Coal blends, foundry coke products, and associated systems, devices, and methods

Abstract
Coal blends used to produce foundry coke products are disclosed herein. Coal blends can include first coals having a first volatile matter mass fraction less than or equal to a first threshold, and second coals having a second volatile mass fraction greater than or equal to a second threshold that is less than the second threshold. The coal blend can have an ash fusion temperature less than 2600° F. and an aggregated volatile matter mass fraction between 15% and 25%.
Description
TECHNICAL FIELD

This disclosure relates to coal blends, foundry coke products, and associated systems, devices, and methods.


BACKGROUND

Coke can be divided into various subcategories. Foundry coke has a large size relative to blast coke and is of exceptional quality, including relatively low impurities, and relatively high carbon content, strength, and stability. Foundry coke is used in foundry cupolas to melt iron and produce cast iron and ductile iron products. However, the production cost, including the manufacturing cost, transportation cost, and environmental cost, for foundry coke is high. Therefore, there is a need in the art to improve the production process thereby to obtain high quality foundry coke at a higher yield or a lower cost.


Coke is a solid carbon fuel and carbon source produced from coal that is used in the production of steel. The coal can be obtained from a combination of different coal sources and often possess vastly different qualities and compositions. These resources can be used as fuel or feedstock for a diverse array of applications, such as steel production, cement production, and electricity generation. Furthermore, the diverse array of regulatory environments or economic incentives can further create additional requirements for the types of coal that a specific foundry, factory, or plant is permitted to use.





BRIEF DESCRIPTION OF THE DRAWINGS

Features, aspects, and advantages of the presently disclosed technology can be better understood with regard to the following drawings.



FIG. 1 shows an illustrative schematic system for obtaining coal parameters for multiple coal types and determining a coal blend formulation, in accordance with one or more embodiments of the present technology.



FIG. 2 depicts an isometric, partial cut-away view of a portion of a horizontal heat recovery coke plant, in accordance with one or more embodiments of the present technology.



FIG. 3 is a table indicating volatile matter (VM) fractions for different types of coals usable in a coal blend, in accordance with one or more embodiments of the present technology.



FIG. 4 is a table indicating properties associated with different types of coals used in a coal blend, in accordance with one or more embodiments of the present technology.



FIG. 5 is a table indicating the composition associated with different types of coals used in a coal blend, in accordance with one or more embodiments of the present technology.



FIG. 6 is a table indicating additional measurements associated with different types of coals used in a coal blend, in accordance with one or more embodiments of the present technology.



FIG. 7 is a flowchart for a process to determine a coal blend formulation, in accordance with one or more embodiments of the present technology.



FIG. 8 is a flowchart for a process to produce a coke product using a coke oven, in accordance with one or more embodiments of the present technology.



FIG. 9 is a chart showing a burn profile for a blast coke product operation.



FIG. 10 is a chart showing a burn profile for a foundry coke product operation, in accordance with one or more embodiments of the present technology.



FIG. 11 illustrates a coke particle configured to be heated in a foundry cupola, in accordance with one or more embodiments of the present technology.



FIG. 12 depicts an example foundry coke product and a table of foundry coke properties, in accordance with one or more embodiments of the present technology.



FIG. 13 is a chart indicating foundry coke product yield in accordance with one or more embodiments of the present technology.



FIG. 14 is a chart indicating particle size, in accordance with one or more embodiments of the present technology.



FIG. 15 is a chart indicating 4-inch drop shatter properties, in accordance with one or more embodiments of the present technology.



FIG. 16 is a chart indicating 6-inch drop shatter properties, in accordance with one or more embodiments of the present technology.



FIG. 17 is a chart indicating an ash mass fraction, in accordance with one or more embodiments of the present technology.



FIG. 18 is a chart indicating a moisture mass fraction, in accordance with one or more embodiments of the present technology.



FIG. 19 is a chart indicating a sulfur mass fraction, in accordance with one or more embodiments of the present technology.



FIG. 20 is a chart depicting SiO2 mass fractions vs. Al2O3 mass fractions in the ash of foundry coke products, in accordance with one or more embodiments of the present technology.



FIG. 21 is a chart depicting Fe2O3 mass fractions vs. CaO mass fractions in the ash of foundry coke products, in accordance with one or more embodiments of the present technology.



FIG. 22 is a chart depicting Ash Softening Temperatures vs. Model Ash Fusion Temperatures of different batches of foundry coke products, in accordance with one or more embodiments of the present technology.



FIG. 23 is a chart depicting Ash Softening Temperatures vs. Ash Mass Fractions of different batches of foundry coke products, in accordance with one or more embodiments of the present technology.



FIG. 24 is a chart depicting Observed Ash Fusion Temperatures vs. Model Ash Fusion Temperatures of different batches of foundry coke products, in accordance with one or more embodiments of the present technology.





A person skilled in the relevant art will understand that the features shown in the drawings are for purposes of illustrations, and variations, including different or additional features and arrangements thereof, are possible.


DETAILED DESCRIPTION
I. Overview

Foundry coke is coke of a relatively large size, and of exceptional quality, such as very low content of impurities, and very high fixed carbon content, strength, and stability. Foundry coke is used in cupola furnaces to melt iron and recycled steel and as a carbon source to produce cast iron and ductile iron products. However, the production cost, including the manufacturing cost, transportation cost, and environmental cost, for foundry coke is high. Therefore, there is a need in the art to improve the production process thereby to obtain high quality foundry coke at a higher yield or a lower cost. Traditionally made coke typically has an ash fusion temperature (AFT) above 2650 degrees Fahrenheit (° F.). Due to this high temperature, the ash melts deeper in the cupola which reduces the available surface area for coke exposed to molten metal. As a result, less carbon is transferred to the iron.


The coke products disclosed herein for the present technology have an AFT lower than 2600° F. and therefore melt higher in the cupola, thereby increasing the amount of carbon surface exposed to the molten metal. Moreover, from a viscosity standpoint, a low AFT allows the melted ash to move through the carbon bed more quickly and results in a better phase separation in the well section of the cupola to allow more carbon and molten metal contact. As used herein, the term “molten metal” refers to molten iron, molten steel, or the final molten mixture of molten iron and molten steel.


An AFT can be obtained in various ways and can be separated into different types of AFTs. In some embodiments, an AFT can be measured from a sample of ash created by burning a coal, coal blend, or coke product to completion. The ash elemental analysis can be performed on each element, for example, individual silicon atoms create a signal in the analytical instrument. To obtain a mass percentage value used for model ash fusion calculation, some embodiments of the present technology can treat all elements as fully oxidized and determine a mass percentage is based oxidized forms. For example, some embodiments of the present technology can determine the SiO2 mass but not the Si mass. In some embodiments, the mass percentages of SiO2, Al2O3, FeO3, CaO, other compounds, etc., can be normalized to sum up to 100%.


Alternatively or additionally, an AFT can be measured by an AFT test, such as a standard American Society for Testing and Materials (ASTM) method D1857. For example, some embodiments of the present technology can determine an initial deformation temperature (IDT), softening temperature (ST), hemispherical temperature (HT), and flow temperature (FT). These measured temperatures can have different values with respect to each other, and can be used to characterize a particular coal, coal blend, or coke product. Furthermore, as discussed elsewhere, the composition of the ash remaining from combustion of a coal or coal blend is considered to be the same as the ash remaining after combustion of a coke product produced from the coal or coal blend. Some embodiments can characterize a coal blend ash composition as the weighted average of the ash compositions of the coal components weighted by their respective mass fractions in the coal blend.


Further, traditional operation can also add CaCO3-containing rocks to the charge to use as a flux to remove ash. The CaCO3 penetrates into the ash to lower the AFT, or the ash itself dissolves into the CaCO3 containing rocks. Given the very low surface to volume ratio for the fluxing to occur, this is an inefficient way to introduce a fluxing agent. Based on the unexpected discovery of the impact of a low AFT on the desired carbon transfer disclosed herein, the coke can be “pre-fluxed” by selecting coals or coal blends having ashes that are proportionally higher in the low melting oxides, such as CaO, MgO, Fe2O3, Na2O, and K2O, than in the high melting oxides of Al2O3 and SiO2.


In a foundry cupola, coke is used as a fuel and carbon source to produce cast iron. Coke provides four functions in the cupola: (1) providing heat from the combustion to melt the iron or steel; (2) supplying carbon to the iron; (3) providing structural support for the iron or steel burden; and (4) creating gas permeable layers that allow the gases to travel upward and spread to provide good contact with the iron or steel.


