The present invention relates to a co-rotating scroll compressor.
A co-rotating scroll compressor has been well-known (refer to PTL 1). The co-rotating scroll compressor includes a driving-side scroll and a driven-side scroll that rotates in synchronization with the driving-side scroll, and causes a driving shaft causing the driving-side scroll to rotate and a driven shaft supporting rotation of the driven-side scroll to rotate in the same direction at the same angular velocity while the driven-shaft is offset by a revolving radius from the driving shaft.
PTL 2 discloses a scroll compressor including a static scroll and a rotating scroll, unlike a co-rotating scroll compressor. A crankpin mechanism including a crankpin and a ball bearing is adopted as a rotation prevention mechanism of the rotating scroll.
the Publication of Japanese Patent No. 5443132
Japanese Unexamined Patent Application, Publication No. 2005-233042
The co-rotating scroll compressor uses a synchronous driving mechanism that transmits driving force from a driving-side scroll member to a driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity. As the synchronous driving mechanism, a mechanism that uses a crankpin including a rolling bearing or a pin ring can be contemplated. However, when lubricant encapsulated in the rolling bearing leaks to the outside by centrifugal force, there is a risk of a shorter operating life of the bearing due to inadequate lubrication. Also, when the lubricant leaks to the outside, there is a risk that the lubricant is mixed with fluid before or after compression to contaminate the fluid.
Moreover, the inventors have found the existence of the following particular problem about leakage of the lubricant of the rolling bearing since not only rotation movement but also revolution movement is added to the rolling bearing in the co-rotating scroll compressor.
When the bearing supporting member 100 turns (revolution) about the rotation center O1, centrifugal force acts in a direction shown by an arrow denoted by reference sign A0, and grease (lubricant) moves to a radially outer side as shown by reference sign A1. After that, as shown by an arrow denoted by reference sign A2, grease is stirred due to rotation of the balls 102c around a rotation center O2 of the shaft portion 104 and the retainer. Moreover, when the grease reaches a radially inner side as shown in an arrow denoted by reference sign A3, the grease scatters due to the centrifugal force by revolution, and thus the grease is attached to the inner ring 102b. When the grease thus attached to the inner ring 102b reaches the radially outer side, due to the centrifugal force by revolution, the grease leaks to the outside of the ball bearing 102 from a gap on the inner ring side as shown in an arrow denoted by reference sign A4.
Such leakage of the grease from the inner ring side of the ball bearing 102 due to the centrifugal force by revolution is an event that cannot occur in the scroll compressor including the static scroll and the rotating scroll as in PTL 2. When the grease leaks from the ball bearing 102 and the lubricant is insufficient, the ball bearing 102 has poor lubrication, which inhibits a longer operating life.
The present invention is made considering such circumstances, and an object of the present invention is to provide a co-rotating scroll compressor that can achieve a longer operating life of a synchronous driving mechanism that includes a rolling bearing.
To solve this problem, a co-rotating scroll compressor according to one aspect of the present invention adopts the following solutions.
That is, a co-rotating scroll compressor according to a first aspect of the present invention includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, the rolling bearing includes an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion, and a sealing member that extends to a side portion of the inner ring is fixed to a side portion of the outer ring.
Since the outer ring of the rolling bearing is fitted to the bearing supporting member, the outer ring rotates together with the bearing supporting member and performs revolution movement about a predetermined center axis. Since the sealing member is fixed to the outer ring, the sealing member performs revolution movement about the predetermined center axis in the same manner as the outer ring. On the other hand, the inner ring of the rolling bearing performs revolution movement together with the outer ring, and moreover, the inner ring is fitted to the shaft portion of the crankpin, so that it performs rotation movement around a center axis of shaft portion together with the shaft portion. As a result, there is a risk that the lubricant flowing to an inner peripheral side of the outer ring by centrifugal force due to the revolution movement is leaked from an outer peripheral side of the inner ring to the outside of the rolling bearing due to the rotation of the inner ring. On the other hand, the sealing member extends to the side portion of the inner ring, which inhibits the lubricant from leaking from the side of the inner ring to the outside of the rolling bearing. As a result, poor lubrication due to leakage of the lubricant oil is prevented, and a longer operating life of the synchronous driving mechanism can be achieved.
