The present application relates in general to the field of rotor systems for rotorcraft.
There are many different types of rotorcraft, including helicopters, tandem rotor helicopters, tiltrotor aircraft, four-rotor tiltrotor aircraft, tilt wing aircraft, and tail sitter aircraft. In all of these rotorcraft, thrust and/or lift is generated by air flowing through a rotor disk formed by a plurality of rotating rotor blades. Typically, the plurality of rotor blades are mechanically coupled with and substantially evenly spaced about a rotatable mast, which provides rotational motion to the plurality of rotor blades.
It is often desirable to utilize a greater number of rotor blades in the rotor system, rather than a fewer number, to increase lift and/or thrust of a rotorcraft. One well known rotor system has an upper disk assembly and lower disk assembly, each rotor disk assembly rotating about the same mast axis of rotation, while each disk assembly rotates in opposite directions. Such designs are often referred to as counter-rotating co-axial rotors. Typically, counter-rotating co-axial rotor systems on a helicopter do not need a tail rotor or other anti-torque device because each rotor acts to cancel the torque that would otherwise be induced into the helicopter. Counter-rotating co-axial rotor systems also typically provide better hover performance than single disk rotor systems.
There are many rotorcraft rotor systems well known in the art; however, considerable room for improvement remains.
The novel features believed characteristic of the system of the present application are set forth in the appended claims. However, the system itself, as well as, a preferred mode of use, and further objectives and advantages thereof, will best be understood by reference to the following detailed description when read in conjunction with the accompanying drawings, wherein:
While the system of the present application is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to be limited to the particular forms disclosed, but on the contrary, the application is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present application as defined by the appended claims.
Illustrative embodiments of the system of the present application are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present application, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower,” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction.
The system of the present application represents a rotor hub for a rotorcraft and a rotorcraft incorporating the rotor hub. The rotor hub is represented as having multiple rotor disk assemblies, each rotor disk assembly rotating in the same direction about the same mast axis of rotation. In the preferred embodiment, each rotor disk assembly has three rotor blades. The upper rotor disc assembly and the lower rotor disk assembly are separated by approximately 2.5% of the rotor disk diameter, at least to take advantage of “wake contraction”.
Referring now to
Referring now to
Referring now to
Referring now to
The system of the present application provides significant advantages, including: (1) providing a way to utilize a plurality of rotor blades in a rotorcraft while increasing the performance of the rotor system; (2) spacing multiple co-rotating rotor disks so as to maximize performance through wake contraction; and (3) incorporating co-rotating co-axial rotor disks on a rotorcraft, thereby improving performance of the rotorcraft.
It is apparent that a rotor system with significant advantages has been described and illustrated. Although the system of the present application is shown in a limited number of forms, it is not limited to just these forms, but is amenable to various changes and modifications without departing from the spirit thereof.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/044963 | 5/22/2009 | WO | 00 | 11/18/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/134924 | 11/25/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2481750 | Hiller, Jr. et al. | Sep 1949 | A |
3002711 | Stefano | Oct 1961 | A |
3035789 | Young | May 1962 | A |
3684398 | Davidson et al. | Aug 1972 | A |
3784319 | Amer et al. | Jan 1974 | A |
3905656 | Cochrane | Sep 1975 | A |
4589611 | Ramme et al. | May 1986 | A |
4881874 | White et al. | Nov 1989 | A |
5066195 | Dobrzynski | Nov 1991 | A |
5096383 | Dobrzynski | Mar 1992 | A |
5190242 | Nichols | Mar 1993 | A |
5381985 | Wechsler et al. | Jan 1995 | A |
6450446 | Holben | Sep 2002 | B1 |
6616095 | Stamps et al. | Sep 2003 | B2 |
6695106 | Smith et al. | Feb 2004 | B2 |
7083142 | Scott | Aug 2006 | B2 |
7143973 | Ballew | Dec 2006 | B2 |
7210651 | Scott | May 2007 | B2 |
7264199 | Zientek | Sep 2007 | B2 |
7648338 | Welsh | Jan 2010 | B1 |
7789341 | Arlton et al. | Sep 2010 | B2 |
8033498 | Blackburn | Oct 2011 | B2 |
8328128 | Wiggerich | Dec 2012 | B2 |
20040179941 | Negulescu | Sep 2004 | A1 |
20050067527 | Petersen | Mar 2005 | A1 |
20060011777 | Arlton et al. | Jan 2006 | A1 |
20070158494 | Burrage | Jul 2007 | A1 |
20070181742 | Van de Rostyne et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
677844 | Jun 1991 | CH |
2432690 | Mar 2012 | EP |
1316302 | Jan 1963 | FR |
2409845 | Jul 2005 | GB |
2010134920 | Nov 2010 | WO |
2010134921 | Nov 2010 | WO |
Entry |
---|
Extended European Search Report from Application 09845035.6-2422 issued by the European Patent Office dated Apr. 18, 2012. |
International Preliminary Report on Patentability of the International Preliminary Examining Authority mailed by IPEA/USA, U.S. Patent and Trademark Office on Jul. 13, 2012 for related International Patent Application No. PCT/US09/44955, 7 pages. |
International Search Report and the Written Opinion of the International Searching Authority mailed by ISA/USA, U.S. Patent and Trademark Office on Jul. 14, 2009 for related International Patent Application No. PCT/US09/44895, 8 pages. |
International Preliminary Report on Patentability of the International Preliminary Examining Authority mailed by IPEA/USA, U.S. Patent and Trademark Office on Dec. 12, 2011 for related International Patent Application No. PCT/US09/44895, 6 pages. |
Extended European Search Report mailed from the European Patent Office Mar. 21, 2012 from related European Patent Application No. 09845032.3-1254, 5 pages. |
International Search Report and the Written Opinion of the International Searching Authority mailed by ISA/USA, U.S. Patent and Trademark Office on Nov. 13, 2009 for related International Patent Application No. PCT/US09/44955, 7 pages. |
Extended European Search Report from European Patent Office in related European Patent Application No. 09845034, mailed Sep. 14, 2012, 6 pages. |
International Search Report and the Written Opinion of the International Searching Authority mailed by ISA/USA, U.S. Patent and Trademark Office on Jul. 14, 2009 for International Patent Application No. PCT/US09/44963, 9 pages. |
International Preliminary Examination Report mailed by IPEA/USA, U.S. Patent and Trademark Office on Oct. 11, 2011 for International Patent Application No. PCT/US09/44963, 8 pages. |
Examination Report from European Patent Office in related European Patent Application No. 09845035, mailed Nov. 27, 2012, 6 pages. |
Canadian Office Action in related Canadian patent application No. 2,762,247, mailed 18 Oct. 2013, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20120061509 A1 | Mar 2012 | US |