Some embodiments can perform operations described in this disclosure to produce coke products that permit a higher carbon transfer rate to the iron or steel during foundry operations, which can result in better cupola performance. Some embodiments can use one of various types of ovens to produce coke products, such as a heat recovery oven, a non-recovery oven, a Thompson oven, another type of horizontal oven, a vertical byproduct oven, etc.


II. Coal Blends for Producing Foundry Coke Products, and Associated Systems and Methods

Some embodiments of the present technology can perform operations to increase the efficiency of coke product production operations in a manner that can reduce energy consumption and increase yield. These operations can include determining the composition of coal blends used to produce a coke product, where the composition of a coal blend can include coals from different coal sources. Some embodiments can select specific coals for their VM content, where VM content and distribution can determine affect coke product yield, coke product properties, etc. Some embodiments can further perform specific processes when producing a coke product with a coke oven, where such processes can include opening or closing valves of a coke oven to maintain certain temperature relationships within sections of the coke oven. These outputs can result in coking products that are unique in comparison to other coking products with respect to reactivity, size, or other properties.



FIG. 1 shows an illustrative system 100 for obtaining coal parameters for multiple type of coals 112, 113, 114, 116 (collectively referred to as “coals 110”) and determining a coal blend 140 formulation, in accordance with one or more embodiments. Various facilities and equipment can be used to blend the 110 coals from various sources to form the coal blend 140. In some embodiments, not all of the coal types shown in FIG. 1 are utilized to form the coal blend 140 (e.g., only type A coal 112 and type B coal 113 are used). Each of the coals 110 can be tested using a coal parameter measurement system 120 to determine coal parameters, such as a VM mass fraction, ash composition measurement, sulfur composition measurement, inert matter composition, etc. Some embodiments can also use other properties of the coal, such as a fluidity of tar in the coal, and AFT for the coal, vitrinite reflectance, etc., when selecting the type or amount of coals to use for a coal blend. Alternatively or additionally, some embodiments of the present technology can obtain coal parameters from a third-party data source (e.g., a database application program interface (API), or a user's manual input into an input device, such as a keyboard or touchscreen, etc.).


In some embodiments, the coal parameters can consider measurements of reactive components or subtypes of reactive components, such as vitrinite, liptinite, and reactive semifusinite. The coal parameters can also include measurements or select an amount of inert material to include into a coal blend, such as breeze, inert semifusinite, fusinite, macrinite, and mineral matter. In some embodiments, the inert content of a coal blend can be greater than or equal to 32.0%, or can be restricted to a particular range, such as between 28.0%-40.0%, or between 33.0%-35.0%. Some embodiments can determine the type and quantity of coals, breeze, and other components of a coal blend to satisfy a set of target coal blend parameters or corresponding target coke blend parameter, such as a target coal blend parameter, indicating a strong uniform coke. For example, some embodiments of the present technology can select the types of vitrinites that are present in a coal blend, where the types of vitrinite can include one or more of V9, V10, V11, V12, V13, V14, V15, V16, V17, V18, and V19.


After obtaining coal parameters for the coals 110, some embodiments of the present technology can determine combinations of coal types of the coals 110. For example, a first combination of coal types can include 20% type A coal 112, 30% type B coal 113, 40% type C coal 114, and 10% type D coal 115. Some embodiments can represent each combination of coal types with a vector in an n-dimensional mixture space, where “n” can represent an integer equal to or less than the number of available coal types usable to generate a coal blend. For example, some embodiments of the present technology can represent the first combination with a vector [0.2, 0.3, 0.4, 0.1] to represent a mixture point, where the mixture point can indicate the proportional amount of each coal in the coal blend. Furthermore, some embodiments of the present technology can add additives to a coal blend. Such additives can include calcium oxide, limestone, a calcium-containing material, trona, soda ash, caustic soda, slag (e.g., low ash fusion slag, a basic oxygen furnace (BOF) slag, a cupola slag, etc.), iron, nickel, potassium, magnesium, sodium, calcium sulfate, rockwool, biochar, or biomass (e.g., a low-AFT biomass). Alternatively or additionally, some embodiments of the present technology can add mineral additives, such as dolomite, various other calcium-containing minerals, iron-containing minerals, magnesium-containing minerals, or sodium-containing minerals. Some embodiments can use metal oxides as additives to a coal blend, such as Al2O3, SiO2, Fe2O3, MgO, Na2O, or TiO, transition metal oxides, calcined minerals. Some embodiments can add metal halide additives, such as CaCl2, MgCl2, NaCl. Some embodiments can add metal sulfates additives to a coal blend, such as CaSO4. Some embodiments can add aluminum or silicon mineral additives to a coal blend, such as Quartz, Muscovite, or Feldspar. Some embodiments can add additives from industrial waste or recycling streams, such as blast furnace slag, foundry cupola slag, metal fines, wallboard waste, flue gas desulfurization plant gas byproduct (e.g., fly ash), coal burning plant fly ash, heat recovery steam generator wash mud, or unwashed coal.


Once an additive is added, the coal blend can have a calcium mass fraction, a lime mass fraction, a trona mass fraction, a soda ash mass fraction, a caustic soda mass fraction, a low ash fusion slag mass fraction, a BOF slag mass fraction, a cupola slag mass fraction, an iron mass fraction, a nickel mass fraction, a potassium mass fraction, a magnesium mass fraction, a sodium mass fraction, a calcium sulfate mass fraction, a rockwool mass fraction, a biochar mass fraction, a biochar mass fraction, a biomass mass fraction, or another additive mass fraction that is greater than 0% but less than a predetermined threshold. The threshold can vary based on particular embodiments, and can be configured such that the additive mass fraction is less than 10.0%, less than 5.0%, less than 3.0%, less than 1.0%, etc. By using a small amount of the additives, some embodiments of the present technology can significantly lower an ash fusion value or another property that increases the efficiency of a coke product. Alternatively or additionally, some embodiments of the present technology can include a greater amount of additives, where the coal blend can include more than 10.0% of an additive. For example, some embodiments of the present technology can use an additive having a calcium oxide mass fraction greater than 70.0%, where inclusion of the additive can raise a calcium oxide mass fraction of a coal blend to be greater than 10.0%. Unless otherwise indicated, an element mass fraction can refer to the element itself, compounds containing the element, or both. For example, a calcium mass fraction can refer to a mass fraction of only calcium in a material, a mass fraction of calcium oxide, or a mass fraction of another calcium-containing compound, or a combined mass fraction of any combinations thereof, etc.


In many cases, the VM of coal includes vitrinite, where vitrinite can be categorized based on its reflectance or other physical properties. Some systems can categorize vitrinite by vitrinite types V8 to V18, where different coals can include different distributions of vitrinite types. As used in this disclosure, a high volatility coal can be characterized by having a VM mass fraction that is greater than a VM mass fraction threshold, where different systems can define a high volatility coal using different threshold. For example, some embodiments of the present technology can characterize a high volatility coal as a coal having a VM mass fraction that is greater than or equal to 28.0%. Some embodiments can use other VM mass fraction thresholds to characterize a high volatility VM, such as 25.0%, 27.0%, 30.0%, 31.0%, or some other threshold greater than or equal to 25.0%.


As used in this disclosure, a low volatility coal can be characterized by having a VM mass fraction that is less than a VM mass fraction threshold, where different systems can define a low volatility coal using different thresholds. For example, some embodiments of the present technology can characterize a low volatility coal as a coal having a VM mass fraction that is less than or equal to 20.0%, though a different value other than 20% can be used, such as 14.0%, 15.0%, 17.0%, 21.0%, etc. Some embodiments of the present technology can use other VM mass fraction thresholds to characterize a high volatility VM as a VM greater than the mass fraction threshold. The mass fraction threshold can be equal to a value such as 14.0%, 15.0%, 21.0%, 22.0%, 23.0%, or some other threshold less than or equal to 25.0%.


Some embodiments of the present technology can characterize or partially characterize a low volatility coal with respect to a high volatility coal by using a pre-determined difference, where the pre-determined difference can include a value greater than 1.0%, such as 2.0%, 3.0%, 4.0%, 8.0%, or some other value. For example, some embodiments of the present technology can set the difference between a first threshold used as the threshold for a high volatility coal and a second threshold used as the threshold for a low volatility coal as being equal to 4.0%, where a selection of 30% as the first threshold can cause a system to automatically select 26% as the second threshold. Alternatively, some embodiments of the present technology can determine or permit an alternative value to be the second threshold, such as 21%. By setting the thresholds used to define a high volatility coal and a low volatility coal or defining a difference between the two thresholds, some embodiments of the present technology can also automatically define a middle volatility coal as those coals that are not high volatility coals or low volatility coals.


