Co-prime optical transceiver array

Information

  • Patent Grant
  • 11336373
  • Patent Number
    11,336,373
  • Date Filed
    Friday, March 9, 2018
    6 years ago
  • Date Issued
    Tuesday, May 17, 2022
    2 years ago
Abstract
A co-prime transceiver attains higher fill factor, improved side-lobe rejection, and higher lateral resolution per given number of pixels. The co-prime transceiver includes in part, a transmitter array having a multitude of transmitting elements and a receiver array having a multitude of receiving elements. The distance between each pair of adjacent transmitting elements is a first integer multiple of the whole or fraction of the wavelength of the optical. The distance between each pair of adjacent receiving elements is a second integer multiple of the whole or fraction of the wavelength of the optical signal. The first and second integers are co-prime numbers with respect to one another. The transceiver is fully realizable in a standard planar photonics platform in which the spacing between the elements provides sufficient room for optical routing to inner elements.
Description
FIELD OF THE INVENTION

The present invention relates to silicon photonics, and more particularly to optical phased arrays.


BACKGROUND OF THE INVENTION

Optical phased array receivers are used in detecting light arriving from a given direction. Optical phased array transmitters are used in shaping and steering a narrow, low-divergence, beam of light over a relatively wide angle. An integrated optical phased array photonics chip often includes a number of components such as lasers, photodiodes, optical modulators, optical interconnects, transmitters and receivers.


Optical phased arrays have been used in 3D imaging, mapping, ranging remote sensing, actuation projection system, data communication, and other emerging technologies such as autonomous cars and drone navigation. A need continues to exist for improvements to optical phased arrays.


BRIEF SUMMARY OF THE INVENTION

A co-prime transceiver, in accordance with one embodiment of the present invention, includes in part, a transmitter array having a multitude of transmitting elements wherein a distance between each pair of adjacent transmitting elements is defined by a first integer multiple of the whole or fraction of the wavelength of an optical signal, and a receiver array having a multitude of receiving elements in which the distance between each pair of adjacent receiving elements is a second integer multiple of the whole or fraction of the wavelength of the optical signal. The first and second integers are co-prime numbers with respect to one another.


In one embodiment, the transmitter and receiver arrays are one-dimensional arrays. In another embodiment, the receiver and transmitter arrays are two-dimensional arrays disposed symmetrically along a Cartesian coordinate system. In one embodiment


A co-prime transceiver, in accordance with one embodiment of the present invention, includes in part, a transmitter array having a multitude of transmitting elements disposed symmetrically along the periphery of a first set of one or more concentric circles, and a receiver array having a multitude of receiving elements disposed symmetrically along the periphery of a second set of one or more concentric circles. The radiation pattern of the transmitter array and a response pattern of the receiver array overlap at substantially a single point in space.


A co-prime transceiver, in accordance with one embodiment of the present invention, includes in part, a transmitter array having a multitude of transmitting elements disposed symmetrically along the periphery of a first set of one or more concentric circles, and a receiver array having a multitude of receiving elements disposed symmetrically along the periphery of a second set of one or more concentric circles. The number as well as positions of the transmitting and receiving elements are selected such that a far-field radiation pattern of the transmitter array and a far-field response pattern of the receiver array overlap only along their main beams.


A method of transmitting and receiving an optical signal, in accordance with one embodiment of the present invention, includes in part, transmitting the optical signal via a transmitter array that includes a multitude of transmitting elements in which the distance between each pair of adjacent transmitting elements is defined by a first integer multiple of a whole or fraction of the wavelength of an optical signal. The method further includes receiving the optical signal via a receiver array that includes a multitude of receiving elements in which the distance between each pair of adjacent receiving elements is a second integer multiple of the whole or fraction of the wavelength of the optical signal. The first and second integer multiples are co-prime numbers with respect to one another.


In one embodiment, each of the transmitter and receiver arrays are one-dimensional arrays. In another embodiment, each of the transmitter and receiver arrays are two-dimensional arrays disposed symmetrically along a Cartesian coordinate system.


