This disclosure relates to co-production of hydrogen, carbon, and electricity for concrete production.
Carbon is an abundant element in the Earth's crust. Carbon's abundance, its diversity in the makeup of organic compounds, and its ability to form polymers at temperatures commonly encountered on Earth allows this element to serve as a common element of all known life. The atoms of carbon can bond together in numerous ways, resulting in various allotropes of carbon. Some examples of allotropes of carbon include graphite, diamond, amorphous carbon, carbon nanotubes, carbon fibers, and fullerenes. The physical properties of carbon vary widely based on the allotropic form. As such, carbon is widely used across various markets at commercial or near-commercial scales.
Hydrogen is the lightest element. At standard conditions, hydrogen is a gas of diatomic molecules and is colorless, odorless, tasteless, non-toxic, and combustible. Hydrogen is the most abundant chemical substance in the universe. Most of the hydrogen on Earth exists in molecular forms, such as in water and in organic compounds (such as hydrocarbons). Some examples of uses of hydrogen include fossil fuel processing (for example, hydrocracking) and ammonia production.
There is a growing interest in the energy transition from fossil fuels to renewable energy and sustainable energy in a global effort to reduce carbon emissions. Some examples of decarbonization pathways in the energy transition to renewable energy include increasing energy efficiency, producing and/or using lower-carbon fuels, and carbon capture and storage (CCS).
This disclosure describes technologies relating to co-production of hydrogen, carbon, electricity, and concrete along with sequestration-ready carbon dioxide. Certain aspects of the subject matter described can be implemented as a method. A hydrocarbon feed stream is exposed to heat in an absence of oxygen to convert the hydrocarbon feed stream into a solids stream and a gas stream. The hydrocarbon feed stream includes a hydrocarbon. The solids stream includes carbon. The gas stream includes hydrogen. The gas stream is separated into an exhaust gas stream and a first hydrogen stream. The first hydrogen stream includes at least a portion of the hydrogen from the gas stream. The carbon is separated from the solids stream to produce a carbon stream. Electrolysis is performed on a water stream to produce an oxygen stream and a second hydrogen stream. The water stream includes water. The oxygen stream includes oxygen. The second hydrogen stream includes hydrogen. At least a portion of the oxygen of the oxygen stream and a first portion of the carbon of the carbon stream are combined to generate power and a carbon dioxide stream. The carbon dioxide stream includes carbon dioxide. A first portion of the generated power is used to perform electrolysis on the water stream. A second portion of the carbon stream, a cement stream, and water are combined to form a concrete mixture. The cement stream includes cement. In some implementations, aggregates are mixed into the concrete mixture. A first portion of the carbon dioxide stream is pressurized using a second portion of the generated power to form a pressurized carbon dioxide stream. The pressurized carbon dioxide stream is in a liquefied or supercritical state. In some implementations, the pressurized carbon dioxide stream is in a liquefied state. In some implementations, the pressurized carbon dioxide stream is in a supercritical state. The pressurized carbon dioxide stream is discharged. A first portion of the concrete mixture is discharged as a ready-mix concrete stream. A second portion of the concrete mixture is cured using a second portion of the carbon dioxide stream to produce a precast concrete stream. In some implementations, at least a portion of the generated power is used onsite or offsite for another process that may require heat and/or electricity.
This, and other aspects, can include one or more of the following features. The hydrocarbon feed stream can include one or more C1-C22 alkanes, one or more C1-C22 alkenes, or any combination of these. The hydrocarbon feed stream can include hydrogen. The oxygen and the carbon can be combined, for example, by a direct carbon fuel cell (DCFC) that includes a solid oxide. The oxygen and the carbon can be combined by the direct carbon fuel cell at an operating temperature in a range of from about 550 degrees Celsius (° C.) to about 900° C. Heat can be transferred by a first waste heat recovery heat exchanger from the gas stream to a buffer fluid. Heat can be transferred by a second waste heat recovery heat exchanger from the buffer fluid to the hydrocarbon feed stream prior to exposing the hydrocarbon feed stream to heat in the absence of oxygen. Power can be generated by a Rankine cycle using the heat transferred from the gas stream to the buffer stream. Generating power by the Rankine cycle can include transferring heat from the buffer fluid to a working fluid in a boiler to vaporize the working fluid into a vaporized working fluid. Generating power by the Rankine cycle can include flowing and expanding the vaporized working fluid through a turbine to generate the power. Generating power by the Rankine cycle can include condensing the vaporized working fluid into a condensed working fluid. Generating power by the Rankine cycle can include circulating the condensed working fluid to the boiler. Heat can be transferred by a first waste heat recovery heat exchanger from the carbon dioxide stream to a buffer fluid. Heat can be transferred by a second waste heat recovery heat exchanger from the buffer fluid to the hydrocarbon feed stream prior to exposing the hydrocarbon feed stream to heat in the absence of oxygen. After curing the second portion of the concrete mixture to produce the precast concrete stream, a remaining portion of the carbon dioxide stream can be flowed to the ready-mix concrete production unit, for example, to facilitate formation of the concrete mixture. The carbon dioxide stream generated by the direct carbon fuel cell and the carbon dioxide formed from smelting the alumina can be sequestered within a subterranean formation, such that the carbon dioxide stream and the carbon dioxide are not released to the atmosphere.