This disclosure refers to the AFT of coal blends or coke products. An AFT of a coke product can be determined in various ways, such as via experimental observation (observed AFT) or determined using an empirical model (model AFT). Unless otherwise specified, the term “ash fusion” can refer to either an empirical model for ash fusion or an observed ash fusion. As will be discussed elsewhere, an AFT can be less than or equal to 2600° F., less than or equal to 2450° F., less than or equal to 2400° F., less than or equal to 2350° F., less than or equal to 2300° F., less than or equal to 2250° F., less than or equal to 2200° F., less than or equal to 2150° F., less than or equal to 2100° F., less than or equal to 2050° F., less than or equal to 2000° F., less than or equal to 1950° F., less than or equal to 1900° F., less than or equal to 1850° F., or less than or equal to 1800° F.


In some embodiments, an empirical model of AFT can be determined from remaining compounds of an ash generated from combustion of a coke product. When the value of the AFT is constrained to a range, these empirical models can serve to form a composition boundary in a multi-dimensional composition parameter space. The composition parameters of the parameter space can represent amounts of an element or compound in a material or group of materials, where the amounts can include compound mass fractions of their corresponding compounds, volumetric fractions, etc. By using different empirical models or different ranges for an AFT, some embodiments constrain the ash of a coke product to different regions in a composition parameter space, which can then constrain the composition of the coke product itself. For example, empirical models for the ash fusion can be defined in Equations 1-3 below, where “AFT” can be a model ash fusion temperature in degrees Celsius (° C.), “SiO2_mass_fraction” can be a SiO2 mass fraction of the ash of the coke product (“coke product ash”), “Al2O3_mass_fraction” is a Al2O3 mass fraction of the coke product ash, “Fe2O3_mass_fraction” is a Fe2O3 mass fraction of the coke product ash; “CaO_mass_fraction” is a CaO mass fraction of the coke product ash; “MgO_mass_fraction” is a MgO mass fraction of the coke product ash; and “K2O_mass_fraction” is a K2O mass fraction of the coke product ash:

AFT=19×(Al2O3_mass_fraction)+15×(SiO2_mass_fraction+TiO2_mass_fraction)+10×(CaO_mass_fraction+MgO_mass_fraction)+6×(Fe2O3_mass_fraction+Na2O_mass_fraction)  Equation 1
AFT=19×(Al2O3_mass_fraction)+15×(SiO2_mass_fraction+TiO2_mass_fraction)+10×(CaO_mass_fraction+MgO_mass_fraction)+6×(Fe2O3_mass_fraction+Na2O_mass_fraction+K2O_mass_fraction)  Equation 2
AFT=401.5+(26.3×SiO2_mass_fraction+40.7×Al2O3_mass_fraction)−11.0×Fe2O3_Mass_Fraction−7.9×CaO_mass_fraction−112×MgO_mass_fraction  Equation 3


Some embodiments can apply different models based on different compositions. For example, based on a determination that an Al2O3 and SiO2 mass fraction in the ash composition of a coal blend is between 65% and 80%, some embodiments of the present technology can use Equation 3 to compute a model AFT, and use Equation 2 to compute the model AFT otherwise. Some embodiments can use different models for different optimization operations. For example, some embodiments of the present technology can use Equation 3 to optimize a coal blend selected for coke production to have a lower content of Al2O3 and SiO2 while having a greater content of Fe2O3 and CaO. Furthermore, while some embodiments of the present technology can use a known model AFT, some embodiments of the present technology can use novel model AFT equations. For example, some embodiments of the present technology can use Equation 1 to determine an AFT, where Equation 1 can be found in Chapter 8 of Cupola Handbook, 6th ed., © 1999, American Foundrymen's Society, Inc., which is incorporated by reference herein, some embodiments of the present technology can use other AFT models, such as those described by Equation 2 or Equation 3. Various other limitations on the mass fractions of components of a coal blend can be imposed. For example, some embodiments of the present technology can produce a coal blend having an alumina Al2O3 content of ash of a coal blend as being less than 10.0%, less than 7.0%, less than 6.0%, less than 5.0%, etc.


By constraining an AFT to a specific boundary, some embodiments of the present technology can restrict the composition of an ash. In some embodiments, the specific boundary can encompass a temperature region such as 982° C. (1800° F.) to 1204° C. (2200° F.), 1204° C. (2200° F.) to 1426° C. (2600° F.), or 982° C. to 1426° C. If the ash is an ash product generated by combusting a coke product, restrictions on the composition of the ash results in a constraint on the coke product of the coke product itself. For example, some embodiments of the present technology can generate a coke product having certain amounts of Al, Si, Ti, Ca, Mg, Fe, Na, or K such that combustion of the coke product results in an ash having the composition that satisfies Equation 2. Various composition boundaries on a coke product ash can be used. For example, some embodiments of the present technology can generate a coke product such that a model AFT of the coke product as determined by Equation 3 is within an AFT boundary. For example, the AFT boundary can be a temperature range between 1260° C. (2300° F.) and 1427° C. (2600° F.), between 1260° C. and 1371° C. (2500° F.), between 1260° C. and 1316° C. (2400° F.), or between 1260° C. and 1427° C. In some embodiments, a lower bound on the temperature can be a different value, such as 982° C. (1800° F.) or a value less than 1288° C., such as 816° C. (1500° F.), 649° C. (1200° F.), or some other value less than 1288° C.


Furthermore, some embodiments of the present technology can constrain an AFT to be approximately a target value, wherein a parameter is approximately a target value if the parameter is within 10% of the absolute value of the target value. For example, some embodiments of the present technology can constrain an AFT to be approximately 982° C. (1800° F.), 1204° C. (2200° F.), 1260° C. (2300° F.), 1288° C. (2350° F.), 1316° C. (2400° F.), 1343° C. (2450° F.), 1371° C. (2500° F.), 1399° C. (2550° F.), or 1427° C. (2600° F.).


In some embodiments, a coal blend formulation can include specific properties, such as an ash fusion value less than or equal to 2400° F., which is equivalent to being less than 1316° C. Some embodiments can recommend or produce a coal blend that contains low-VM mass fraction coals and high-VM mass fraction coals without necessarily including middle-VM mass fraction coals. For example, a coal blend can have a bimodal profile of high-VM and low-VM coals within the coal blend. In such a bimodal profile, the coals of a coal blend can include only first and second sets of coals, where a first set of coals of the coal blend can include only high-VM coals having a VM mass fraction greater than 30.0%, and a second set of coals of the coal blend can include only low-VM coals having a VM mass fraction less than 22.0%.


Some embodiments can map the mixture point to a corresponding coal parameter point in a coal parameter space (“coal parameter point”), where each dimension in the coal parameter space can represent a coal parameter. In some embodiments, a dimension of a coal parameter point can be determined as a linear combination of the coals 110 weighted by the values of the corresponding mixture point. For example, a coal blend can include a two-coal-type mixture that includes 50% type A coal 112 and 50% type B coal 113. If the type A coal 112 has a VM mass percentage equal to 15% and the type B coal has a VM mass percentage equal to 25%, the VM mass percentage of the coal blend can be equal to the mean average of the two VM mass percentages, 20%.


Some embodiments can obtain a set of target coal parameters, where a target coal parameter can be provided as a default value, provided by manual data entry, obtained from a third-party data store, provided via an electronic message, etc. For example, the target coal parameter can include a coke reactivity index (CRI) or a coke strength after reaction (CSR) value. In some embodiments, the CRI or CSR can be manually entered by a user, obtained from a database, received via an API, etc. Some embodiments can use a model based on a set of coal parameters to determine a corresponding set of coke parameters. The model can include a statistical model, a semi-empirical analytical model, a neural network model, a physical simulation model, etc. As described elsewhere in this disclosure, some embodiments of the present technology can use a model that accounts for non-linear relationships between coal parameters and coke parameters. For example, some embodiments of the present technology can use a neural network, such as feed forward neural network, to predict a set of coke parameters.


In some embodiments, the neural network can be trained with past data. For example, some embodiments of the present technology can train a neural network based on past blends and outcomes of the blends where the outcomes can include coke properties such as a CSR, a percentage weight loss, a CRI, or another coke parameter that is non-linear with respect to a related coal parameter. Alternatively, or additionally, some embodiments of the present technology can use an analytical physics-based model or semi-analytical model to predict a coke parameter. The use of a neural network, or other non-linear methods to predict coke parameters based on coal parameters can be advantageous due to non-linear effects associated between coal parameters and coke parameters. Furthermore, some embodiments of the present technology can provide additional inputs to the neural network model, such as a breeze parameter, an amount of breeze used, etc.