Further, in the co-rotating scroll compressor according to this aspect, in the sealing member, an inclined surface is formed at an inner peripheral edge facing the side portion of the inner ring such that a distance from the side portion of the inner ring increases toward an inner peripheral side of the sealing member.
Even when the lubricant is leaked from the inner peripheral side of the sealing member, because the inclined surface in which the distance from the side portion of the inner ring increases toward the inner peripheral side of the sealing member is formed, the lubricant that is leaked along a crankshaft due to the centrifugal force of the revolution movement can be effectively received.
As the inclined surface, for example, a C chamfered surface or an R chamfered surface is used.
The inclined surface may foe formed over the entire circumference of the inner peripheral edge of the sealing member.
Further, in the co-rotating scroll compressor according to this aspect, the inclined surface is formed only on an outer peripheral side of revolution movement of the rolling bearing at the inner peripheral edge of the sealing member.
The inclined surface formed at the inner peripheral edge of the sealing member is formed only on the outer peripheral side of the revolution movement of the ball bearing. Accordingly, the lubricant that is leaked due to the centrifugal force by the revolution movement of the outer ring can be received by the inclined surface formed on the outer peripheral side. On the other hand, no inclined surface is provided on the inner peripheral side of the revolution movement, which prevents leakage of the lubricant as possible.
The range for providing the inclined surface is, for example a range of 90° on both sides based on a direction of the centrifugal force due to the revolution movement, that is, a range of 180°.
Further, in the co-rotating scroll compressor according to this aspect, the crankpin includes a first shaft portion to which the inner ring is fitted and a second shaft portion that is continuously provided from the first shaft portion and has a larger diameter than a diameter of the first shaft portion, and a stepped portion that partitions the first shaft portion and the second shaft portion is provided at a portion facing the inner peripheral end of the sealing member or at a farther position when viewed from the side portion of the inner ring than the position facing the inner peripheral end.
The stepped portion that partitions the first shaft portion and the second shaft portion of the crankpin is provided at a portion facing the inner peripheral end of the sealing member or at a farther position when viewed from the side portion of the inner ring than the position facing the inner peripheral end. Due to this, the lubricant leaked from the ball bearing is introduced to the first shaft portion having a smaller diameter than a diameter of the second shaft portion, and the lubricant oil can be received from a portion between the sealing member and the inner ring.
Also, a co-rotating scroll compressor according to a second aspect of the present invention includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, the rolling bearing includes an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion, and a sealing member that extends to a side portion of the outer ring is fixed to a side portion of the inner ring.
Since the outer ring of the rolling bearing is fitted to the bearing supporting member, the outer ring rotates together with the bearing supporting member to perform revolution movement around the predetermined center axis. On the other hand, the inner ring of the rolling bearing performs revolution movement together with the outer ring, and moreover, the inner ring is fitted to the shaft portion of the crankpin, so that it performs rotation movement around the center axis of the shaft portion together with the shaft portion. As a result, there is a risk that the lubricant flowing to the inner peripheral side of the outer ring by the centrifugal force due to the revolution movement is leaked from the outer peripheral side of the inner ring to the outside of the rolling bearing due to the rotation of the inner ring. On the other hand, the sealing member is fixed to the side portion of the inner ring and extends to the side portion of the outer ring, which inhibits the lubricant from leaking from the side of the inner ring to the outside of the rolling bearing.
Further, in the co-rotating scroll compressor according to this embodiment, on a side portion of the sealing member, a side wall portion that is connected to the bearing supporting member to surround an outer peripheral side of the sealing member is provided.