Certain aspects of the subject matter described can be implemented as a system. The system includes a hydrocarbon feed stream, a pyrolysis chamber, a gas separation unit, a carbon separation unit, a water stream, an electrolysis unit, a power generation unit, a cement stream, a ready-mix concrete production unit, and a precast concrete production unit. The hydrocarbon feed stream includes a hydrocarbon. The pyrolysis chamber is configured to receive the hydrocarbon feed stream and expose the hydrocarbon feed stream to heat in an absence of oxygen to convert the hydrocarbon feed stream into a solids stream and a gas stream. The solids stream includes carbon. The gas stream includes hydrogen. The gas separation unit is configured to receive the gas stream from the pyrolysis chamber and separate the hydrogen from the gas stream to produce an exhaust gas stream and a first hydrogen stream. The first hydrogen stream includes at least a portion of the hydrogen from the gas stream. The carbon separation unit is configured to receive the solids stream from the pyrolysis chamber and separate the carbon from the solids stream to produce a carbon stream. The water stream includes water. The electrolysis unit is configured to receive the water stream and electrical power. The electrolysis unit is configured to use the electrical power to perform electrolysis on the water stream to produce an oxygen stream and a second hydrogen stream. The oxygen stream includes oxygen. The second hydrogen stream includes hydrogen. The power generation unit is configured to receive at least a portion of the oxygen stream from the electrolysis unit and a first portion of the carbon stream from the carbon separation unit. The power generation unit includes, for example, a direct carbon fuel cell. The direct carbon fuel cell is configured to combine the oxygen from the portion of the oxygen stream and the carbon from the portion of the carbon stream to generate power and a carbon dioxide stream. The carbon dioxide stream includes carbon dioxide. A first portion of the power generated by the power generation unit is provided to the electrolysis unit to perform electrolysis on the water stream. The cement stream includes cement. The ready-mix concrete production unit is configured to receive the cement stream and a second portion of the carbon stream. The ready-mix concrete production unit is configured to mix the cement stream, the second portion of the carbon stream, and water to form a concrete mixture. In some implementations, aggregates are mixed into the concrete mixture. The ready-mix concrete production unit is configured to receive a first portion of the carbon dioxide stream from the power generation unit and a second portion of the power generated by the power generation unit. The ready-mix concrete production unit is configured to use the second portion of the power generated by the power generation unit to pressurize the first portion of the carbon dioxide stream to form a pressurized carbon dioxide stream. The pressurized carbon dioxide stream in a liquefied or supercritical state. The ready-mix concrete production unit is configured to discharge the pressurized carbon dioxide stream. The ready-mix concrete production unit is configured to discharge a first portion of the concrete mixture as a ready-mix concrete stream. The precast concrete production unit is configured to receive a second portion of the concrete mixture from the ready-mix concrete production unit and a second portion of the carbon dioxide stream from the power generation unit. The precast concrete production unit is configured to cure the second portion of the concrete mixture using the second portion of the carbon dioxide stream to produce a precast concrete stream.
