This section is intended to provide a background or context to the invention recited in the claims. The description herein may include concepts that could be pursued, but are not necessarily ones that have been previously conceived or pursued. Therefore, unless otherwise indicated herein, what is described in this section is not prior art to the description and claims in this application and is not admitted to be prior art by inclusion in this section.
The present invention relates generally to the field of a refrigeration system primarily using CO2 as a refrigerant. The present invention relates more particularly to a CO2 refrigeration system using hot gas to provide defrost of evaporators.
Refrigeration systems typically operate at evaporator temperatures below the dewpoint of the air they are cooling and as such, frost is formed on the surface of the evaporator. Frost buildup on the evaporator reduces the heat transfer effectiveness of the heat exchanger and so the evaporators periodically go through a defrost cycle to remove the frost and return the heat transfer surface to a more optimal state.
Various methods to defrost evaporators are used and include time-off defrost, electric defrost, and hot gas defrost. Time-off defrost is considered a passive defrost system—the refrigeration system is turned off and the air moving across the evaporator provides the defrosting action—this method is generally only suitable for medium-temperature systems (evaporator temperatures greater than +15° F. or −10° C.). Electric and hot gas defrost, considered “active” or “forced” defrost methods, are typically suitable for both low- and medium-temperature refrigeration systems.
For electric defrost, an electric heater is located within or adjacent to the coil and heat flows into the evaporator either by conduction or convection by movement of air. This method requires additional wiring to be installed and additional electrical power to be used and many consider the extra installation and operating cost to be a drawback of this method.
For hot gas defrost, gas from the compressor discharge or other locations on the high-side of the system is typically passed through the coil either in a forward or reverse direction. The gas typically condenses to a liquid form inside the evaporator effectively heating the tubes from within—this is due primarily to the condensing temperature of the gas being above the freezing point of the frost (+32° F. or 0° C.). Hot gas defrost is generally considered less expensive to install and operate, but the pressure increase in the coil during the defrost cycle tends to raise concerns about long-term structural integrity (e.g. leak-tightness of the coil—it is believed that leaks can occur over time due to fatigue of the coil materials or joints).
Refrigeration systems utilizing carbon dioxide (“CO2” from here on) as the refrigerant are typically operated with electric defrost on the low-temperature system. Hot gas defrost has traditionally not been used in CO2 refrigeration systems because the pressure of the compressor discharge gas on the low-temperature side of the system is below the melting point of the frost (typical condensing temperature of approximately +20° F. or −7° C.) and therefore CO2 gas could only be desuperheated in the coil rather than condensing and a much smaller amount of heat would be available in the evaporator for defrosting purposes.
Accordingly, it would be desirable to provide a hot gas defrost system for a CO2 refrigeration system.
One embodiment of the disclosure relates to a hot gas defrost system a CO2 refrigeration system having a low temperature (“LT”) system portion and/or a medium temperature (“MT”) system portion. During defrost, the discharge pressure on the compressor is raised using a hot gas discharge valve and CO2 refrigerant hot gas is directed through the defrosting evaporator where full or partial condensation is realized and liquid CO2 refrigerant is returned to a flash tank where pressure is controlled by flash gas bypass valve. The hot gas discharge valve raises the compressor's discharge pressure above the pressure in the flash tank to establish a system pressure differential that directs the CO2 refrigerant from the compressor, through the defrosting LT evaporators and/or MT evaporators (in either or a reverse or forward flow direction) and to the flash tank. The hot gas discharge valve may be mechanical or electrical and may include multiple valves in parallel that regulate the discharge pressure of only one, or multiple, or all of the LT compressors. The pressure in the flash tank is raised by the flash gas bypass valve to obtain higher CO2 refrigerant condensing pressure and temperature in the evaporator being defrosted to increase the speed of the defrost cycle. A control system coordinates operation of the hot gas discharge valve and the flash gas bypass valve so that a differential pressure is maintained between the compressors and the flash tank to drive the flow of CO2 refrigerant discharge gas through the evaporators being defrosted.
Another embodiment of the disclosure relates to a hot gas defrost system designed for a CO2 refrigeration system. Raising the pressure of the high-side of the system to a condensing pressure above the freezing point would generally require pressures which were previously considered too high for use with conventional refrigeration system components. For example, in order to have a CO2 hot gas condensing temperature within the evaporator of approximately +38° F. or +3° C. the corresponding pressure would be approximately 535 psig (about 38 bar). This disclosure details a hot gas defrost system designed for a CO2 refrigeration system having components with increased pressure capabilities.