A method of transmitting and receiving an optical signal, in accordance with one embodiment of the present invention, includes in part, transmitting the optical signal via a transmitter array that includes a multitude of transmitting elements disposed symmetrically along the periphery of a first set of one or more concentric circles. The method further includes receiving the optical signal via a receiver array that includes a multitude of receiving elements disposed symmetrically along the periphery of a second set of one or more concentric circles. The radiation pattern of the transmitter array and a response pattern of the receiver array overlap at substantially a single point in space.


A method of transmitting and receiving an optical signal, in accordance with one embodiment of the present invention, includes in part, transmitting the optical signal via a transmitter array that includes a multitude of transmitting elements disposed symmetrically along the periphery of a first set of one or more concentric circles. The method further includes receiving the optical signal via a receiver array that includes a multitude of receiving elements disposed symmetrically along the periphery of a second set of one or more concentric circles. The number as well as positions of the transmitting and receiving elements are selected such that a far-field radiation pattern of the transmitter array and a far-field response pattern of the receiver array overlap only along their main beams.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified top-level schematic view of an exemplary one-dimensional co-prime transceiver array, in accordance with one embodiment of the present invention.



FIG. 2A shows computer simulation response of transmitter array of the transceiver of FIG. 1, in accordance with one embodiment of the present invention.



FIG. 2B shows computer simulation response of the receiver array of the transceiver of FIG. 1, in accordance with one embodiment of the present invention.



FIG. 2C shows computer simulation response of the transceiver of FIG. 1, in accordance with one embodiment of the present invention.



FIG. 3 shows computer simulation response of the transceiver of FIG. 1 along different angular directions, in accordance with one embodiment of the present invention.



FIG. 4 is a simplified top-level schematic view of an exemplary two-dimensional co-prime transceiver array, in accordance with one embodiment of the present invention.



FIG. 5 is a simplified schematic block diagram of a one-dimensional transceiver array, in accordance with one exemplary embodiment of the present invention.



FIG. 6 is a homodyne two-dimensional phased array, in accordance with one exemplary embodiment of the present invention.



FIG. 7 is a heterodyne two-dimensional phased array, in accordance with one exemplary embodiment of the present invention.



FIG. 8 is a simplified top-level schematic view of an exemplary two-dimensional co-prime transceiver array, in accordance with one embodiment of the present invention.



FIG. 9A shows computer simulation of the transmission pattern of the transmitting array of the transceiver of FIG. 8 in a Cartesian coordinate system.



FIG. 9B shows computer simulation of the response characteristics of the receiver array of the transceiver of FIG. 8 in a Cartesian coordinate system.



FIG. 9C shows computer simulations of the characteristics of the phased array of FIG. 8 in a Cartesian coordinate system.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention include a co-prime optical phased array transceiver. The spacing of the receiver and/or transmitter array elements is used to provide flexibility and enhance optical routing, thereby improving performance. The spacing also increases the receiver and/or transmitter aperture size compared to a uniformly arranged and distributed array of receiving and/or transmitting elements. However, the spacing of the elements in the transmitter and the receiver results in grating lobes in the response of both the transmitter and the receiver and reducing the usable field-of-view of the transmitter and the receiver to the spacing between two adjacent grating lobes. In accordance with embodiments of the present invention, the transmitter and receiver array element spacing are designed such that the combined system achieves an improved performance and a large field-of-view compared to individual performance of the transmitter and receiver array. Consequently, in accordance with the embodiments of the present invention, the beam-width, the magnitude of side lobes, grating lobes, and other characteristics of the beam can be controlled and modified to further enhance performance of the phased array transceiver.


An optical phased array receiver captures the incident light by its aperture—formed using an array of receiving elements—and processes it to determine, among other things, the direction of the incident light, or to look at the light coming from specific points or directions and suppress light from other points and directions.


Assume an optical co-prime transceiver with a receiver having Nrx≥2 receiving elements and a transmitter having Ntx≥2 transmitting elements, in accordance with one embodiment of the present invention. The spacing drx between each pair of adjacent receiving elements is defined by drx=nrxdx, where dx is a unit spacing determined by the minimum optical routing spacing. The spacing dtx between each pair of adjacent transmitting elements is defined by dtx=ntxdx spacing. Because in a co-prime transceiver, in accordance with embodiments of the present invention, nrx and ntx are co-prime numbers with respect to each other, the co-prime transceiver has a performance that is equivalent to that of a conventional transceiver having NrxNtx receiving-transmitting elements with uniform dx spacing. Side-lobe rejection is known to improve with increasing number of receiving-transmitting elements.