This, and other aspects can include one or more of the following features. The hydrocarbon feed stream can include one or more C1-C22 alkanes, one or more C1-C22 alkenes, or any combination of these. The hydrocarbon feed stream can include hydrogen. The direct carbon fuel cell can include a solid oxide electrolyte that is configured to operate at a temperature in a range of from about 550° C. to about 900° C. The system can include a first waste heat recovery heat exchanger. The first waste heat recovery heat exchanger can be in fluid communication with the gas stream exiting the pyrolysis chamber. The first waste heat recovery heat exchanger can be in fluid communication with a buffer fluid. The first waste heat recovery heat exchanger can be configured to transfer heat from the gas stream to the buffer fluid. The system can include a second waste heat recovery heat exchanger. The second waste heat recovery heat exchanger can be in fluid communication with the hydrocarbon feed stream entering the pyrolysis chamber. The second waste heat recovery heat exchanger can be in fluid communication with the buffer fluid. The second waste heat recovery heat exchanger can be configured to transfer the heat from the buffer fluid to the hydrocarbon feed stream prior to the hydrocarbon feed stream entering the pyrolysis chamber. The system can include a Rankine cycle that is configured to generate power using the heat transferred from the gas stream to the buffer fluid. The Rankine cycle can include a boiler that is configured to receive a working fluid and the buffer fluid. The boiler can be configured to transfer heat from the buffer fluid to the working fluid to vaporize the working fluid into a vaporized working fluid. The Rankine cycle can include a turbine that is configured to receive the vaporized working fluid and generate power as the vaporized working fluid flows and expands through the turbine. The Rankine cycle can include a condenser that is configured to receive and condense the vaporized working fluid into a condensed working fluid. The Rankine cycle can include a pump that is configured to circulate the condensed working fluid to the boiler. The system can include a first waste heat recovery heat exchanger. The first waste heat recovery heat exchanger can be in fluid communication with carbon dioxide stream exiting the power generation unit. The first waste heat recovery heat exchanger can be in fluid communication with a buffer fluid. The first waste heat recovery heat exchanger can be configured to transfer heat from the carbon dioxide stream to the buffer fluid. The system can include a second waste heat recovery heat exchanger. The second waste heat recovery heat exchanger can be in fluid communication with the hydrocarbon feed stream entering the pyrolysis chamber. The second waste heat recovery heat exchanger can be in fluid communication with the buffer fluid. The second waste heat recovery heat exchanger can be configured to transfer the heat from the buffer fluid to the hydrocarbon feed stream prior to the hydrocarbon feed stream entering the pyrolysis chamber. After curing the second portion of the concrete mixture to produce the precast concrete stream, the precast concrete production unit can be configured to flow a remaining portion of the carbon dioxide stream to the ready-mix concrete production unit. The pyrolysis chamber can include a catalyst. The catalyst can include at least one of activated carbon, carbon black, cobalt, iron, copper, or nickel.
The details of one or more implementations of the subject matter of this disclosure are set forth in the accompanying drawings and the description. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
This disclosure describes a system for the co-production of hydrogen, oxygen, carbon, carbon dioxide, electricity, and concrete. The three main feeds to the system include a hydrocarbon stream, a water stream, and cement. In some implementations, renewable electricity and/or electricity from a power grid is used as necessary. The hydrocarbon stream is pyrolyzed to produce solid carbon and hydrogen. The water stream is split via electrolysis to produce oxygen and hydrogen. Power can be generated by (i) burning carbon (for example, sourced from pyrolysis of the hydrocarbon stream) in the presence of oxygen (sourced from electrolysis of the water stream) to produce heat which can be used to generate steam for a steam turbine, (ii) combining the carbon (sourced from pyrolysis of the hydrocarbon stream) and the oxygen (sourced from electrolysis of the water stream) using a direct carbon fuel cell (DCFC), or both (i) and (ii). The cement and at least a portion of the carbon and electricity are used to produce concrete and other solid carbon-based products. In some implementations, waste heat recovery is implemented for process integration and efficiency optimization. At least a portion of the carbon dioxide produced by the system is captured and used to cure pre-cast and/or ready-mix concrete.
The subject matter described in this disclosure can be implemented in particular implementations, so as to realize one or more of the following advantages. Carbon dioxide, which may be produced as a by-product, can be sequestered and/or used in another industrial process instead of being released to the atmosphere. The system is flexible in that it can receive a range of feedstocks, such as conventional hydrocarbons (for example, natural gas, crude oil, and/or their derivatives), biogas, bio-liquid fuels, or oil waste. The systems described herein can be implemented to utilize excess solid carbon products resulting from pyrolysis, which otherwise may be difficult to place in carbon markets, also while addressing the intermittency of renewable energy sources. For example, a portion of the carbon produced by the system can be used as an energy storage medium while another portion of the carbon produced by the system can be sold on the market as a feedstock for another industrial process. For example, the carbon produced by the system can be used to form carbon black, synthetic graphite, carbon filaments/fiber, and/or carbon nanostructures (such as carbon nanotubes or carbon nanofibers). For example, at least a portion of the carbon produced by the system can be used for power generation. At least a portion of the carbon dioxide produced by the system is used to produce concrete. Any remaining portion of the carbon dioxide produced by the system is sequestration-ready in that it is ready for transport (for example, by a pipeline) to be sequestered in a subterranean zone in the Earth as opposed to being released to the atmosphere and contributing to carbon emissions.