Some embodiments can adapt to changes in the availability of different coal types. For example, a source mine for type A coal 112 can be shut down, a transportation line carrying type A coal 112 can be significantly delayed, a regulatory environment can make the use of certain coals infeasible for use, etc. In response to a determination that a coal type used in a coal blend is unavailable or expected to become unavailable, some embodiments of the present technology can generate an alternative coal blend formulation that maps to a position in a coal parameter space that is within a distance threshold of a first point in the coal parameter space. For example, some embodiments of the present technology can originally use a first coal blend that is 20% type A coal by weight, where the first coal blend maps to a first point in a coal parameter space that includes a VM mass ratio of 25%, a sulfur mass ratio of 0.4%, and ash mass ratio of 6%, etc. After receiving a message indicating that type A coal is restricted to 5% (e.g., as a result of an inventory drop), some embodiments of the present technology can perform a set of operations to determine one or more additional combinations that satisfy the coal type use restrictions and the coal parameter space. In cases where the first coal parameter point is not achievable while constrained by coal type availability, some embodiments of the present technology can determine an alternative coal blend formulation that maps to a coal parameter point that is within a coal parameter space distance threshold of the first coal parameter point.


Some embodiments can use the mixture point to determine mixture of coals to add and process for the coal blend 140. For example, some embodiments of the present technology can use operations described in this disclosure to determine a mixture point indicating a coal mixture that includes 20% type A coal 112, 30% type B coal 113, 40% type C coal 114, and 10% type D coal 115 and combine coal in these respective proportions into the coal blend 140. Some embodiments can then provide the mixed coal into a coke oven 150, where some embodiments of the present technology can add coke breeze 111 to the coke oven 150 to create a coke product having coke properties similar to or the same as a set of target coke properties.



FIG. 2 depicts an isometric, partial cut-away view of a portion of a horizontal heat recovery coke plant, in accordance with one or more embodiments of the present technology. An oven 200 of the coke plant can include various ducts, chambers, valves, sensors, or other components. For example, the oven 200 can include an open cavity defined by an oven floor 202, a pusher side oven door 204, a coke side oven door 206 opposite the pusher side oven door 204, opposite sidewalls 208 that extend upwardly from the oven floor 202 and between the pusher side oven door 204 and coke side oven door 206, and an oven crown 210, which forms a top surface of the open cavity of an oven chamber 212. Furthermore, the oven 200 can include a set of crown air inlets 214 that allows primary combustion air into the oven chamber 212. In some embodiments, the set of crown air inlets 214 can penetrate the oven crown 210 and permit open fluid communication between the oven chamber 212 and the environment outside the oven 200. In some embodiments, air flow through air inlets or air ducts (e.g., an uptake duct) can be controlled by dampers, which can be configured at any of a number of states between a fully open state and a fully closed state to vary an amount of air flow. For example, the crown air inlets 214 can include a damper that can be configured into different states to permit air flow into the oven crown 210, such as a crown inlet air damper 216, that operate in a similar manner. While embodiments of the present technology can use crown air inlets 214, exclusively, to provide primary combustion air into the oven chamber 212, other types of air inlets, such as the door air inlets, can be used in particular embodiments without departing from aspects of the present technology.


As discussed above, control of the draft in the oven 200 or other operations in the oven 200 can be implemented by control systems. Such operations can include operations of a coking cycle, which can include charging a coal blend into the oven 200, controlling the uptake damper 236 to be configured at any one of a number of states between fully open and fully closed, etc. Upon completion of the coking cycle, some embodiments of the present technology can coke out a coal blend to produce a coke product useful for producing steel with a cupola furnace. In some embodiments, foundry coke products may be used in a cupola furnace using operations described in U.S. application Ser. No. 18/052,739, titled “FOUNDRY COKE PRODUCTS AND ASSOCIATED SYSTEMS AND PROCESSING METHODS VIA CUPOLAS,” the disclosure of which is included herein as Appendix A. In some embodiments, the coke product can be removed from the oven 200 through the coke side oven door 206 with a pusher ram or another mechanical extraction system. In some embodiments, the coke can be quenched (e.g., wet or dry quenched) and sized before delivery to a user.



FIG. 3 is a table indicating volatile matter (VM) fractions for different types of coals usable in a coal blend, in accordance with one or more embodiments of the present technology. The vitrinite content and their corresponding categories for various types of coal is shown in table 300. The coals listed in row 301 include coal types, “T1,” “T2,” “T3,” “T4,” “T5,” “T6,” “T7,” and “T8.” As shown by the table 300, some coals can be considered low volatility coal, where a low volatility coal includes primarily vitrinites having low volatility, such as vitrinites V14, V15, V16, V17, or V18. As shown by the table 300, some coals can be considered high volatility coal, where a high volatility coal includes primarily vitrinites having high volatility, such as vitrinites V8, V9, or V10. Some coals can be considered middle volatility coals, where a middle volatility coal includes primarily vitrinites having volatilities that would not be considered high volatility or low volatility, such as vitrinites V11, V12, or V13.


As described elsewhere in this disclosure, some embodiments of the present technology can select a coal blend that includes primarily high volatility or low volatility coals. For example, some embodiments of the present technology can determine, recommend, or select coals indicated in the table 300 for inclusion in a coal blend, where the selected coals include the low volatility coals T1 and T2 and the high volatility coals T8 and T9. As shown in the columns 311-312, low volatility coals can be characterized by a proportionally higher amount of low volatility of vitrinites, such as V15 vitrinites and V16 vitrinites, relative to higher volatility vitrinites, such as V13 vitrinites. Similarly, as shown in the column 313, high volatility coals can be characterized by having a relatively higher amount of V8, V9, and V10 vitrinites relative to other vitrinites of the coal.


As described elsewhere in this disclosure, some embodiments of the present technology can generate unique coal blends by omitting middle volatility coals from a coal blend to increase the yield of coke products produced with the coal blend. Such coal blend can be unique for lacking middle volatility coals despite conventional methods which produce and use coal blends that include middle volatility coals due to conventional assumptions about the need for middle volatility coals to balance vitrinites during a coke-producing pyrolysis reaction. For example, a coal blend can include high volatility coals and low volatility coals. The high volatility coals can have a high volatility vitrinite fraction such that the majority of the vitrinite fraction of a high volatility vitrinite fraction is made of high volatility vitrinites such that the sum of the V8 vitrinite fraction, V9 vitrinite fraction, V10 vitrinite fraction, and V11 vitrinite fraction is greater than 50%. The low volatility coals can have a low volatility vitrinite fraction such that the majority of the vitrinite fraction of a low volatility vitrinite fraction is made of low volatility vitrinites such that the sum of the V14 vitrinite fraction, V15 vitrinite fraction, V16 vitrinite fraction, V17 vitrinite fraction, and V18 vitrinite fraction is greater than 50%. As used in this disclosure, a V16 vitrinite fraction (which can include having a volumetric fraction greater than 50%, a mass fraction grater 50%, etc.), where a vitrinite fraction can be relative to the total amount of maceral content of the coal or the total mass of the coal.


In some embodiments coals of the coal blend can have different ash fusion values, as shown by table 400. As will be indicated elsewhere in this disclosure, and output ash fusion can be lower in a coal blend compared to one or more constituent coals of the coal blend. For example, as described elsewhere herein, a coal blend comprising coal type T1, coal type T2, and coal type T9 can have an ash fusion value that is different from any of these values. As discussed elsewhere in this disclosure, some embodiments of the present technology can consider various coal parameters when determining a mixture of coals for a coal blend. For example, some embodiments of the present technology can obtain coal parameters for a set of coal types T1-T9, as indicated in the table 400. Some embodiments can then determine an amount of coals, breeze, or other additives for a coal blend. For example, some embodiments of the present technology can obtain a set of sulfur values shown in row 413 of the table 400 and a set of ash fusion values shown in row 420. Some embodiments can then obtain a target ash fusion value as a target coal blend parameter and determine a coal blend composition from the coals T1-T9.


As described elsewhere in this disclosure, some embodiments of the present technology can constrain or otherwise restrict the coals being used to low volatility or high volatility coals without using middle volatility coals. For example, if the coals of coal type TI are low volatility coals, the coals of coal type T5 are a middle volatility coal, and the coal of coal type T9 are a high volatility coal, some embodiments of the present technology can be restricted from using coals of coal type T5 when determining which coals to use for a coal blend. Furthermore, some embodiments of the present technology can restrict the use of coals of specific coal types or require the use of coals a specific coal types. For example, some embodiments of the present technology can receive instructions requiring the use of coals having a VM mass fraction between 0% and 20%, which can restrict a coal blend to including coals of at least one of coal type T1 or coal type T2. Furthermore, some embodiments of the present technology can obtain a plurality of target coal blend parameters or a range or plurality of ranges of target coal blend parameters. Some embodiments can provide a corresponding number of possible combinations of coals of different coal types that satisfy these sets of target coal blend parameters or ranges of coal blend parameters.