On a side portion of the sealing member, the side wall portion that is connected to the bearing supporting member to surround the outer peripheral side of the sealing member is provided. This allows for maintaining the lubricant leaked to the outer peripheral side of the rolling bearing due to the centrifugal force of the revolution movement. Also, since the inner ring of the rolling bearing rotates around the center axis of the shaft portion of the crankpin by autorotation, the lubricant tries to be leaked from the outer peripheral side of the sealing member. However, since friction force to the lubricant between the sealing member and the side wall portion is smaller than friction force that tries to scrape out the lubricant by the ball member (ball) provided between the inner ring and the outer ring or the retainer, a small amount of lubricant is leaked from the outer peripheral side of the sealing member while passing through a space between the outer peripheral side of the sealing member and the side wall portion.
Also, a co-rotating scroll compressor according to a third aspect of the present invention includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit, and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, and a chip seal that is disposed on an outer peripheral side of the rolling bearing with respect to a center axis of the shaft portion of the crankpin to seal a space on a side of the rolling bearing between the chip seal and a wall portion facing the bearing supporting member is provided.
Since the chip seal that seals the space of the side of the rolling bearing is provided, the lubricant that leaks from the rolling bearing can be sealed. Also, the lubricant can be sealed in the space of the side of the rolling bearing, which prevents contamination of fluid before and after compression due to the lubricant.
Further, the co-rotating scroll compressor according to the above-described aspect includes a snap ring provided on a lateral side of the sealing member to fix the sealing member, wherein the snap ring has a substantially C-letter shape with one open portion, and the open portion is arranged such that the open portion is directed to a rotation center of the bearing supporting member.
The snap ring has a substantially C-letter shape and is fitted in a groove while being biased in a direction of increasing the diameter. The snap ring has one open portion to reduce the diameter at the time of attachment, and a retention ring for inserting an attachment jig etc. is provided to each end portion of the snap ring. Since the snap ring has the open portion, the weight of a portion on the side of the open portion is relatively light, while the weight of an opposite portion from the open portion is heavy. Accordingly, when the centrifugal force is applied to the snap ring, the opposite portion from the open portion tries to be directed in the direction of the centrifugal force. Considering this, the open portion of the snap ring is directed to the rotation center of the bearing supporting member. This prevents that the snap ring rotates due to the centrifugal force and thus the sealing member is displaced to be slid, so that the sealing member can be reliably fixed.
Also, a co-rotating scroll compressor according to a fourth aspect of the present invention includes: a driving-side scroll member that is driven to rotate around a rotation axis by a driving unit and has a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member in which a spiral driven-side wall corresponding to the driving-side wall is disposed on a driven-side end plate and the driven-side wall engages with the driving-side wall to form a compression space; and a synchronous driving mechanism in which the driving-side scroll member transmits driving force to the driven-side scroll member such that the driving-side scroll member and the driven-side scroll member perform rotation movement in a same direction at a same angular velocity, wherein the synchronous driving mechanism includes a crankpin and a rolling bearing that rotatably supports a shaft portion of the crankpin, the rolling bearing includes an inner ring fitted to the shaft portion and an outer ring fitted to a bearing supporting member that supports the shaft portion, wherein a sealing wall portion fixed to the bearing supporting member to seal the rolling bearing from a lateral side is provided at a side portion of the rolling bearing, and a recess formed to a lateral side from the outer ring in an annular shape to correspond to the outer ring is provided to the sealing wall portion.