In an embodiment of the disclosure the discharge pressure on the defrost compressor (single or multiple) 20 is controlled and raised using the hot gas defrost valve 21 and CO2 hot-gas discharged from the compressor is directed through the defrosting evaporator 14 where full or partial condensation is realized and liquid CO2 is returned to the receiver or flash tank 4 where pressure is controlled by a flash gas bypass valve 5.
In an embodiment of the disclosure the hot gas discharge valve operates during defrost to raise the compressor's discharge pressure above the pressure in the flash tank for the purposes of establishing a pressure differential in the system that drives the hot gas in a flow configuration (either forward or reverse direction) that defrosts the LT and/or MT evaporator(s) and returns the CO2 in a condensed liquid state to the flash tank. The hot gas discharge valve could be either a mechanical or electrical valve and may include multiple valves in parallel, and with a combination of mechanical and/or electrical control, and operates to regulate the discharge pressure of only one, multiple, or all of the compressors.
In an embodiment of the disclosure a control system or device operates the flash gas bypass valve to raise the pressure in the flash tank during the defrost mode to obtain higher CO2 condensing pressure and temperature in the evaporator(s) being defrosted for more effective defrost or to increase speed of the defrost mode.
In one embodiment of the disclosure a control system or device coordinates the pressure regulation of the hot gas discharge valve with the pressure regulation of the flash gas bypass valve such that the operation of the two valves maintains a substantially constant differential pressure during the defrost operation (i.e. higher pressure to lower pressure) between the compressors and the flash tank to drive the flow of CO2 hot gas through the evaporators being defrosted.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Referring to the FIGURES, a CO2 refrigeration system is shown equipped with hot gas defrost capability on the low-temperature (LT) system portion, which includes a CO2 refrigerant LT circuit with conduits, piping, etc. and other components such as one or more low temperature (LT) compressor(s) and one or more low temperature (LT) evaporator(s), according to an exemplary embodiment. During the defrost mode, high pressure CO2 hot gas from the LT compressor discharge is passed in a reverse flow configuration through the circuit, including the coil of the LT evaporator(s), and returned to a pressure vessel operating as a receiver, liquid-vapor separator or “flash tank” which maintains a supply of liquid CO2 refrigerant in a lower portion and vapor CO2 refrigerant in an upper portion at a pressure of approximately 38 bar (about 540 psig) with a saturation temperature of approximately 38° F., according to an exemplary embodiment. According to alternative embodiments, the high pressure CO2 hot gas refrigerant could be routed through the circuit in a forward flow configuration by providing suitable valves. According to other illustrated embodiments, during the defrost mode, high pressure CO2 hot gas from the MT compressor discharge can be used to at least partially supplement CO2 hot gas from the LT compressors, or CO2 hot gas defrost from the MT compressor discharge may be used solely as the source of heat for defrosting the LT evaporator(s). All such embodiments are intended to be within the scope of this disclosure.
Referring more particularly to
During a refrigeration mode of system operation, the liquid refrigerant supply solenoid 10 is open and liquid CO2 refrigerant flows through an expansion device 13 then into the coil 14 of the LT evaporators to refrigerate an associated display case or coil. The CO2 refrigerant then exits the coil 14 as a superheated CO2 vapor and flows back to a refrigerant return suction valve 18, then into a return suction header 16 then to the LT compressor 20. The CO2 refrigerant vapor is compressed in the LT compressor up to a pressure of approximately 425 psig (about 30 bar) with a saturation temperature of approximately 23° F. (about −5° C.). The hot CO2 discharge gas then flows from LT compressor 20 through a hot gas discharge valve 21 which during the refrigeration mode is intended to operate in the fully-open state to provide minimal pressure drop, preferably on the order of about <10 psid (approximately <0.7 bar).
During the refrigeration mode of system operation, CO2 liquid refrigerant from the flash tank 4 is also directed to the MT evaporators 7 which are also equipped with expansion devices 6. According to one embodiment, the CO2 refrigerant is fully evaporated in the MT evaporators and the suction CO2 gas from the MT evaporators is returned back to the system at a pressure of approximately 425 psig (about 30 bar). Also, CO2 refrigerant vapor in the flash tank 4 is directed through a flash gas bypass valve 5 on an as-needed basis to maintain pressure control within the flash tank 4. The flash gas bypass valve expands the CO2 refrigerant gas down to a pressure that is approximately equal to the pressure of the CO2 refrigerant gas that is returning from the medium-temperature evaporators 7 and these two flows are mixed with each other and also with the discharge CO2 refrigerant gas that is leaving the hot gas discharge valve 21, on the return to (i.e. suction side of) the MT compressors.