FIG. 4 is a table indicating properties associated with different types of coals used in a coal blend, in accordance with one or more embodiments of the present technology. As shown in the table 400, coals of different coal types can have different properties, where some embodiments of the present technology can use properties as coal parameters for use in satisfying a target parameter. For example, some embodiments of the present technology can receive program instructions to satisfy a target parameter representing a required VM for a coal blend. In response some embodiments of the present technology can determine a range of VM values represented by a row 411 of the table 400 that satisfy the required VM for the coal blend or a range required VM value. Some embodiments of the present technology can perform similar operations for each of the coal properties listed in rows 411 to 428.



FIG. 5 is a table indicating the composition associated with different types of coals used in a coal blend, in accordance with one or more embodiments of the present technology. As shown in the table 500, coals of different coal types can have different compositions. Some embodiments can use material compositions as coal parameters for use in satisfying a target coal parameter. For example, some embodiments of the present technology can receive program instructions to satisfy a target coal parameter representing a required calcium oxide value or range of calcium oxide values. In response, some embodiments of the present technology can determine a range of coal compositions of the coal types T1-T9 that satisfy the required calcium oxide value or range of calcium oxide values.



FIG. 6 is a table indicating additional measurements associated with different types of coals used in a coal blend, in accordance with one or more embodiments of the present technology. As shown in the table 600, a coal blend can include various compounds. Due to heterogeneity and sources of variation within coal sources, coal blends of the same coal type at the same ratios can yield different sample values for each coal blend sample that is tested.



FIG. 7 is a flowchart for a process to determine a coal blend formulation, in accordance with one or more embodiments of the present technology. Some embodiments can obtain a set of coal parameters for an available set of coals, as indicated by block 704. As described elsewhere, coal parameters can include various properties or compositions associated with a specific type of coal. For example, a coal blend can include a relative or absolute measure of VM, ash, sulfur, total inert material, mineral matter, model AFT, an AFT ST value, an AFT HT value, a solidification temperature, a dilation, an amount of a specific type of volatile material (e.g., an amount of V8 vitrinite, V9 vitrinite, etc.) or other coal parameter. Some embodiments can obtain coal parameters from a user input, from an historic record of values stored in a database, from an application program interface (API), etc.


Some embodiments of the present technology can obtain a set of target coal blend parameters, as indicated by block 708. For example, some embodiments of the present technology can obtain a target coal blend parameter based on an input provided by a user via a graphical user interface (GUI). Alternatively, or additionally, some embodiments of the present technology can obtain a target coal blend parameter from a stored configuration file, a record of historical values, or an API. Some embodiments can estimate, predict, or otherwise determine a target coal blend parameter from a target coke parameter. For example, some embodiments of the present technology can obtain a target reactivity and sulfur mass fraction as a target coke parameter. Some embodiments can then provide a machine learning prediction model with the target coke parameter to determine a set of target coal blend parameters.


Some embodiments of the present technology can determine a coal blend formulation based on the set of coal parameters and set of target coal blend parameters, as indicated by block 712. Some embodiments can determine a percentage or other type of ratio indicating an amount of a coal type to use in a coal blend by manipulating the type and amount of coals to use to match a set of target coal parameters. For example some embodiments of the present technology can receive program instructions or parameters of the configuration files indicating a target coal parameter for a target VM content. Some embodiments can then perform a set of operations to compute a mixture point representing the mixture of different coals corresponding with different coal types. For example, some embodiments of the present technology can perform an optimization operation to determine a region in a coal parameter space that can be satisfied by selecting different coals from a set of available coals.


Some embodiments of the present technology can be restricted from determining coal blends that include middle volatility coals, such as a coal having a VM mass fraction such that V11, V12, or V13 vitrinites are the primary components of the VM mass fraction or coal blend maceral content. For example, some embodiments of the present technology can first receive a target coal parameter indicating that a target VM mass fraction is 0.25 or some other value that is greater than or equal to 10%, 20%, 25%, etc. Some embodiments can then explore a coal parameter space formed by possible mixtures of different coal types to satisfy this target VM mass fraction, where the exploration can include low volatility coal types or high volatility coal types while excluding middle volatility coal types. Some embodiments can determine a coal blend formulation such that a mass fraction of low volatility coals of the coal blend is greater than or equal to a first mass fraction threshold and a mass fraction of high volatility coals of the coal blend is greater than or equal to a second mass fraction threshold, where the first mass fraction threshold can be greater than or equal to 50% and the second mass fraction threshold can be less than or equal to 50%. For example, some embodiments of the present technology can determine a coal blend formulation such that a mass fraction of low volatility coals of the coal blend is greater than or equal to 60% and a mass fraction of high volatility coals of the coal blend is greater than or equal to a 15%. Alternatively, or additionally, some embodiments of the present technology can determine a coal blend formulation such that a mass fraction of high volatility coals of the coal blend is greater than or equal to a first mass fraction threshold and a mass fraction of low volatility coals of the coal blend is greater than or equal to a second mass fraction threshold, where the first mass fraction threshold can be greater than or equal to 50% and the second mass fraction threshold can be less than or equal to 50%. For example, some embodiments of the present technology can determine a coal blend formulation such that a mass fraction of high volatility coals of the coal blend is greater than or equal to 60% and a mass fraction of low volatility coals of the coal blend is greater than or equal to 15%.


As described elsewhere in this disclosure, a low volatility coal type can have a corresponding volatility that is less than or equal to a first volatility threshold, and a high volatility coal type can have a corresponding volatility that is greater than or equal to a second volatility threshold, where the first volatility threshold can be less than the second volatility threshold. With reference to FIG. 3, some embodiments of the present technology can generate a coal blend formulation indicating a coal blend that includes breeze, coal type T1, coal type T2, and coal type T9. However, despite such unconventional mixtures for a coal blend, some embodiments of the present technology can produce a resulting coke product having an ash fusion value within a useful parameter range, such as an ash fusion value equal to 2526° F., or a coke product having an enhanced CRI, such as a CRI that is greater than or equal to 30%, greater than or equal to 35%, or greater than or equal to 40%.


As described elsewhere in this disclosure, some embodiments of the present technology can recommend a coal blend formulation that includes coke breeze. Some embodiments can select coke breeze or an amount of coke breeze for inclusion based on breeze parameters associated with the coke breeze. For example, some embodiments of the present technology can obtain a VM mass fraction of breeze, an ash mass fraction of the breeze, or a sulfur mass fraction of the breeze. Some embodiments can then determine an amount of coke breeze to include in a coal blend based on the obtained set of breeze parameters. In some embodiments, the range for an amount of coke breeze to include in a coal blend can be between 1% to 20% coke breeze, though other ranges are possible. For example, some embodiments of the present technology can recommend a coal blend formulation that includes 10% coke breeze based on a determination that this amount of coke breeze, in combination with other coals, satisfy a set of target coal blend parameters.


Some embodiments of the present technology can determine a coal blend having a relatively high ash mass fraction. While some embodiments of the present technology can use a low ash mass fraction in a coal blend (e.g., less than 10.0%), some embodiments of the present technology can recommend a coal blend formulation having an ash mass fraction that is greater than or equal to 10.0%, where an ash mass fraction that is greater than 10.0% can be considered a high ash content for a coal blend. For example, some embodiments of the present technology can determine a coal blend formulation that has an ash mass fraction that is greater than or equal 10.0%, 11.0%, 15.0%, or 20%. By increasing the use of ash in a coal blend, some embodiments of the present technology can increase the effective strength of a coke product produced from a coal blend. Furthermore, recycling ash byproduct from a coking operation increases the resource efficiency of operations to produce coke product from a coal blend by reducing the reliance on additional additives for a coal blend.