Since the outer ring of the rolling bearing is fitted to the bearing supporting member, the outer ring rotates together with the bearing supporting member to perform revolution movement around the predetermined center axis. On the other hand, the inner ring of the rolling bearing performs revolution movement together with the outer ring, and moreover, the inner ring is fitted to the shaft portion of the crankpin, so that it performs rotation movement around the center axis of the shaft portion together with the shaft portion. As a result, there is a risk that the lubricant flowing to the inner peripheral side of the outer ring by the centrifugal force due to the revolution movement is leaked from the outer peripheral side of the inner ring to the outside of the rolling bearing due to the rotation of the inner ring. On the other hand, the sealing wall portion is provided to seal the rolling bearing from a lateral side to inhibit leakage of the lubricant from the rolling bearing. Further, the recess formed to a lateral side from the outer ring is provided to the sealing wall portion, and the recess is used as an oil pocket to temporarily retain the lubricant leaked from the rolling bearing. Due to this, even when the lubricant leaks by gravity from the recess positioned at an upper side at the time of stopping, collecting is performed by the recess positioned at a lower side.
Leakage of the lubricant oil of the rolling bearing is inhibited and a longer operating life of the synchronous driving mechanism can be achieved.
Hereinafter, embodiments of the present invention are described with reference to the drawings.
A first embodiment of the present invention is described below with reference to
The co-rotating scroll compressor 1 includes a housing 3, a motor (driving unit) 5 accommodated on one end side in the housing 3, and a driving-side scroll member 70 and a driven-side scroll member 90 that are accommodated on the other end side in the housing 3.
The housing 3 has a substantially cylindrical shape, and includes a motor accommodation portion 3a that accommodates the motor 5, and a scroll accommodation portion 3b that accommodates the scroll members 70 and 90.
A discharge opening 3d from which compressed air is discharged is provided at an end part of the scroll accommodation portion 3b. Note that, although not illustrated in
The motor 5 is driven by being supplied with power from an unillustrated power supply source. Rotation of the motor 5 is controlled by an instruction from an unillustrated control unit. A stator 5a of the motor 5 is fixed to an inner periphery of the housing 3. A rotor 5b of the motor 5 rotates around a driving-side rotation axis CL1. A driving shaft 6 that extends on the driving-side rotation axis CL1 is connected to the rotor 5b. The driving shaft 6 is connected to a driving shaft portion 71d fixed to a first driving-side scroll portion 71 of the driving-side scroll member 70.
A driving-side bearing 11 that rotatably supports the driving shaft 6 is provided at a front end (left end in
The driving-side scroll member 70 includes a first driving-side scroll portion 71 on the motor 5 side, and a second driving-side scroll portion 72 on the discharge opening 3d side.
The first driving-side scroll portion 71 includes a first driving-side end plate 71a and first driving-side walls 71b.
The first driving-side end plate 71a extends in a direction orthogonal to the driving-side rotation axis CL1. The driving shaft portion 71d extending along the driving-side rotation axis CL1 is fixed to a rotation center of the first driving-side end plate 71a.
A center plate (bearing supporting member) 20 is fixed to the driving shaft portion 71d. The center plate 20 extends parallel to the first driving-side end plate 71a.
The first driving-side end plate 71a has a substantially disc shape in a planar view. As illustrated in
As illustrated in
A second driving-side shaft portion 72c that extends in the direction of the driving-side rotation axis CL1 is connected to the second driving-side end plate 72a. The second driving-side shaft portion 72c is provided so as to be rotatable with respect to the housing 3 through a second driving-side bearing 14 that is a ball bearing. The second driving-side end plate 72a includes a discharge port 72d extending along the driving-side rotation axis CL1.
Between the second driving-side shaft portion 72c and the housing 3, two second driving shaft sealing members 26 are provided at a tip side of the second driving-side shaft portion 72c than the second driving-side bearing 14 (left side in
The first, driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed in a state that front ends (free ends) of the walls 71b and 72b face each other. The first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed by bolts 31 that are fastened to respective flange portions 73 provided at a plurality of positions in the circumferential direction. The flange portions 73 are provided so as to protrude outward in a radial direction.
In the driven-side scroll member 90, the driven-side end plate 90a is positioned at a substantially center in the axis direction (horizontal direction in figure). A through hole 90h is provided at a center of the driven-side end plate 90a, and causes the compressed air to flow toward the discharge port 72d.