The system 100 includes a pyrolysis chamber 110, a gas separation unit 120, a carbon separation unit 130, an electrolysis unit 140, a power generation unit 150, a ready-mix concrete production unit 170A, and a precast concrete production unit 170B. The pyrolysis chamber 110 is configured to receive the hydrocarbon feed stream 101. The pyrolysis chamber 110 is configured to expose the hydrocarbon feed stream 101 to heat in an absence of oxygen to convert the hydrocarbon feed stream 101 into a solids stream 105 and a gas stream 107. In some implementations, depending on the composition of the hydrocarbon feed stream 101, the pyrolysis chamber 110 may also produce a liquid (for example, bio-oil) that exits the pyrolysis chamber 110 with the solids stream 105. The solids stream 105 includes carbon. The gas stream 107 includes hydrogen. In some implementations, the gas stream 107 includes carbon (for example, small particulates entrained in the gas stream 107), unconverted hydrocarbons from the hydrocarbon feed stream 101, or both. In some implementations, the pyrolysis chamber 110 is configured to pyrolyze the hydrocarbon feed stream 101 without the use of a catalyst (non-catalytic pyrolysis). In some implementations, the pyrolysis chamber 110 is configured to pyrolyze the hydrocarbon feed stream 101 with the use of a catalyst (catalytic pyrolysis).
The gas separation unit 120 is configured to receive the gas stream 107 from the pyrolysis chamber 110. The gas separation unit 120 is configured to separate the hydrogen from the gas stream 107 to produce an exhaust gas stream 109 and a first hydrogen stream 111. The first hydrogen stream 111 includes at least a portion of the hydrogen from the gas stream 107. In some implementations, the first hydrogen stream 111 includes substantially all of the hydrogen from the gas stream 107. In some implementations, the exhaust gas stream 109 is the balance, excluding the first hydrogen stream 111, of the gas stream 107. For example, the exhaust gas stream 109 may include a relatively small portion of the hydrogen from the gas stream 107 in comparison to the first hydrogen stream 111. In some implementations, at least a portion of the exhaust gas stream 109 is recycled back to the pyrolysis chamber 110, as the exhaust gas stream 109 may include unconverted hydrocarbons from the hydrocarbon feed stream 101. In some implementations, at least a portion of the first hydrogen stream 111 is stored and/or transported for use in another industrial process, such as ammonia production, power generation, feedstock for hydrogen fuel cells, hydrocarbon sweetening processes, petroleum refining, metal treating (for example, steel production), fertilizer production, and food processing.
The carbon separation unit 130 is configured to receive the solids stream 105 from the pyrolysis chamber 110. The carbon separation unit 130 is configured to separate the carbon from the solids stream 105 to produce a carbon stream 113. For example, in cases where the solids stream 105 includes liquid(s), the carbon separation unit 130 separates the carbon from the liquid(s) to produce the carbon stream 113. The carbon stream 113 can include carbon black, char, synthetic graphite, carbon filament, carbon fiber, carbon nanostructures (such as carbon nanotubes or carbon nanofibers), or any combination of these. In some implementations, at least a portion of the carbon stream 113 is stored and/or transported for use in another industrial process, such as power generation, tire production, battery production, wind blade production, or electronics production. In some implementations, at least a portion of the carbon stream 113 is sold to an external market. In some implementations, the carbon separation unit 130 is configured to treat the carbon stream 113. For example, the carbon separation unit 130 can grind, crush, and/or mill the carbon stream 113 to adjust physical properties of the carbon stream 113 (such as average particle size) before or after the separation, depending on the desired application.