Referring to
During defrost operation, the LT circuit flow path is reconfigured so that a portion of the CO2 refrigerant discharge hot gas (or in some embodiments, all the CO2 refrigerant discharge hot gas) is directed from LT compressor 20 to a hot gas defrost header 17 and through a hot gas defrost valve 19 which is opened during defrost, and the suction valve 18 is in the closed position, so that the CO2 discharge hot gas is directed in a reverse flow configuration to the coil 14 of the LT evaporator 12 requiring defrost. Inside the frosted coil 14 of the LT evaporator 12, the CO2 discharge hot gas is cooled and condensed as the frost on the evaporator melts and absorbs heat from the CO2 refrigerant. The cooled CO2 refrigerant then exits the coil 14 and bypasses the expansion device 13 through a parallel bypass check valve 15 or other suitable type valve. The cooled CO2 refrigerant is then returned to the system through the defrost return solenoid valve (or check valve) 11 which has been opened (and where the liquid supply solenoid valve (or check valve) 10 has been closed). The CO2 refrigerant then enters a defrost return manifold 9 and is then directed back to the flash tank 4. The LT circuit valves (10, 11, 18, and 19) remain in these positions until the coil 14 of the LT evaporator 12 reaches a predetermined termination temperature at which point the defrost mode of operation is terminated and the hot gas supply solenoid valve 19 and hot gas return valve 11 are closed. After a timed ‘drip cycle’, the suction valve 18 is opened to return the evaporator to a low pressure state and the liquid supply valve 10 is re-opened to return the LT system portion to the refrigeration mode of operation.
Although the components and operation of the system have been shown and described with reference to hot gas defrosting of the LT system portion, the system may also be used to defrost either LT evaporators, or MT evaporators, or both. Further, although the flow configuration during defrost operation is shown in a reverse flow direction, the flow configuration could be either in a forward or reverse direction, however operation in a forward flow direction would require additional valving and controls. Accordingly, all such variations are intended to be within the scope of this disclosure.
Referring now to
Referring now to
In exemplary embodiments, the CO2 gas discharged from the MT compressors 1 is superheated. As a result, the MT compressors 1 discharge the CO2 gas at a higher temperature than the gas discharged from the LT compressors 20. In some embodiments, the higher temperature gas may be better suited for use in the defrost cycle of the CO2 refrigeration system because it tends to melt the ice from the coils 14 more thoroughly, quickly and/or efficiently. However, the gas from the MT compressors 1 may also have a higher pressure than the CO2 gas discharging from the LT compressors 20. Control of the pressure in the MT defrost line is primarily provided by operational control of the MT compressors 1. However, if the pressure of the CO2 hot gas in the MT defrost line 49 is (or approaches a level that is) too high (e.g. greater than approximately 645 psi), and that pressure is allowed to propagate from the high-pressure piping of line 49 to the low-pressure piping of line 17 and the evaporators 12, the coils 14 or other components of the refrigeration system may become damaged or impaired. Therefore, the pressure of the high temperature CO2 gas in the MT defrost line 49 is monitored and secondarily managed by the CO2 gas pressure management system 40.
According to one illustrated embodiment of
The gas pressure management system 40 also includes a relief valve 41. According to one embodiment, the relief valve 41 is connected (i.e. vented) to the outside atmosphere, and is configured to open and release high temperature and high pressure CO2 gas from the MT defrost line 49 if the pressure reaches a level that is substantially equal to or above an external relief level (e.g. approximately 650 psi). According to other embodiments, relief valve 41 may be configured to discharge to a storage tank or other volume or repository to capture any discharge gas as a back-up pressure management device. The relief valve 41 is configured to act as a type of emergency release, decreasing the pressure of the CO2 gas within the MT defrost line 49 by releasing pressurized gas to a safe location outside of the CO2 refrigeration system. The relief valve 41 remains open until the pressure at the valve 41 decreases to a pressure substantially less than the external relief level, and then closes to prevent further release of CO2 from the system. A pressure transducer 43 is provided on MT defrost line 49 and is configured to measure the CO2 gas pressure in the MT defrost line 49 and provide an electronic signal representative of the actual pressure to control device 22 for control of the related components.