A conventional uniform transmitter or receiver array with N transmitting or receiving elements and transmitting/receiving element spacing of dx reconstructs the






[


-

π
2


,

π
2


]





field of view image up to spatial frequency resolution bandwidth given by the largest spacing of xN=Ndx if dx=λ/2, where λ is the wavelength of the optical signal. However, the unit spacing of λ/2 is difficult to achieve due to planar routing constraints. Increasing the inter-element spacing beyond λ/2 to attain improve resolution results in reduction of the field-of-view. A co-prime transceiver achieves improved resolution without sacrificing the field-of-view with a reduced number of elements.


An optical co-prime transceiver having M transmitting elements and N receiving elements achieves a performance that is equivalent to that of conventional transceiver having MN transmitting-receiving elements. Such a co-prime transceiver not only requires fewer number of transmitting-receiving elements, it achieves side-lobes that are considerably lower. By increasing the number of elements in the transmitter and receiver, a narrower beam and thus lower side-lobes are obtained. In one example, a co-prime transceiver with 2(N+M) transmitting-receiving elements can have side-lobes that are much lower compared to a conventional uniform transceiver. Increasing the number of transmitter and receiver elements while keeping the distance of the transmitter and receiver elements constant results in improved performance for the co-prime array as it does for a uniform array.


In accordance with one embodiment of the present invention, the distance between each pair of adjacent transmitting elements of a co-prime phased array transceiver is defined by a first integer multiple T of a distance dx (i.e., Tdx), and the distance between each pair of adjacent receiving elements of the co-prime phased array transceiver is defined by a second integer multiple R of the distance dx (i.e., Rdx), wherein T and R are co-prime numbers with respect to one another. The number of transmitting elements of the co-prime transceiver is P and the number of receiving elements of the co-prime transceiver is Q, where P and Q are integers greater than or equal to two, and dx may be equal to either λ,







λ
2

,

λ
4






or any other real factor of λ—the wavelength of the optical signal being used. A co-prime phased array transceiver, in accordance with embodiments of the present invention, therefore has more relaxed routing constraints. The higher the number of transmitter and receiver elements, the larger the spacing between the receiver elements and the spacing between the transmitter elements can be to permit signal routing to the elements in two-dimensions.


A one-dimensional co-prime transceiver with P transmitting elements and Q receiving elements has a performance characteristics that is substantially equivalent to that of a conventional uniform transceiver having PQ transmitting-receiving elements. Similarly, a two-dimensional co-prime transceiver with 2P transmitting elements and 2Q receiving elements has a performance characteristics that is substantially equivalent to that of a conventional uniform transceiver having 16(PQ)2 transmitting-receiving elements.



FIG. 1 is a simplified top-level schematic view of an exemplary one-dimensional co-prime transceiver array 10 shown as having 8 transmitting elements 12 and 6 receiving elements 14. Transmitting elements 12 are shown as forming a transmitting array 15, and receiving elements 14 are shown as forming a receiving array 18. The distance dt between each pair of adjacent transmitting elements is assumed to be equal to 3dx and the distance dr between each pair of adjacent receiving elements is assumed to be equal to 4dx, where dx is assumed to be equal to half the wavelength of the light, namely







λ
2

.




Plot 25 of FIG. 2A shows computer simulation response of transmitter array 15 of FIG. 1 and plot 30 of FIG. 2B shows computer simulation response of receiver array 18 of FIG. 1. Plot 35 of FIG. 2C shows computer simulation response of transceiver array 10 of FIG. 1. The transmitter array is shown as illuminating 5 directions in FIG. 2A and the receiver array is shown as collecting light from 3 directions. However, at any given time only one of the transmitter and receiver beams align and the transceiver behaves as if there is only one transmitter and one receiver illuminating and receiving from the same direction.


Despite the fact that the transmitter array and receiver array each have several side-lobes, their combined response rejects all the side-lobes. Sliding the response of the transmitter array across the response of the receiver array shows that at any arbitrary angle, their combined response has a minimum side-lobe. As seen from FIG. 2B, transceiver array 10 has a peak response at 0° angle and has substantially the same response characteristics as a conventional uniform transceiver with 8×6=48 (the product of the number of transmitting elements and the number of receiving elements of the co-prime transceiver in accordance with embodiments of the present invention) receiver elements, and a single transmitting element, or 48 transmitters and a single receiver.