The electrolysis unit 140 is configured to receive the water stream 103 and electrical power. The electrolysis unit 140 is configured to use the received electrical power to perform electrolysis on the water stream 103 to produce an oxygen stream 115 and a second hydrogen stream 117. The oxygen stream 115 includes oxygen. At least a portion of the oxygen stream 115 (for example, all of the oxygen stream 115) is flowed to the power generation unit 150 to produce power. In some implementations, at least a portion of the oxygen stream 115 is stored and/or transported for use in another industrial process, such as fuel combustion, power generation, or another industrial process located, for example, off-site where oxygen may be utilized. The second hydrogen stream 117 includes hydrogen. In some implementations, at least a portion of the second hydrogen stream 117 is stored and/or transported for use in another industrial process, such as ammonia production, power generation, feedstock for hydrogen fuel cells, hydrocarbon sweetening processes, petroleum refining, metal treating (for example, steel production), fertilizer production, and food processing. In some implementations, at least a portion of the first hydrogen stream 111 and at least a portion of the second hydrogen stream 117 are combined, stored, and/or transported for use in another industrial process, such as ammonia production, power generation, feedstock for hydrogen fuel cells, hydrocarbon sweetening processes, petroleum refining, metal treating (for example, steel production), fertilizer production, and food processing. The electrolysis unit 140 can be configured to receive electrical power from various sources. For example, the electrolysis unit 140 can be configured to receive electrical power from a renewable energy source. For example, the electrolysis unit 140 can be configured to receive electrical power from a power grid. For example, the electrolysis unit 140 can be configured to receive electrical power from the power generation unit 150. For example, the electrolysis unit 140 can be configured to receive electrical power from a Rankine cycle (an example is shown in
The power generation unit 150 is configured to receive at least a portion of the oxygen stream 115 (for example, a majority of or all of the oxygen stream 115) from the electrolysis unit 140 and at least a portion of the carbon stream 113 from the carbon separation unit 130. In some implementations, the power generation unit 150 includes a direct carbon fuel cell (DCFC) 151. The direct carbon fuel cell 151 is configured to combine the oxygen from the portion (or all) of the oxygen stream 115 and the carbon from the portion (or all) of the carbon stream 113 to generate power and a carbon dioxide stream 119. The carbon dioxide stream 119 includes carbon dioxide. The carbon dioxide stream 119 generated by the direct carbon fuel cell 151 is a high-purity carbon dioxide stream. For example, the carbon dioxide stream 119 includes at least 99 volume percent (vol. %) or at least 99.9 vol. % of carbon dioxide. For example, the carbon dioxide stream 119 is pure carbon dioxide. The power generated by the power generation unit 150 can be distributed, for example, by the power distribution unit 160, which is described in more detail later. At least a portion of the power generated by the power generation unit 150 is provided to the electrolysis unit 140 to perform electrolysis on the water stream 103. In some implementations, at least a portion of the carbon dioxide stream 119 (for example, a majority of or all of the carbon dioxide stream 119) is transported (for example, via a pipeline) and used in industrial application(s) and/or sequestered, for example, in a subterranean zone in the Earth. The subterranean zone can be a formation within the Earth defining a reservoir, but in other instances, the zone can be multiple formations or a portion of a formation. The subterranean zone can include, for example, a formation, a portion of a formation, or multiple formations in a reservoir. In some implementations, the subterranean zone includes an underground formation of naturally fractured or porous rock. In some implementations, the zone can intersect other types of formations, including reservoirs that are not naturally fractured. In some implementations, at least a portion of the carbon dioxide stream 119 is stored and/or transported for use in another industrial process, such as cement production. In some implementations, at least a portion of the carbon dioxide stream 119 is injected into a subterranean formation, for example, to enhance recovery of hydrocarbons from the subterranean formation. The carbon dioxide stream 119 is not released to the atmosphere and therefore does not contribute to greenhouse gas emissions.
The power generation unit 150 can include additional and/or alternative components apart from the direct carbon fuel cell 151 for generating power. In some implementations, the power generation unit 150 includes a combustion chamber (not shown) in which the carbon (fuel) from the portion (or all) of the carbon stream 113 is combusted in the presence of the oxygen (oxidant) from the portion (or all) of the oxygen stream 115. In such implementations, heat is generated when the carbon is oxidized to carbon dioxide. The heat from the combustion can be used in a Rankine cycle (for example, including a turbine) to generate power (an example is shown in
The ready-mix concrete production unit 170A is configured to receive a cement stream 170′ and at least a portion of the carbon stream 113 from the carbon separation unit 130. The ready-mix concrete production unit 170A is configured to mix the cement stream 170′, the portion of the carbon stream 113, and water (for example, a portion of the water stream 103 or a different water stream) to form a concrete mixture 170″. In some implementations, aggregates (composed of geological materials such as gravel, sand, and crushed rock) are combined with the cement stream 170′, the portion of the carbon stream 113, and water to form the concrete mixture 170″. In some implementations, an additive (such as flyash) is added to the concrete mixture 170″. In some implementations, the concrete mixture 170″ includes from about 1 weight percent (wt. %) to about 10 wt. % of carbon from the carbon stream 113. In some implementations, the concrete mixture 170″ includes more than about 10 wt. % of carbon from the carbon stream 113. The carbon content of the concrete mixture 170″ can depend, for example, on the amount of nanoparticles that are present in the carbon stream 113 (derived from pyrolysis of the hydrocarbon feed stream 101).