Driven-side walls 91b and 92b are provided on respective sides of the driven-side end plate 90a. The first driven-side walls 91b provided on the motor 5 side from the driven-side end plate 90a engage with the first driving-side walls 71b of the first driving-side scroll portion 71. The second driven-side walls 92b provided on the discharge opening 3d side from the driven-side end plate 90a engage with the second driving-side walls 72b of the second driving-side scroll portion 72.
As illustrated in
A support member 33 is provided on the side of a discharge opening 3d of the driven-side scroll member 90 (left, side in figure). The support member 33 is fixed to front ends (free ends) of the respective second driven-side walls 92b by bolts 25.
A support member shaft portion 35a is provided on a center axis side of the support member 33, and the support member shaft portion 35a is fixed to the housing 3 through a second support member bearing 38 that is a ball bearing. As a result, the driven-side scroll member 90 rotates around the driven-side rotation axis CL2 through the support member 33.
A first side plate (bearing supporting member) 27 is provided on the side of the motor 5 of the driven-side scroll member 90 (right side in
A second side plate (bearing supporting member) 30 is provided with a predetermined interval on the side of the motor 5 of the first side plate 27. The second side plate 30 is fixed to the first side plate 27 via bolts 34. A second side plate hole portion 30h that allows the driving shaft portion 71d to penetrate is formed at a rotation center of the second side plate 30.
A second side plate shaft portion 30a is provided on a center axis side of the second side plate 30, and the second side plate shaft portion 30a is fixed to the housing 3 through a second side plate bearing 32 that is a ball bearing. As a result, the driven-side scroll member 90 rotates around the driven-side rotation axis CL2 through the second side plate 30 and the first side plate 27.
As shown in
A rolling bearing 16 that is a bail bearing is provided at an outer periphery of the cylindrical portion 15a. As a result, the cylindrical portion 15a is freely rotatable to the center plate 20. Lubricant such as grease is encapsulated in the rolling bearing 16.
A rolling bearing 18 and a rolling bearing 19 that are ball bearings are respectively provided at both ends of the eccentric shaft portion 15b. As a result, the eccentric shaft portion 15b is freely rotatable to the first side plate 27 and the second side plate 30. Grease (lubricant) is encapsulated in each of the eccentric shaft portions 18, 19.
The crankpin 15 and each of the bearings 16, 18 and 19 is used as a synchronous driving mechanism that transmits driving force from the driving shaft portion 71d to the driven-side scroll member 90 such that both scroll members 70, 90 perform revolving movement synchronously.
A plurality of synchronous driving mechanisms including the crankpin 15 are preferably provided, for example, three synchronous driving mechanisms are provided equiangularly around the rotation axes CL1, C12.
The rolling bearing 18 includes an outer ring 18a, an inner ring 18b, a ball 18c disposed between the outer ring 18a and the inner ring 18b and a retainer (not shown) that retains each ball 18c at even intervals.
The outer ring 18a is fitted to a circular groove formed on the first side plate. The inner ring 18b is fitted to the eccentric shaft portion 15b.
Lubricant such as grease is encapsulated between the outer ring 18a and the inner ring 18b.
A scaling member 40 that seals the lubricant is provided on a lateral side of the rolling bearing 18 (right side in
A snap ring 42 that fixes the sealing member 40 at a fixed place is provided on a lateral side of the sealing member 40 (right side in the same figure). An outer periphery of the snap ring 42 is fitted to a snap ring groove 43 formed on the first side plate 27.
An arrow denoted by reference sign AO shown in
The co-rotating scroll compressor 1 having the above configuration operates as follows.
When the driving shaft 6 is rotated around the driving-side rotation axis CL1 by the motor 5, the center plate 20 together with the driving-side scroll member 70 rotate around the driving-side rotation axis CL1 through the driving shaft portion 71d connected to the driving shaft 6. Due to the rotation of the center plate 20, driving force transmitted to the center plate 20 is transmitted from the first side plate 27 and the second side plate 30 to the driven-side scroll member 90 through the crankpin 15 that is the synchronous driving mechanism, and the driven-side scroll member 90 rotates around the driven-side rotation axis CL2. At this time, the crankpin 15 rotates to the center plate 20 and both side plates through each of the bearings 16, 18 and 19, so that both scroll members 70, 90 relatively perform revolving movement.
