere thereto. For example, the outer surface of the first metal layer 302 may be roughened (220), such as by buffing, chemical etching, or by uneven deposition of the first metal layer 302.
After the first metal layer 302 is formed, an insulating material is applied to the metal layer (206) to create the insulating layer 304. The insulating layer 304 may be any one of numerous known materials having insulating capabilities, such as phenolic, rubber, zirconia oxide, or ceramic-based coatings. For increased strength, glass or carbon fibers may be added to the insulating material.
The insulating layer 304 may be applied to the first metal layer 302 in any one of numerous fashions. In one exemplary embodiment, the insulating layer 304 is a phenolic layer made from a phenolic (pre-impregnated) mixture. To manufacture the phenolic layer, mandrel 300, having the first metal layer 302 deposited thereon, is placed in a container and phenolic mixture is packed around the mandrel 300 to cover the first metal layer 302 with the phenolic mixutre. The mandrel 300 is then heated and pressurized, which causes the phenolic mixture to activate and fuse into a lightweight solid insulating layer 304 that is coupled to the first metal layer 302.
After the insulating layer 304 is deposited or cured, it is then machined into a desired shape (208). Preferably, the insulating layer 304 is machined into the shape of the desired missile component, such as, for example, the flow passage 126. In the embodiment depicted in
After the insulating layer 304 is appropriately shaped, a second metal layer is applied onto the insulating layer 304 to provide an outer shell 306 (210). The outer shell 306 improves the structural integrity of the component. The outer shell 306 may be constructed of any one of numerous types of conventional, relatively inexpensive metals, including but not limited to, aluminum, titanium, or steel, that may be used in the construction of a missile. Additionally, the outer shell 306 may be coupled to the component via any one of numerous conventional methods. In one exemplary embodiment of the method, the second metal is shaped into the desired shape of the component and then adhered to the machined insulating layer 304 by any one of numerous conventional methods, such as via epoxy resin or other structural adhesives. The outer shell 306 may be machined further to prepare the component for coupling to the missile.
In another embodiment of the inventive method, the mandrel 300 is removed at some point during the inventive method. The mandrel 300 may be removed after the insulating layer 304 is applied to the first metal layer 302 (224), after the insulating layer 304 is machined (226), after the outer shell 306 is created (228), or any other point during the inventive method.
The method by which the mandrel 300 is removed is, in large part, dependent upon the material from which the mandrel 300 is constructed. For instance, in one embodiment, the mandrel 300 is constructed with graphite, and is machined, chipped, or vibrated out from under the first metal layer 302 of the component to expose the flow passage 126. In another embodiment, the mandrel 300 is constructed with molybdenum and is chemically etched out of the flow passage 126 with an acid.
Thus, the resulting component manufactured by the inventive method is a lightweight and able to withstand and operate within a high temperature, pressurized environment. The resulting component includes an inner metal layer 302 that is capable of withstanding heat, retaining an original shape, and conducting the heat to an insulating layer 304. The insulating layer 304, which contains the heat therein, is covered with an outer shell 306 that provides additional structure to the component and that is protected from the heat source.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3022230 | Fialkoff | Feb 1962 | A |
3122883 | Terner | Mar 1964 | A |
3132478 | Thielman | May 1964 | A |
3427698 | Guzewicz | Feb 1969 | A |
3467583 | Naimer | Sep 1969 | A |
3707916 | Meraz, Jr. et al. | Jan 1973 | A |
3832847 | Butter et al. | Sep 1974 | A |
3917782 | Holcombe et al. | Nov 1975 | A |
4577431 | Siemers et al. | Mar 1986 | A |
4927714 | Priceman | May 1990 | A |
4938824 | Youngkeit | Jul 1990 | A |
4942653 | Hawkinson | Jul 1990 | A |
5012853 | Bihlmaier | May 1991 | A |
5212946 | Hans et al. | May 1993 | A |
5220783 | Cherry et al. | Jun 1993 | A |
5223045 | Priceman | Jun 1993 | A |
5233755 | Vandendriessche | Aug 1993 | A |
5380570 | Sayles | Jan 1995 | A |
5600946 | Dombrowski et al. | Feb 1997 | A |
5613299 | Ring et al. | Mar 1997 | A |
5800753 | Donadio | Sep 1998 | A |
5855828 | Tuffias et al. | Jan 1999 | A |
6079202 | Cesaroni et al. | Jun 2000 | A |
6082097 | Smith et al. | Jul 2000 | A |
6087023 | Tsantrizos et al. | Jul 2000 | A |
6094906 | Singer et al. | Aug 2000 | A |
6101948 | Knaresboro et al. | Aug 2000 | A |
6164060 | Myers et al. | Dec 2000 | A |
6195984 | Cornelius et al. | Mar 2001 | B1 |
6205661 | Ring | Mar 2001 | B1 |
6296723 | Tsantrizos et al. | Oct 2001 | B1 |
6314720 | Holmes et al. | Nov 2001 | B1 |
6554936 | Metcalf et al. | Apr 2003 | B1 |
6582542 | Russell et al. | Jun 2003 | B1 |
6691505 | Harvey et al. | Feb 2004 | B2 |
6783824 | Steffier | Aug 2004 | B2 |
20040222571 | Steffier | Nov 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050258043 A1 | Nov 2005 | US |