The ready-mix concrete production unit 170A is configured to receive a first portion of the carbon dioxide stream 119 from the power generation unit 150 and at least a portion of the power generated by the power generation unit 150. The ready-mix concrete production unit 170A is configured to use the portion of the power generated by the power generation unit 150 to pressurize (for example, by a compressor) and cool (for example, by a heat exchanger) the first portion of the carbon dioxide stream 119 to form a pressurized carbon dioxide stream 171. The pressurized carbon dioxide stream 171 is in a liquefied or supercritical state, such that the pressurized carbon dioxide stream 171 can be easily transported to a construction site where concrete is required. The ready-mix concrete production unit 170A is configured to discharge the pressurized carbon dioxide stream 171 and a first portion of the concrete mixture 170″ as a ready-mix concrete stream 172. The ready-mix concrete stream 172 and the pressurized carbon dioxide stream 171 can be transported, for example, to a construction site where concrete is required. At the construction site, the pressurized carbon dioxide stream 171 can be depressurized and used to cure the ready-mix concrete stream 172 to create the concrete. Curing the ready-mix concrete stream 172 with the carbon dioxide from the pressurized carbon dioxide stream 171 can cause at least a portion of the carbon dioxide to mineralize.
The precast concrete production unit 170B is configured to receive a second portion of the concrete mixture 170″ from the ready-mix concrete production unit 170A and at least a portion of the carbon dioxide stream 119 from the power generation unit 150. In some implementations, the precast concrete production unit 170B is configured to receive at least a portion of the power generated by the power generation unit 150. The precast concrete production unit 170B is configured to cure the second portion of the concrete mixture 170″ using the portion of the carbon dioxide stream 119 to produce a precast concrete stream 174.
In some implementations, the precast concrete production unit 170B is configured to receive at least a portion of the cement stream 170′ and a portion of the carbon stream 113 from the carbon separation unit 130. The precast concrete production unit 170B can be configured to mix the portion of the cement stream 170′, the portion of the carbon stream 113, and water (for example, a portion of the water stream 103 or a different water stream) to form a concrete mixture, which can be the same as or similar to the concrete mixture 170″ formed in the ready-mix concrete production unit 170A. In some implementations, aggregates (composed of geological materials such as gravel, sand, and crushed rock) are also combined to form the concrete mixture. The precast concrete production unit 170B can be configured to place the concrete mixture in a formworks to create precast concrete of desired geometric configurations. In some implementations, the formworks includes rebar, which is steel reinforcement to provide structural strength and/or shape to the final precast concrete product. The precast concrete production unit 170B can cure the concrete mixture using the portion of the carbon dioxide stream 119 and the portion of the power generated by the power generation unit 150 to produce the precast concrete stream 174.
In some implementations, the portion of the carbon dioxide stream 119 from the power generation unit 150 is cooled and mixed with the concrete mixture 170″ in a prefabricated mold. For example, the portion of the carbon dioxide stream 119 is cooled to a maximum temperature of about 100 degrees Celsius (° C.) or cooler. The carbon dioxide can accelerate the curing process of the concrete. At least a portion of the carbon dioxide can mineralize in the concrete as the concrete cures. After the concrete mixture 170″ in the precast concrete production unit 170B has cured to produce the precast concrete stream 174, a remaining portion of the carbon dioxide can be flowed to the ready-mix concrete production unit 170A. In some implementations, the ready-mix concrete production unit 170A and the precast concrete production unit 170B are configured to operate in a series configuration. In some implementations, the ready-mix concrete production unit 170A and the precast concrete production unit 170B are configured to operate in a parallel configuration.
In some implementations, the system 100 includes a power distribution unit 160. The power distribution unit 160 can receive power from various sources. For example, the power distribution unit 160 can be connected to and receive power from a power grid. For example, the power distribution unit 160 can be connected to and receive power from a renewable energy source (such as wind or solar energy). For example, the power distribution unit 160 can be connected to and receive power from the power generation unit 150. For example, the power distribution unit 160 can be connected to and receive power from a Rankine cycle (for example, from a turbine in the Rankine cycle). The power distribution unit 160 can distribute power to various users. For example, the power distribution unit 160 can be connected to and deliver power to the electrolysis unit 140. For example, the power distribution unit 160 can be connected to and deliver power to the pyrolysis chamber 110. For example, the power distribution unit 160 can be connected to and deliver power to a power grid. For example, the power distribution unit 160 can be connected to and deliver power to a Rankine cycle (for example, to a pump in the Rankine cycle).