Referring further to the illustrated embodiment of
Referring further to
Referring to
According to any preferred embodiment, systems and methods for providing and operating a hot gas defrost system in a CO2 refrigeration system having a LT system portion, or a MT system portion, or both, are shown and described. During the hot gas defrosting mode of operation, the discharge pressure on the LT compressor (single or multiple) 20 is controlled and raised using the hot gas discharge valve 21 and CO2 refrigerant hot gas is directed from the LT compressors 20 through the coil(s) of the defrosting LT evaporator 12 where full or partial condensation is realized and liquid CO2 refrigerant is returned to the flash tank 4 where pressure is controlled by the flash gas bypass valve 5. The hot gas discharge valve 21 operates to raise the compressor's discharge pressure above the pressure in the flash tank 4 to establish a system pressure differential (i.e. higher pressure to lower pressure) that directs the CO2 refrigerant from the compressor 1 or 20, through the defrosting LT and/or MT evaporators 7 (in either or a reverse or forward flow direction) and to the flash tank 4. Although shown as a single valve, the hot gas discharge valve 21 could be either a mechanical or an electrical valve and may include multiple valves in parallel, with a combination of mechanical and/or electrical control. For systems with multiple LT compressors, the hot gas discharge valve 21 operates during the defrost mode to increase the discharge pressure of only one, or multiple, or all of the LT compressors. The pressure setpoint of the flash gas bypass valve 5, which operates to regulate the pressure in the flash tank 4, is raised during the defrost mode of operation in order to obtain higher CO2 refrigerant condensing pressure and temperature in the evaporator(s) that are being defrosted for more effective defrosting or to increase the speed of (and reduce the time required by) the defrost cycle. The pressure regulation of the hot gas discharge valve 21 is coordinated with the pressure regulation of the flash gas bypass valve 5 such that the control of the two valves 5 and 21 maintains a constant differential pressure during the defrost operation, which serves to drive the flow of CO2 refrigerant discharge gas through the evaporator(s) being defrosted.
According to another preferred embodiment, system and methods for using hot CO2 discharge gas from the MT compressors 1 (alone or in combination with hot gas from the LT compressors 20) are provided to defrost coils in the LT evaporators. The pressure of the CO2 hot gas discharge from the MT compressors 1 is primarily controlled during the defrost mode by operational control of the MT compressors 1, and is secondarily managed within a predetermined range by a CO2 pressure management system that includes a first level of internal pressure relief and a second (higher) level of external pressure relief to prevent over-pressurization of components in the CO2 refrigeration system.
As utilized herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
It should be noted that the term “exemplary” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The terms “coupled,” “connected,” and the like as used herein mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.
It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
It is also important to note that the construction and arrangement of the systems and methods for providing hot gas defrost on a CO2 refrigeration system as shown in the various exemplary embodiments is illustrative only. Although only a few embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter disclosed herein. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the appended claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present inventions.
The present Application claims the benefit of priority under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application No. 61/562,162, titled “CO2 Refrigeration System With Hot Gas Defrost” and filed on Nov. 21, 2011, the complete disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2012/065522 | 11/16/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/078088 | 5/30/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3074249 | Henderson | Jan 1963 | A |
3184926 | Blake | May 1965 | A |
3358469 | Quick | Dec 1967 | A |
3766745 | Quick | Oct 1973 | A |
4167102 | Willitts | Sep 1979 | A |
4454725 | Cann | Jun 1984 | A |
4589263 | DiCarlo | May 1986 | A |
4621505 | Ares | Nov 1986 | A |
4660384 | Pallanch | Apr 1987 | A |
5400615 | Pearson | Mar 1995 | A |
5596878 | Hanson | Jan 1997 | A |
6170272 | Backman | Jan 2001 | B1 |
7610766 | Dube | Nov 2009 | B2 |
9261299 | Porter | Feb 2016 | B2 |
20050257564 | Wightman | Nov 2005 | A1 |
20090260389 | Dube | Oct 2009 | A1 |
20100205984 | Gu et al. | Aug 2010 | A1 |
20110154840 | Mihara et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
WO-2009052369 | Apr 2009 | WO |
WO-2009127062 | Oct 2009 | WO |
WO-2011049767 | Apr 2011 | WO |
Entry |
---|
International Preliminary Report on Patentability for PCT Application No. PCT/US2012/065522, dated May 27, 2014, 8 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2012/065522, mail date Feb. 8, 2013, 9 pages. |
Extended European Search Report for EP Application No. 12851221.7, mailed Aug. 19, 2015, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20140352343 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61562162 | Nov 2011 | US |