Sweeping the transceiver phased-array to acquire signal from all directions results in the response shown in FIG. 3. As seen from FIG. 3, the co-prime receiver array maintains a desirable side-lobe rejection ratio when acquiring signal from any given direction.



FIG. 4 is a simplified top-level schematic view of an exemplary two-dimensional co-prime transceiver phased array 100, in accordance with another exemplary embodiment of the present invention. Co-prime transceiver array 100 is shown as having a receiver array 150 and a transmitter array 200. Receiver array 150 is shown as having 36 receiving elements 14 and transmitter array 200 is shown as having 64 transmitting elements 12. The distance dr between each pair of adjacent receiving elements 14 is assumed to be 4dx, and the distance dt between each pair of adjacent transmitting elements 12 is assumed to be 3dx, where dx is assumed to be equal to the wavelength of the light used by the transceiver phased array 100. Receiver array 150 is shown as having 36 receiving elements and transmitter array 200 is shown as having 64 element. Accordingly, in co-prime transceiver phased array 100, parameter P is equal to 64 and parameter Q is equal to 36.



FIG. 5 is a simplified schematic block diagram of a one-dimensional transceiver array having N transmitters Nt and receivers Nr. The optical signal generated by coherent electromagnetic source 802 is split into N signals by splitter 804, each of which is phase modulated by a different one of phase modulators (PM) 806 and transmitted by a different one of the transmitters, collectively identified using reference number 800. The signals received by receiving elements 820 are modulated in phase by PMs 826 and detected by detectors 828. The output signals of the detectors is received by control and processing unit 824 which, in turn, controls the phases of PMs 806 and 826.


A co-prime transmitter and receiver pair will each have several side-lobes. However, their combined radiation pattern will only have one main lobe. Each transmitter and receiver need to be set such that the relative phase between the elements is linearly increasing. Assume that the relative phase steps of the transmitters is ϕt and relative phase step of receivers is ϕr. As a result, the transmitter and receiver phased array will have the center-lobe pointing in a specific direction which are uncorrelated with respect to each other. However, their combined radiation pattern will have one main lobe. If ϕt and ϕr are swept from zero to 2π, the combined main-lobe will be swept across the field of view as well. The combined main-lobe has the maximum amplitude when any two of the transmitter and receiver main lobe are aligned in substantially the same direction.


Therefore, by setting a linear phase delay step between the elements of each of the transmitters and the receivers, and slowly varying the phase delay step of either the transmitters or the receivers, a co-prime phased array that has a single main lobe and can sweep the entire field of view is achieved.


In the one-dimensional array shown in FIG. 5, the control and processing unit 802 adjusts the relative phase between the elements using the phase modulators such that the receiver elements have linear relative phase difference of (0, ϕr, 2ϕr, 3ϕr, . . . , (Nr−1)ϕr) and the transmitter elements have linear relative phase difference of (0, ϕt, 2ϕt, 3ϕt, . . . , (Nt−1)ϕt). It is understood that ϕr, ϕt can have any value in the range of [0,2π].



FIG. 6 is a simplified schematic block diagram of a two-dimensional transceiver array having an array of Nt×Nt transmitters and an array of Nr×Nr receivers. The two-dimensional transceiver shown in FIG. 6 has a homodyne architecture but is otherwise similar to the one-dimensional transceiver shown in FIG. 5.



FIG. 7 is a simplified schematic block diagram of a heterodyne two-dimensional transceiver array having an array of Nt×Nt transmitters and an array of Nr×Nr receivers. The two-dimensional transceiver architecture shown in FIG. 7 is also shown as including an additional splitter 832 and a multitude of mixers 830. The signal detection scheme described above is also applicable to both homodyne as well as heterodyne array architectures.