In some implementations, at least a portion of the power generated by the power generation unit 150 is used by another component of the system 100. For example, at least a portion of the power generated by the power generation unit 150 can be provided to the electrolysis unit 140 to perform electrolysis on the water stream 103. For example, at least a portion of the power generated by the power generation unit 150 can be used to provide heat and/or power to the pyrolysis chamber 110 to perform pyrolysis on the hydrocarbon feed stream 101. For example, at least a portion of the power generated by the power generation unit 150 can be used to pressurize carbon dioxide in the ready-mix concrete production unit 170A to form the pressurized carbon dioxide stream 171. For example, at least a portion of the power generated by the power generation unit 150 can be used to produce the concrete mixture in the ready-mix concrete production unit 170A (for example, for producing the ready-mix concrete stream 172). For example, at least a portion of the power generated by the power generation unit 150 can be used to cure the concrete mixture in the precast concrete production unit 170B to produce the precast concrete stream 174. In some implementations, at least a portion of the power generated by the power generation unit 150 is provided to another user. For example, at least a portion of the power generated by the power generation unit 150 can be used in another industrial process. For example, at least a portion of the power generated by the power generation unit 150 can be delivered to a power grid, where it can be stored and/or distributed to various users offsite.
2H2O→O2+4H++4e− (1)
The half reaction taking place on the side of the cathode 140b is also referred to as the hydrogen evolution reaction (Equation 2).
4H++4e−→2H2 (2)
The water stream 103 enters the PEM electrolysis unit 140. The PEM electrolysis unit 140 splits the water into hydrogen and oxygen. The generated hydrogen and oxygen are separated from each other. For example, the membrane may be permeable to hydrogen, such that the hydrogen is allowed to pass through the membrane to separate from the oxygen, while the oxygen remains on the opposite side of the membrane. The oxygen stream 115 exits the PEM electrolysis unit 140 from the side of the anode 140a, and the second hydrogen stream 117 exits the PEM electrolysis unit 140 from the side of the cathode 140b.
The open circuit voltage of the operating electrolysis unit 140 can be in a range of from about 1.2 volts (V) to about 2.5 V. In some implementations, the operating temperature of the PEM electrolysis unit 140 is in a range of from about 50° C. to about 80° C. In some implementations, the operating pressure of the PEM electrolysis unit 140 is less than about 70 bar. In some implementations, the electric current density of the power provided to the PEM electrolysis unit 140 is in a range of from about 1 ampere per square centimeter (A/cm2) to about 6 A/cm2.
In cases in which the electrolysis unit 140 is an alkaline water electrolysis unit, the open circuit voltage of the operating electrolysis unit 140 can be in a range of from about 1.2 V to about 3 V. In some implementations, the operating temperature of the alkaline water electrolysis unit 140 is in a range of from about 70° C. to about 90° C. In some implementations, the operating pressure of the alkaline water electrolysis unit 140 is less than about 70 bar. In some implementations, the electric current density of the power provided to the alkaline water electrolysis unit 140 is in a range of from about 0.2 A/cm2 to about 6 A/cm2.
In cases in which the electrolysis unit 140 is a solid oxide electrolysis unit, the open circuit voltage of the operating electrolysis unit 140 can be in a range of from about 1 V to about 1.5 V. In some implementations, the operating temperature of the solid oxide electrolysis unit 140 is in a range of from about 550° C. to about 900° C., from about 700° C. to about 850° C., or from about 750° C. to about 800° C. In some implementations, the operating pressure of the solid oxide electrolysis unit 140 is less than about 30 bar. In some implementations, the electric current density of the power provided to the solid oxide electrolysis unit 140 is in a range of from about 0.3 A/cm2 to about 6 A/cm2.
In cases in which the electrolysis unit 140 is an AEM electrolysis unit, the open circuit voltage of the operating electrolysis unit 140 can be in a range of from about 1.2 V to about 2 V. In some implementations, the operating temperature of the AEM electrolysis unit 140 is in a range of from about 40° C. to about 80° C. In some implementations, the operating pressure of the AEM electrolysis unit 140 is less than about 70 bar. In some implementations, the electric current density of the power provided to the AEM electrolysis unit 140 is in a range of from about 0.2 A/cm2 to about 6 A/cm2.
In cases in which the direct carbon fuel cell 151 includes a molten salt electrolyte (for example, potassium hydroxide or sodium hydroxide), the direct carbon fuel cell 151 can be configured to combine carbon and oxygen at an operating temperature in a range of from about 500° C. to about 600° C. to generate power and carbon dioxide. In cases in which the direct carbon fuel cell 151 includes a molten carbonate electrolyte (for example, including lithium, sodium, or potassium), the direct carbon fuel cell 151 can be configured to combine carbon and oxygen at an operating temperature in a range of from about 600° C. to about 900° C. to generate power and carbon dioxide. In cases in which the direct carbon fuel cell 151 includes a molten tin anode, the direct carbon fuel cell 151 can be configured to combine carbon and oxygen at an operating temperature of about 900° C. to generate power and carbon dioxide.