Some embodiments of the present technology can recommend a coal blend formulation that includes coke breeze that is restricted to a specific size or a range of sizes. For example, some embodiments of the present technology can recommend a first coal blend formulation that includes coke breeze that is restricted to being a 10-mesh coke breeze or larger coke breeze or a second coal blend formulation that includes coke breeze that is restricted to being a 20-mesh coke breeze or larger coke breeze. In some embodiments, different coal blend formulations can be recommended, where size restrictions can be negatively correlated with an amount of coke breeze being recommended for inclusion in a coal blend formulation. For example, some embodiments of the present technology can restrict a coal blend to using a coke breeze characterized as a 10 mesh coke breeze or larger coke breeze such that less than 5.0% of the coke breeze being used is characterized as the 10 mesh coke breeze or larger. Alternatively, or additionally, some embodiments of the present technology can use a coke breeze characterized as having a 20 mesh coke breeze or larger coke breeze such that less than 10.0% of the coke breeze being used is characterized as a 20 mesh coke breeze or larger. Alternatively, or additionally, some embodiments of the present technology can use a coke breeze characterized as having a 90 mesh coke breeze or smaller coke breeze such that less than 10.0%, less than 15.0%, or less than 25.0% of the coke breeze being used is characterized as a 90 mesh coke breeze or smaller.


As described elsewhere, some embodiments of the present technology can determine a coal blend formulation that includes multiple coal types, such as a first, second, and third coal type. Some embodiments can select the use of a coal type using optimization operations that satisfy one or more target coal blend parameters, where these optimization operations can compensate for limitations in coal availability, coal quantity, or coal variation between different batches of coal. For example, some embodiments of the present technology can recommend a coal formulation having a first amount of a first coal and a second amount of a second coal. The first coal can be a low volatility coal such that the mass fraction of V16 vitrinite is greater than 25% of the total VM mass fraction of the first coal, and the second coal can be a high volatility coal such that the sum of higher-volatility vitrinites, such as a sum of the fractions of V8 vitrinite, V9 vitrinite, and V10 vitrinite is greater than 40% of the total VM mass of the second coal. While some embodiments of the present technology can use 40%, as a threshold, other values are possible, such as 50%, 60%, 70%, or some other percentage greater than 40%.


While VM content is a significant concern for coal blend formulation, other properties such as ash fusion values, sulfur mass fraction, calcium mass fraction, or ash mass fraction can also be considered for the coal blend. For example, some embodiments of the present technology can provide a coal blend formulation indicating a sulfur oxide mass fraction of the coal blend that is greater than 5.0%, or a calcium oxide mass fraction of the coal blend that is greater than 5.0%. As will be discussed elsewhere in this disclosure, some embodiments of the present technology can benefit by using coal blends with higher reactivity or greater dimensions to compensate for elevated calcium or sulfur values. By permitting greater values of components, such as sulfur or calcium during coal blend formulation, some embodiments of the present technology can provide additional robustness that would not be viable for previous coal blend operations because the coal blends produced from such previous operations would have calcium or sulfur content that can be too high for foundry operations. Furthermore, while some target properties can be compositions, some properties can be based on other physical phenomena. For example, some embodiments of the present technology can produce a coal blend having a fluidity between 100 dial divisions per minute (ddpm) and 1200 ddpm or some other fluidity range, such as 200 ddpm and 1200 ddpm. Other ranges of fluidity for a coal blend is possible. For example, a fluidity of a coal blend can be greater than or equal to 100 ddpm.


As described elsewhere, some embodiments of the present technology can use a coke oven to produce a coke product or a population of coke products from a coal blend. As used in this disclosure, an ash fusion of a coal blend can be equivalent to an ash fusion of a coke product produced from the coal blend, and the two terms can be used interchangeably. Some embodiments can recommend a coal blend having an AFT that is within a range. For example, some embodiments of the present technology can recommend a coal blend having an AFT equal to 2326° F. or another temperature that is less than 2500° F. or another AFT threshold. In some embodiments, the AFT threshold can vary based on other target coke product parameters. In many cases, a coal blend that can be used to produce a coke product with a relatively reduced ash fusion, where a reduced ash fusion can provide downstream advantages during foundry operations in requiring fewer foundry resources or less coke product to produce steel or other foundry products.


Various types of optimization algorithms can be used to determine a mixture point for a coal blend of various components in order to satisfy a target coal blend parameter when confined within a parameter space of coal parameters. Some embodiments can use a linear solver to determine for vectors representing mixture points in a parameter space. For example, a set of coke parameters can include a first subset of coke parameters and a second subset of coke parameters, where the first subset of coke parameters is non-linear with respect to any parameter of a coal parameter space, and where the second subset of coke parameters is linear with respect to at least one coal parameter. Some embodiments can determine a mixture point using a lower-upper (LU) decomposition of a matrix representing coal parameters to solve for a vector representing the second subset of coke parameters, where the solution vector can represent a first mixture point. Some embodiments can then predict a coke parameter, such as a CSR, based on the first mixture point. A determination that the predicted non-linear coke parameter does not satisfy a criterion based on a target non-linear coke parameter (e.g., not being equal to the target parameter, being greater or lesser than the target parameter by a value greater than a tolerance threshold, etc.) can cause some embodiments to select additional mixture points. Some embodiments can then determine a set of coal parameters corresponding with each additional mixture point and simulate or otherwise predict additional coke parameters based on the set of coal parameters. Some embodiments can then select one or more of the additional mixture points for use as a coal blend formulation based on the predicted additional coke parameters.


Some embodiments of the present technology can determine the coal blend formulation such that an aggregated VM mass fraction of the resulting coal blend will satisfy a target VM mass fraction or a range of target values. In some embodiments, a range of target values for a target VM mass fraction can be pre-determined. For example, some embodiments of the present technology can receive program instructions to recommend a coal blend formulation such that the aggregated VM mass fraction is between 17.0% and 25.0%. Some embodiments can then recommend a coal blend formulation that satisfies the range. For example, with reference to FIG. 3 and FIG. 5, some embodiments of the present technology can recommend a coal blend formulation including 12% coke breeze, 48% T1 coal, 20% T2 coal, and 20% T9 coal. While the above describes a VM range of 17.0% to 25.0%, other thresholds are possible. For example, some embodiments of the present technology can limit a VM mass fraction of a coal blend to be less than 27.0%, 30.0%, or some other value.


Some embodiments of the present technology can control a blending system to produce a coal blend based on the coal blend recommendation. Some embodiments can implement control systems to retrieve, process, and mix coals of different types to produce a coal blend in accordance with the ratios and materials indicated by a coal blend formulation. For example, some embodiments of the present technology can determine a coal blend formulation including 12% coke breeze, 48% T1 coal, 20% T2 coal, and 20% T9 coal. Some embodiments can then actuate a set of control mechanisms to mix 12 tons of coke breeze, 48 tons of T1 coal, 20 tons of T2 coal, and 20 tons of T9 coal into a mixing chamber to produce a coal blend.


III. Coking Coal Blends to Produce Foundry Coke Products, and Associated Systems and Methods


FIG. 8 is a flowchart for a process to produce a coke product using a coke oven, in accordance with one or more embodiments of the present technology. Some embodiments can increase the moisture of a coal blend, as indicated by block 812. With reference to FIG. 2, a coal blend that is being charged into the oven chamber 212 can first be exposed to water to increase the moisture of the coal blend. For example, some embodiments of the present technology can activate a pump or valve to spray a coal blend with water or another fluid to increase the moisture of a coal blend as the coal blend is transported along a conveyor belt. It should be understood that a fluid that includes water can be described as water in this disclosure.


In some embodiments, a pump, valve or other mechanism can be controlled to spray fluid or otherwise expose a coal blend to a fluid to increase a moisture mass fraction of the coal blend to a value between 1.0% and 20.0%. Some embodiments can permit a degree of tolerance when increasing a moisture mass fraction of a coal blend. For example, some embodiments of the present technology can increase the moisture mass fraction of a coal blend to be greater than or equal to 8.0% and less than or equal to 13%. Some embodiments can use stricter tolerances, such as exposing a coal blend to an amount of water such that the moisture mass fraction of the coal blend is set to be between 10% and 12%. Some embodiments can determine an amount of water to spray based on a VM mass fraction of the coal blend. Some embodiments can add water such that a 1% decrease in moisture mass fraction from a baseline moisture content permits a 1% decrease in VM from a baseline value. For example, some embodiments of the present technology can add water to a coal blend such that a moisture mass fraction for the coal blend is equal to a VM mass fraction of the coal blend minus a preset value, such as 10%. Furthermore, though some embodiments use 10% as a preset value, other values are possible, such as 15%, 14%, 10%, 8%, 5%, or some other threshold value less than 50%.


Some embodiments of the present technology can include sensors to test the moisture of a coal blend and further increase or change a moisture mass fraction of a coal blend based on the measured moisture. For example, some embodiments of the present technology can determine that a measured moisture of a coal blend is less than a first moisture threshold and, in response, add additional fluid to a coal blend. Alternatively, some embodiments of the present technology can determine that a measured moisture is greater than a second moisture and, in response, add additional dry coal blend to the moistened coal blend. In some embodiments, the first moisture threshold can be a value greater than or equal to 1.0%, such as 5.0%, 10.0%, 12.0%, etc., and the second moisture threshold can be a value less than or equal to 15.0%, such as 15.0%, 13.0%, etc.