In accordance with another embodiment of the present invention, the array elements are symmetrical in a polar coordinate system. FIG. 8 is a simplified top-level schematic view of an exemplary two-dimensional co-prime transceiver phased array 300, in accordance with another exemplary embodiment of the present invention. Co-prime transceiver array 300 is shown as having a receiver array 325 and a transmitter array 350. Receiver array 325 is shown as having 60 receiving elements 12, and transmitter array 350 is shown as having 30 transmitting elements 14.


Operation wavelength of the exemplary transceiver 300 is 1550 nm. Transmitter array 350 is further shown as having 4 rings of radiators. The rings from the most inner ring to the most outer rings have 3, 6, 9, 12 radiating elements placed on concentric circles with 6 um, 12 um, 18 um, 24 um radii respectively. The receiver array 325 is shown as having 5 concentric rings of receiving elements. The rings from the most inner ring to the most outer rings have 4, 8, 12, 16, and 20 elements placed on concentric circles with radii of 13 um, 26 um, 39 um, 52 um, and 65 um respectively.


In the embodiment shown in FIG. 8, the transmitter and receiver array beams overlap at a single point in space. The relative spacing between the transmitting elements and the receiving determine the far-field radiation pattern associated with the phased array 300. The relative spacing between the transmitting and receiving elements may be assigned arbitrary or based on a uniform element placement so long as the transmitter and receiver radiation patterns overlap at substantially a single point in space.



FIG. 9A shows the transmission pattern of array 300 of transceiver 300 assuming isotropic transmitting elements are used. As is seen from FIG. 9A, the transmission patterns has two grating lobes 405, 410. FIG. 9B shows the far-field response pattern of the receiver array 325 of transceiver 300. Several strong side-lobes with amplitudes 5 dB lower than peak-power are present in FIG. 9B.



FIG. 9C shows the radiation pattern of transceiver 300 which is the product of the patterns shown in FIGS. 14A and 14B. As is seen from FIG. 9C, the radiation pattern of transceiver 300 suppresses the strong grating lobes of the transmitter and attenuates the strong side-lobes of the receiver resulting in a system radiating pattern that outperforms the patterns of both the transmitter and the receiver taken individually. As is seen, the transmitter and receiver beam-pattern overlap only in the broadside direction along the zero angle.


The above embodiments of the present invention are illustrative and not limitative. The embodiments of the present invention are not limited by the aperture size or the number of elements in the array of transmitters or receivers. The above embodiments of the present invention are not limited by the wavelength of the light. The above embodiments of the present invention are not limited by the number of semiconductor substrates that may be used to form a transmitter, receiver or transceiver array. Other modifications and variations will be apparent to those skilled in the art and are intended to fall within the scope of the appended claims.

Claims
  • 1. A co-prime optical transceiver comprising: a transmitter array comprising a plurality of transmitting elements wherein a distance between each pair of adjacent transmitting elements is defined by a first integer multiple of a length characterized by a wavelength of an optical signal; anda receiver array comprising a plurality of receiving elements wherein a distance between each pair of adjacent receiving elements is a second integer multiple of a length defined by the length, wherein said first and second integers are co-prime numbers with respect to one another;a plurality of detectors adapted to detect a signal received by the receiver array to generate a plurality of detected signals; anda plurality of phase modulators adapted to control phases of signals transmitted by the transmitted array in accordance with the plurality of the detected signals, wherein each of said transmitter and receiver arrays are two-dimensional arrays disposed symmetrically along a Cartesian coordinate system.
  • 2. The transceiver array of claim 1 wherein said length is a fraction of the wavelength the optical signal.
  • 3. A method of transmitting and receiving an optical signal, the method comprising: transmitting the optical signal via a transmitter array comprising a plurality of transmitting elements wherein a distance between each pair of adjacent transmitting elements is defined by a first integer multiple of a length characterized by a wavelength of an optical signal;receiving the optical signal via a receiver array comprising a plurality of receiving elements wherein a distance between each pair of adjacent receiving elements is a second integer multiple of a length defined by the length, wherein said first and second integers are co-prime numbers with respect to one another;detecting a signal received by the receiver array to generate a plurality of detected signals; andcontrolling phases of signals transmitted by the transmitted array in accordance with the detected signals, wherein each of said transmitter and receiver arrays are two-dimensional arrays disposed symmetrically along a Cartesian coordinate system.
  • 4. The transceiver array of claim 3 wherein said length is a fraction of the wavelength of the optical signal.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims benefit under 35 USC 119(e) of Application Ser. No. 62/469,106 filed Mar. 9, 2017, the content of which is incorporated herein by reference in its entirety.