The working fluid 202 in liquid form (202a) enters the boiler 210. The boiler 210 is configured to receive the liquid working fluid 202. The boiler 210 is configured to transfer heat to the working fluid 202 to produce a vaporized working fluid 202b. The vaporized working fluid 202b flows from the boiler 210 to the turbine 220. The turbine 220 is configured to receive the vaporized working fluid 202b. The turbine 220 is configured to generate power as the vaporized working fluid 202b flows and expands through the turbine 220. The vaporized working fluid 202b exiting the turbine 220 has a reduced operating pressure in comparison to the vaporized working fluid 202b entering the turbine 220. The vaporized working fluid 202b flows from the turbine 220 to the condenser 230. The condenser 230 is configured to receive and condense the vaporized working fluid 202b into a condensed working fluid 202a. The condensed working fluid 202a flows from the condenser 230 to the pump 240. The pump 240 is configured to circulate the condensed working fluid 202a back to the boiler 210 to begin the cycle 200 again.
The heat used by the boiler 210 to vaporize the working fluid 202 can be provided by various sources. In some implementations, the boiler 210 receives heat from a buffer fluid (for example, from the first waste heat recovery heat exchanger 190G or 190H). For example, the boiler 210 can be configured to be in fluid communication, on a first side, with the buffer fluid from the first waste heat recovery heat exchanger 190G and, on a second side, the working fluid 202. For example, the boiler 210 can be configured to be in fluid communication, on a first side, with the buffer fluid from the first waste heat recovery heat exchanger 190H and, on a second side, the working fluid 202. In some implementations, the boiler 210 receives heat from the combustion of a fuel (for example, from the combustion of at least a portion of the carbon stream 113 in the presence of oxygen from at least a portion of the oxygen stream 115 in the power generation unit 150).
In some implementations, at least a portion of the power generated by the turbine 220 is used by a component of the system 100, 100G, or 100H. For example, at least a portion of the power generated by the turbine 220 can be provided to the electrolysis unit 140 to perform electrolysis on the water stream 103. For example, at least a portion of the power generated by the turbine 220 can be used to provide heat to the pyrolysis chamber 110 to perform pyrolysis on the hydrocarbon feed stream 101. In some implementations, at least a portion of the power generated by the turbine 220 is provided to another user. For example, at least a portion of the power generated by the turbine 220 can be used in another industrial process. For example, at least a portion of the power generated by the turbine 220 can be delivered to a power grid, where it can be stored and/or distributed to various users offsite. For example, at least a portion of the power generated by the turbine 220 can be provided to another process that is located onsite at the same facility as any of the systems 100, 100G, or 100H.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of features that may be specific to particular implementations. Certain features that are described in this specification in the context of separate implementations can also be implemented, in combination, in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations, separately, or in any sub-combination. Moreover, although previously described features may be described as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can, in some cases, be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
As used in this disclosure, the terms “a,” “an,” or “the” are used to include one or more than one unless the context clearly dictates otherwise. The term “or” is used to refer to a nonexclusive “or” unless otherwise indicated. The statement “at least one of A and B” has the same meaning as “A, B, or A and B.” In addition, it is to be understood that the phraseology or terminology employed in this disclosure, and not otherwise defined, is for the purpose of description only and not of limitation. Any use of section headings is intended to aid reading of the document and is not to be interpreted as limiting; information that is relevant to a section heading may occur within or outside of that particular section.
As used in this disclosure, the term “about” or “approximately” can allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range.
As used in this disclosure, the term “substantially” refers to a majority of, or mostly, as in at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, 99.99%, or at least about 99.999% or more.
Values expressed in a range format should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a range of “0.1% to about 5%” or “0.1% to 5%” should be interpreted to include about 0.1% to about 5%, as well as the individual values (for example, 1%, 2%, 3%, and 4%) and the sub-ranges (for example, 0.1% to 0.5%, 1.1% to 2.2%, 3.3% to 4.4%) within the indicated range. The statement “X to Y” has the same meaning as “about X to about Y,” unless indicated otherwise. Likewise, the statement “X, Y, or Z” has the same meaning as “about X, about Y, or about Z,” unless indicated otherwise.
Particular implementations of the subject matter have been described. Other implementations, alterations, and permutations of the described implementations are within the scope of the following claims as will be apparent to those skilled in the art. While operations are depicted in the drawings or claims in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed (some operations may be considered optional), to achieve desirable results. In certain circumstances, multitasking or parallel processing (or a combination of multitasking and parallel processing) may be advantageous and performed as deemed appropriate.
Moreover, the separation or integration of various system modules and components in the previously described implementations should not be understood as requiring such separation or integration in all implementations, and it should be understood that the described components and systems can generally be integrated together or packaged into multiple products.
Accordingly, the previously described example implementations do not define or constrain the present disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of the present disclosure.