Some embodiments of the present technology can open the dampers of the coke oven, as indicated by block 824. Some embodiments can keep the dampers of a coke oven open during an initial heating period of the coke oven. For example, some embodiments of the present technology can use a set of controllers to send instructions to a damper actuator to open a set of sole flue dampers. Once set in an open state, the set of sole flue dampers can enable fluid communication between open atmosphere and a sole flue of a coke oven before a coal blend is placed into the coke oven and while the coal blend is placed into the coke oven. Furthermore, as described elsewhere in this disclosure, some embodiments of the present technology can use the set of controller sent instructions to the same actuator or a different actuator to change the state of the damper to a partially closed state or a fully closed state.


Some embodiments of the present technology can charge the coal blend into the coke oven, as indicated by block 828. As described elsewhere in this disclosure, some embodiments of the present technology can use a coke oven to produce coke products from a coal blend. Some embodiments can charge the coal blend by using a pusher charger machine and operations associated with the pusher charger machine.


Some embodiments of the present technology can take advantage of a heat recovery coke oven to reduce the fuel or power consumption of a coke oven. For example, some embodiments of the present technology can determine that a minimum temperature associated with the coke oven has been achieved by a measured temperature of coke oven. The minimum temperature can vary based on a specific implementation or coke oven and can be a temperature greater than 500° F., such as 1000° F., 1500° F., or some other temperature greater than 500° F. In response to a determination that a measured temperature of the coke oven has reached the minimum temperature, some embodiments of the present technology can initiate heat recovery operations, such as steam recovery operations, and reduce fuel consumption of the coke oven.


Some embodiments of the present technology can perform damper operations to maintain a coking temperature of the crown and sole flue of the coke oven during a pyrolysis duration of the coking cycle, as indicated by block 832. Some embodiments can perform a set of opening operations and closure operations of a set of dampers during a cycle. For example, some embodiments of the present technology can initially heat an oven during a coking cycle while a set of uptake dampers of the coke oven is in a fully open configuration. Some embodiments can then initiate a closure operation that causes the set of uptake dampers to switch to a second configuration, where the second configuration can be a partially open configuration or fully closed configuration. In some embodiments, the pyrolysis duration (sometimes called a coking duration) can be considered to have started once a lower bound coking temperature has been achieved, where the lower bound coking temperature can be a value that characterizes foundry coking temperatures, where the coking temperature can be a temperature greater than a byproduct temperature of 1800° F. or a temperature less than a blast temperature of 2500° F. For example, the lower bound coking temperature can be a value within a range, where the range can be within 1200-2300° F., 1800-2300° F., or 2000-2400° F. For example, the lower bound coking temperature can be 1990° F. In some embodiments, the pyrolysis duration can be considered to have ended once a coking reaction has ended, where a coal or coal blend that has reached the end of the coking reaction can be referred to as being “coked out.” Some embodiments of the present technology can detect an end to a coking reaction in an oven based on a temperature reduction in a crown temperature or sole flue temperature. In some embodiments, the duration of a coking cycle can be determined as the sum of the duration of the pyrolysis time and a soak time, where a soak time represents the amount of time that a coke product is left in an oven at the conclusion of a pyrolysis duration before the coke product is removed from the oven.


Some embodiments can use sensor measurements to determine whether or not to open or close a valve. For example, some embodiments of the present technology can retrieve a set of crown temperature measurements from a crown temperature sensor. Some embodiments can then determine whether the set of crown temperature measurements satisfies a set of crown temperature criteria by determining whether a crown temperature threshold has been satisfied by one or more temperature measurements. Alternatively, or additionally, some embodiments of the present technology can determine whether the set of crown temperature measurements satisfies a set of crown temperature criteria by determining whether a temperature rate threshold is satisfied by changes to a sequence of crown temperature measurements. For example, some embodiments of the present technology can determine whether a temperature change rate of a crown temperature has increased to become greater than a temperature rate threshold of 50° F. per hour or some other value that is less than or equal to 50° F. per hour (e.g., a temperature rate threshold that is 35° F. per hour). In response to a determination that the temperature change rate satisfies the temperature rate threshold by being greater than or equal to the temperature rate threshold, some embodiments of the present technology can use a controller to actuate a damper to close or partially close in order to reduce an amount of air flow into a coke oven.


Some embodiments can maintain a temperature inequality between a crown temperature of the coke oven and the sole flue temperature of the coke oven during the pyrolysis duration. For example, some embodiments of the present technology can maintain a crown temperature between a range of 2000-2400° F. during a pyrolysis duration, where the crown temperature can vary within a pre-determined range. Furthermore, narrower temperature ranges for a crown temperature are possible. For example, a crown temperature can vary between 1149° C. (2100° F.) and 1316° C. (2300° F.). In addition, a target temperature can be changed for different coking operations. For example, some embodiments of the present technology can maintain a temperature range that is within 100° F. of a first target temperature equal to 2000° F., such that a crown temperature or another coking temperature in a coke oven does not vary by more than 100° F. from 2000° F. during a pyrolysis duration or a pre-determined sub-duration of the pyrolysis duration. Furthermore, other temperature differences or target temperatures are possible for an approximate isothermal pyrolysis duration or sub-duration, where the temperature difference can be less than 200° F. and the target temperature can be a temperature between 1300° F. and 2600° F. For example, the temperature difference can be less than 25° F., 50° F., 100° F., 150° F., or 200° F., and the target temperature can be less than 1850° F., 1950° F., 2050° F., 2200° F., 2400° F., or 2600° F.


Despite variations in the crown temperature, some embodiments of the present technology can regulate a crown temperature and sole flue temperature such that the crown temperature is greater than the sole flue temperature throughout the pyrolysis duration. Some embodiments can achieve this control by actuating an uptake damper that controls flow through an uptake duct or a sole flue damper that controls flow through a sole flue. Some embodiments can control the period between changes in the state of a damper and the specific states of the damper for each respective sub-period of a pyrolysis duration. For example, some embodiments of the present technology can execute a sequence of closing an uptake damper or a sole flue damper from a fully open configuration into a partially closed configuration before reopening the damper into the fully open configuration. In some embodiments, the sequence of damper closure and damper opening operations can be more complex than a simplistic opening and closing operation. For example, some embodiments of the present technology can keep a damper open for a first period, partially close the damper within four hours of closure (e.g., initiate closure operations within two hours of the start of a pyrolysis duration), reopen the damper to a full open configuration, close the damper into a fully closed configuration, reopen the damper to a partially open configuration, fully open the damper into a fully open duration, and then fully close the damper to a fully closed configuration.


In some embodiments, a pyrolysis duration or a coking cycle can be greater than or equal to 12 hours, greater than or equal to 24 hours, greater than or equal to 48 hours, greater than or equal to 72 hours, greater than or equal to 96 hours. In some embodiments, operations to increase the moisture of a coal blend can permit an oven to maintain a longer pyrolysis duration, such as approximately 96 hours, approximately 72 hours, approximately 48 hours or another duration greater than 24 hours. For example, after increasing the moisture of a coal blend as described in block 812, some embodiments of the present technology can be capable of increasing the amount of time that the coal blend is exposed to a coking temperature from 24 hours to 48 hours or more than 48 hours.


Some embodiments can maintain a relatively isothermal temperature profile for a crown temperature during a pyrolysis duration, where a relatively isothermal temperature profile can mean that the crown temperature is within a pre-defined range that is within 10% or 20% of a median value or average value. For example, some embodiments of the present technology can maintain a crown temperature that satisfies a 50° F. temperature range of 2000° F. during a duration such that the crown temperature is between 1950° F. and 2050° F. during a pyrolysis duration. Alternatively, some embodiments of the present technology can maintain a crown temperature that is within a crown temperature range during a sub-duration of the pyrolysis duration. For example, during a 24 hour pyrolysis duration, some embodiments of the present technology can operate a set of valves to maintain a crown temperature between 2000° F. and 2080° F. for a sub-duration when the pyrolysis duration is at least 12 hours long. The temperature range boundary can include various temperature ranges, such as a 20° F. temperature, 40° F. temperature, or some other value less than 200° F. Furthermore, the temperature range can be centered around a specific value, such as 1900° F., 2000° F., 2100° F., or some other temperature value. Furthermore, some embodiments of the present technology can be pre-configured to use a specific temperature range.