When both scroll members 70, 90 perform the revolving movement, air sucked from an intake of the housing 3 is suctioned from an outer peripheral side of both scroll members 70, 90, and taken into compression chambers formed by both scroll members 70, 90. Moreover, each compression chamber formed by the respective first driving-side walls 71b and the respective first driven-side walls 91b and each compression chamber formed by the respective second driving-side walls 72b and the respective second driven-side walls 92b are separately compressed. In each compression chamber, the volume decreases as it moves to the center side, and accompanied with this, air is compressed. Air compressed by the first driving-side walls 71b and the first driven-side walls 91b passes through the through hole 90h formed on the driven-side end plate 90a, and is joined up with air compressed by the second driving-side walls 72b and the second driven-side walls 92b, and then the air after confluence passes through the discharge port 72d to be discharged to the outside from the discharge opening 3d of the housing 3.
According to this embodiment, the following operational effect is provided.
As explained using
The present embodiment may be modified as follows.
As shown in
According to a first modification, even when the lubricant is leaked from the inner peripheral side of the sealing member 40, because the C chamfering 40a in which the distance from the side portion of the inner ring 18b increases toward the inner peripheral side of the sealing member 40 is formed, as shown by arrows denoted by reference sign A5 of
The above first modification can be further modified as follows.
As shown in
The C chamfering 40a formed at the inner peripheral edge of the sealing member 40 is formed only on the outer peripheral side of the revolution movement of the rolling bearing 18, so that the lubricant that is leaked due to the centrifugal force of the revolution movement of the rolling bearing 18 can be received by the C chamfering 40a formed on the outer peripheral side. On the other hand, no inclined surface is provided on the inner peripheral side of the revolution movement of the rolling bearing 18 and the corner portion 40b is formed, which prevents leakage of the lubricant as possible.
The present embodiment can be modified as follows.
On the ether hand, in this modification, as shown in
In this way, by providing the stepped portion 15b3, the lubricant leaked from the rolling bearing 18 is introduced to the first shaft portion 15b1 having a smaller diameter than the diameter of the second shaft portion 15b2, and the lubricant oil can be received from a portion between the sealing member 40 and the inner ring 18b.
Next, a second embodiment according to the present invention will be explained. This embodiment is different from the first embodiment about a fixing position of the sealing member. The other points are the same as those in the first embodiment, so that an explanation therefor is omitted.
As shown in
On a side portion of the sealing member 44, a side wall portion 27s that, is connected to the first, side plate 27 to surround the outer peripheral side of the sealing member 44 is provided. The side wall portion 27s extends toward the eccentric shaft portion 15b and has a substantially disc shape. A predetermined gap is provided between an inner peripheral end of the side wall portion 27s and the eccentric shaft portion 15b.
According to this embodiment, the following operational effect is provided.
Since the outer ring 18a of the rolling bearing 18 is fitted to the first side plate 27, the outer ring 18a rotates together with the first side plate 27 to perform revolution movement around the driven-side rotation axis CL2. On the other hand, the inner ring 18b performs revolution movement together with the outer ring 10a, and moreover, the inner ring 18b is fitted to the eccentric shaft portion 15b, so that it performs rotation movement around the center axis of the eccentric shaft portion 15b together with the eccentric shaft portion 15b. As a result, there is a risk that the lubricant flowing to the inner peripheral side of the outer ring 18a by the centrifugal force due to the revolution movement is leaked from the outer peripheral side of the inner ring 18b to the outside of the rolling bearing 18 due to the rotation of the inner ring 18b. On the other hand, the sealing member 44 is fixed to the side portion of the inner ring 18b and extends to the side portion of the outer ring 18a, which inhibits the lubricant G from leaking from the side of the inner ring 18b to the outside of the rolling bearing 18.