US Referenced Citations (62)
Number Name Date Kind
4686533 MacDonald et al. Aug 1987 A
4833336 Kraske May 1989 A
6424442 Gfeller et al. Jul 2002 B1
6894550 Trosa et al. May 2005 B2
7313295 Ghandi Dec 2007 B2
7539418 Krishnamoorthy et al. May 2009 B1
7623783 Morris Nov 2009 B2
8244134 Santori Aug 2012 B2
8311417 Poggiolini et al. Nov 2012 B1
9325419 Kato Apr 2016 B1
9557585 Yap et al. Jan 2017 B1
10382140 Fatemi et al. Aug 2019 B2
10795188 Aflatouni et al. Oct 2020 B2
10942273 Fatemi et al. Mar 2021 B2
20020174660 Venkatasubramanian Nov 2002 A1
20020181058 Ger Dec 2002 A1
20030090775 Webb et al. May 2003 A1
20040071386 Nunen et al. Apr 2004 A1
20040101227 Takabayashi et al. May 2004 A1
20040141753 Andreu-von Euw et al. Jul 2004 A1
20050084213 Hamann et al. Apr 2005 A1
20050138934 Weigert et al. Jun 2005 A1
20050205762 Feldman et al. Sep 2005 A1
20060034609 Morris et al. Feb 2006 A1
20060056845 Parsons et al. Mar 2006 A1
20060188194 Ghandi et al. Aug 2006 A1
20080111755 Haziza et al. May 2008 A1
20080181550 Earnshaw Jul 2008 A1
20090297092 Takahashi Dec 2009 A1
20100054653 Carothers Mar 2010 A1
20100158521 Doerr et al. Jun 2010 A1
20100187402 Hochberg et al. Jul 2010 A1
20100226658 Fujimoto et al. Sep 2010 A1
20100279537 Andrade Nov 2010 A1
20110052114 Bernasconi et al. Mar 2011 A1
20110064415 Williams et al. Mar 2011 A1
20120087613 Rasras Apr 2012 A1
20120207428 Roelkens Aug 2012 A1
20120213531 Nazarathy et al. Aug 2012 A1
20130107667 Boufounos May 2013 A1
20150009068 Gregoire et al. Jan 2015 A1
20150198713 Boufounos Jul 2015 A1
20150336097 Wang et al. Nov 2015 A1
20150357710 Li et al. Dec 2015 A1
20160091368 Fish Mar 2016 A1
20160170141 Luo et al. Jun 2016 A1
20160172767 Ray Jun 2016 A1
20160266414 Gill et al. Sep 2016 A1
20160276803 Uesaka Sep 2016 A1
20160285172 Kishigami Sep 2016 A1
20170041068 Murakowski et al. Feb 2017 A1
20170131576 Gill et al. May 2017 A1
20170279537 Kim et al. Sep 2017 A1
20170315387 Watts et al. Nov 2017 A1
20170324162 Khachaturian Nov 2017 A1
20180026721 Bock Jan 2018 A1
20180123699 Fatemi et al. May 2018 A1
20180101032 Aflatouni et al. Jun 2018 A1
20180101083 Aflatouni et al. Jun 2018 A1
20180173025 McGreer et al. Jun 2018 A1
20190056499 Fatemi et al. Feb 2019 A1
20210006333 Morton et al. Jan 2021 A1
Foreign Referenced Citations (13)
Number Date Country
1819485 Aug 2006 CN
1902763 Jan 2007 CN
101889227 Nov 2010 CN
101282175 Jul 2012 CN
202915891 May 2013 CN
105814483 Jul 2016 CN
105917249 Aug 2016 CN
3094987 Dec 2018 EP
H10500546 Jan 1998 JP
2016535243 Nov 2016 JP
WO-2015105033 Jul 2015 WO
WO 2018148758 Aug 2018 WO
WO 2018165633 Sep 2018 WO
Non-Patent Literature Citations (37)
Entry
U.S. Appl. No. 15/728,329, Response to Final Office Action filed Jan. 16, 2019.
U.S. Appl. No. 15/616,844, Response to Non-Final Office Action filed Dec. 3, 2018.
U.S. Appl. No. 15/728,329, Final Office Action dated Aug. 3, 2018.
U.S. Appl. No. 15/728,329, Response to Non-Final Office Action filed Jul. 18, 2018.
Bliss, et al., “Multiple-Input Multiple-Output (MIMO) Radar and Imaging: Degrees of Freedom and Resolution,” Signals, Systems, and Computers (Asilomar) Conference, pp. 54-59, (2003).