On a side portion of the sealing member 44, the side wall portion 27s is provided to surround the outer peripheral side of the sealing member 44. This maintains the lubricant G leaked to the outer peripheral side of the rolling bearing 18 due to the centrifugal force of the revolution movement. Also, since the inner ring 18b rotates around the center axis of the eccentric shaft portion 15b by autorotation, the lubricant G tries to be leaked from the outer peripheral side of the sealing member 44. However, since friction force to the lubricant G between the sealing member 44 and the side wall portion 27s is smaller than friction force that tries to scrape out the lubricant G by the ball 18c provided between the inner ring 18b and the outer ring 18a or the retainer (not shown), a small amount of lubricant G is leaked from the outer peripheral side of the sealing member 44 while passing through a space S1 between the outer peripheral side of the sealing member 44 and the side wall portion 27s.
Next, a third embodiment according to the present invention will be explained. This embodiment, is different, from the first embodiment in that a chip seal 45 is provided between the first side plate 27 and the center plate 20. Accordingly, an explanation of the same configuration as in the first embodiment will be omitted.
As shown in
According to this embodiment, the following operational effect is provided.
Since the chip seal 45 that seals a space on the side of the rolling bearing 18 and the side of the rolling bearing 16 is provided, the lubricant that leaks from the rolling bearing 18 and the rolling bearing 16 can be sealed. Also, the lubricant can be sealed to the side of the rolling bearing 18 and to the side of the rolling bearing 16, which prevents contamination of fluid before and after compression due to the lubricant.
Next, a fourth embodiment according to the present invention will be explained. This embodiment is different from the first embodiment about an installation direction of the snap ring 42. Accordingly, an explanation of the same configuration as in the first embodiment is omitted.
As shown in
The snap ring 42 is disposed such that the open portion 42a is directed to the driven-side rotation axis CL2 that is a rotation center.
According to this embodiment, the following operational effect is provided.
Since the snap ring 42 has the open portion 42a, the weight of a portion on the side of the open portion 42a is relatively light, while the weight of an opposite portion from the open portion 42a is heavy. Accordingly, when the centrifugal force around the driven-side rotation axis CL2 due to the revolution movement is applied to the snap ring 42, the opposite portion from the open portion 42a tries to be directed in the direction of the centrifugal force. Considering this, the open portion 42a of the snap ring 42 is directed to the driven-side rotation axis CL2 that is the rotation center of the first side plate 27. This prevents that the snap ring 42 rotates due to the centrifugal force and thus the sealing member 40 is displaced to be slid, so that the scaling member 40 can be reliably fixed.
Next, a fifth embodiment of the present invention will be explained. This embodiment is different from the first embodiment about the shape of the second side plate 30 that fixes the rolling bearing 19. Accordingly, the same configuration as in the first embodiment is omitted.
A protruding portion 30e that protrudes to the side of the rolling bearing 19 is provided on an inner peripheral side of the recess 30r, and, on an inner peripheral side of the protruding portion 30e, an opening 30f that opens to the inner peripheral side is provided at a position corresponding to the inner ring 19b.
According to this embodiment, the following operational effect is provided.
The recess 30r is provided to the sealing wall portion 30w, and the recess 30r is used as an oil pocket of the lubricant G to temporarily retain the lubricant leaked from the rolling bearing 19. Due to this, even when the lubricant leaks by gravity from the recess 30r positioned at an upper side at the time of stopping, collecting is performed by the recess 30r positioned at a lower side as shown in the arrow A5, which avoids inadequate lubrication.
Note that the configuration of this embodiment can be applied to the first side plate 27 that accommodates the roiling bearing 18.
Number | Date | Country | Kind |
---|---|---|---|
2017-192775 | Oct 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/036778 | 10/2/2018 | WO | 00 |