Bogaerts, et al., “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Optics Letters, 32(19): 2801-2803, (2007).
Katz, et al., “Diffraction coupled phase-locked semiconductor laser array,” Appl. Phys. Lett., 42(7): 554-556, (1983).
Liang, et al., “Tiled-aperture coherent beam combining using optical phase-lock loops,” Electronics Letters, 44(14), (2008).
Resler, et al., “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett., 21(9): 689-691, (1996).
Vaidyanathan et al., “Sparse sensing with coprime arrays,” Signals, Systems, and Computers (Asilomar) Conference, pp. 1405-1409, (2010).
U.S. Appl. No. 15/616,844, Non-Final Office Action dated Jun. 1, 2018.
U.S. Appl. No. 15/728,329, Non-Final Office Action dated Jan. 19, 2018.
WIPO Application No. PCT/US2018/018070, PCT International Search Report and Written Opinion of the International Searching Authority dated Apr. 27, 2018.
WIPO Application No. PCT/US2018/021882, PCT International Search Report and Written Opinion of the International Searching Authority dated Jun. 7, 2018.
U.S. Appl. No. 15/587,391, Non-Final Office Action dated Dec. 13, 2018.
U.S. Appl. No. 15/587,391, Non-Final Office Action dated Mar. 19, 2020.
U.S. Appl. No. 15/728,245, Final Office Action dated Dec. 6, 2019.
U.S. Appl. No. 15/587,391, Final Office Action dated Aug. 15, 2019.
U.S. Appl. No. 15/616,844, Notice of Allowance dated Mar. 27, 2019.
U.S. Appl. No. 15/728,245, Non-Final Office Action dated Apr. 17, 2019.
U.S. Appl. No. 15/728,329, Non-Final Office Action dated Jan. 30, 2019.
U.S. Appl. No. 15/728,329, Non-Final Office Action dated Sep. 9, 2019.
WIPO Application No. PCT/US2018/018070, PCT International Preliminary Report on Patentability dated Aug. 13, 2019.
WIPO Application No. PCT/US2018/021882, PCT International Preliminary Report on Patentability dated Sep. 10, 2019.
U.S. Appl. No. 15/728,245, Non-Final Office Action dated Jun. 29, 2020.
U.S. Appl. No. 15/728,329, Notice of Allowance dated Jun. 12, 2020.
U.S. Appl. No. 15/896,005, Ex Parte Quayle Action dated Apr. 29, 2020.
EP 18764449.7 Extended Suroepean Search Report dated Nov. 24, 2020.
U.S. Appl. No. 15/728,245, Non-Final Office Action dated Mar. 2, 2021.
JP Office Action dated Jan. 4, 2022, in Application No. JP2019-543993 with English translation.
Chinese Notice of Allowance dated Jun. 3, 2021, for Chinese Patent Application No. 201880016993.8 (with English translation).
Chinese Office Action/Examination Report dated Sep. 2, 2020, for Chinese Patent Application No. 201880016993.8 (with English translation).
U.S. Final Office Action dated Oct. 2, 2020 issued in U.S. Appl. No. 15/587,391.
U.S. Non-Final Office Action dated Jun. 17, 2021 issued in U.S. Appl. No. 15/587,391.
U.S. Notice of Allowance dated Sep. 27, 2021 issued in U.S. Appl. No. 15/728,245.
U.S. Notice of Allowance dated Nov. 2, 2020 issued in U.S. Appl. No. 15/896,005.
U.S. Notice of Allowance dated Jan. 3, 2022, in U.S. Appl. No. 15/587,391.
Related Publications (1)
Number Date Country
20190089460 A1 Mar 2019 US
Provisional Applications (1)
Number Date Country
62469106 Mar 2017 US