Some embodiments can retrieve a population of coke products from the coke oven, as indicated by block 844. A coke oven can produce a population of coke products that include foundry coke products, egg coke products, and coke breeze. The operations described in this disclosure can result in various favorable properties, dimensions, or other attributes of the population of coke products, for example, a foundry coke product. Some embodiments can control a coke oven to engineer a targeted distribution of coke products among a population of coke products. For example, operations to maintain an approximately isothermal pyrolysis duration such that at least 60.0% of the population is foundry coke product, and at least 20% of the population is breeze product or egg coke products. By using operations that convert a majority of the output of a coking operation to foundry coke products, some embodiments of the present technology can increase the efficiency of downstream foundry operations. Furthermore, as used in this disclosure, an egg coke product can include a coke product that remains after being screened between 2 inches to 4 inches.


As will be discussed elsewhere in this disclosure, some embodiments of the present technology can generate a foundry coke product with advantageous drop shatter properties. Coke products with greater drop shatter survival rates can retain useful product shapes during downstream foundry operations. For example, some embodiments of the present technology can produce a coke product that has a 4-inch drop shatter that is greater than or equal to 80%, where a 4-inch drop shatter indicates the expected fraction of coke products that do not show significant breakage when dropped from a 4-inch height. Similarly, the same coke products or different coke products can have a 2-inch drop shatter that is greater than or equal to 90%, where a drop shatter that is greater than 90% can indicate significant product strength.


As will be discussed elsewhere in this disclosure, some embodiments of the present technology can generate a foundry coke product with advantageous fluidity values. Products with greater drop shatter survival rates can help preserve useful product shapes during downstream foundry operations. For example, some embodiments of the present technology can produce a coke product that has a fluidity that is greater than a fluidity threshold, such as a fluidity that is greater than or equal to 200 ddpm. A greater fluidity can increase the reaction efficiency during downstream foundry operations.


As will be discussed elsewhere in this disclosure, some embodiments of the present technology can generate a foundry coke product with advantageous AFTs and coke products with lesser AFTs. For example, some embodiments of the present technology can produce a coke product that has a fluidity that is greater than a fluidity threshold, such as a fluidity that is greater than or equal to 100 dial divisions per minute (ddpm) greater than or equal to 150 ddpm, or greater than or equal to some other value, 200 ddpm, such as 250 ddpm, 260 ddpm, 270 ddpm, 280 ddpm, 290 ddpm, or within a range of 250-300 ddpm. A greater fluidity can increase the reaction efficiency during downstream foundry operations.



FIG. 9 is a chart showing a burn profile for a blast coke product operation. The chart 900 shows blast operations of a coke oven during a coking cycle. A line 950 demonstrates the positions of an uptake damper of the coke oven. As shown in a first sub-duration outlined by a first region 901, the oven damper remains in a fully open state for over 12 hours. As shown by the drop of line 950 at the end of the first sub-duration, the damper can be controlled and positioned into different partially closed states over the next 36 hours, as shown in a second sub-duration outlined in a second region 902. The damper is then fully closed, as shown by the third sub-duration outlined in a third region 903.


As shown by the crown temperature measurement line 910, the crown temperature of the blast coke can vary significantly over time, and can vary by more than 400° F. For example, the crown temperature can be 2004° F. at timepoint 911 and 2449° F. at timepoint 912. Furthermore, relative difference of the crown temperature to an uptake temperature can switch during the coking cycle represented by the chart 900. As seen by the uptake temperature line 920, the uptake temperature is less than the crown temperature until a time represented by the timepoint 921, remains greater than the crown temperature until a time represented by the timepoint 922, and remains less than the crown temperature until a time represented by the timepoint 923. Both the temperature variation in the crown temperature and the repeated switching of relative temperatures can result in inhomogeneities and lower crystallization in any coke products produced by operations represented by the chart 900.



FIG. 10 is a chart showing a burn profile for a foundry coke product operation, in accordance with one or more embodiments of the present technology. The chart 1000 shows foundry coke operations of a coke oven during a coking cycle. A line 1050 demonstrates the positions of an uptake damper of the coke oven. As shown in a first sub-duration outlined by a first region 1001, the oven damper remains in a fully open state for approximately two hours. As shown by the drop of line 1050 at the end of the first sub-duration, the damper can be controlled and positioned into a first partially closed state that is at a closed state greater than 50% closure and held in this state for a second sub-duration represented by a second region 1002.


After an initial closure operation, the damper can be held for a pre-determined period of time (e.g., 10 hours, 20 hours, or another duration greater than 2 hours). Alternatively, or additionally, the damper can be triggered to reopen later based on a temperature measurement. For example, some embodiments of the present technology can detect that the crown temperature represented by the line 1050 satisfies a temperature threshold (e.g., exceeding a maximum value threshold or being less than a minimum value threshold) and, in response, perform an opening operation of the damper. As shown by the times represented by the regions 1003, 1004, 1005, 1006, and 1007, the damper can be repeatedly operated in accordance with a pre-determined schedule or a set of thresholds to open and close the damper, where the opening operation or closure operations can change a damper to a fully open state, partially closed state, or full closed state. The operations shown by the line 1050 to open or close a damper are shown in the chart 1000 to (1) close a damper to a first partially closed state, (2) reopen the damper to a fully open state, (3) close the damper to a second partially closed state, (4) reopen the damper to the fully open state, (5) close the damper to a second partially closed state, (6) close the damper to a fully closed state, (7) reopen the damper to the second partially closed state, (8) reopen the damper to the fully open state, and then (9) close the damper to a fully closed state. However, other sequences of damper operation are possible, such as a closure to a fully closed state at the second sub-duration represented by the second region 1002.


Some embodiments can treat the time at which an oven temperature reaches a lower bound coking temperature threshold to be the start of a pyrolysis duration, during which the bulk of the coking reaction to produce coke products from a coal blend in a coke oven is occurring. Some embodiments can have multiple criteria to determine that the start of a pyrolysis duration has occurred, such as a first criterion requiring that a temperature threshold is reached by a crown temperature and a second criterion requiring that the crown temperature be greater than a sole flue temperature. As can be seen by a comparison of the crown temperature 1010 with the sole flue temperature 1020, the crown temperature can be greater than the sole flue temperatures for the entirety of the pyrolysis duration when implementing a foundry coke product operation. Furthermore, as can be seen in the chart 1000, the crown temperature 1010 can be relatively isothermal with respect to a target temperature of 2100° F. and an allowable temperature difference of 100° F. in the pyrolysis sub-duration represented by the regions 1003-1006. By maintaining this relatively isothermal temperature, some embodiments of the present technology can increase a crystallization efficiency, which can permit more efficient carbon release during a foundry operation.


IV. Foundry Coke Products and Associated Systems, Devices, and Methods


FIG. 11 illustrates a coke particle configured to be heated in a foundry cupola, in accordance with one or more embodiments of the present technology. As shown in FIG. 11, C(b)=carbon bulk, S(b)=sulfur bulk, Ash (b)=ash in bulk, C(s)=surface carbon, S(s)=surface sulfur, Ash(s)=surface ash (which builds up from the shrinking core), Fe(s)=surface Fe, C*(s)=active carbon surface, FeC, S*(s)=active sulfur surface, FeS, C(l)=carbon in liquid, and S(l)=sulfur in liquid. The coke particle 1100 includes a core 1105 that shrinks due to carbon dissolution in a cupola, where the coke particle 1100 can be surrounded by a bulk liquid 1120. As the core 1105 of the coke particle 1100 shrinks, e.g., due to oxidation and/or combustion of the carbon of the coke particle 1100, diffusion layers comprising ash and iron that are radially outward of the core 1105 begin to form. For example, the coke particle 1100 can include a first or ash diffusion layer 1110 (“first diffusion layer 1110”) comprising ash that is radially outward of the core 1105 and at least partially surrounds the core 1105, and a second or iron diffusion layer 1115 (“second diffusion layer 1115”) that is radially outward of the core 1105 and first diffusion layer 1110 and at least partially surrounds the first diffusion layer 1110.


The first diffusion layer 1110 layer can be solid or liquid, and can effectively block the coke surface, or lower the mass transfer area across the coke surface into the surrounding liquid metal. Additionally or alternatively, the first diffusion layer 1110 enables oxidation and/or combustion of the carbon of the coke particle to be time and/or temperature delayed, such that the coke does not produce carbon monoxide in the drying region and instead is oxidized and combusted in the reaction region of the cupola. The first diffusion layer 1110 comprising ash is formed in part due to the ash fusion temperature of the coke product, which is directly correlated to the composition of the coke particle 1100. As described elsewhere herein, the ash fusion temperature of the coke is lower than traditional coke products, and can no more than 2650° F., 2600° F., 2550° F., 2500° F., 2450° F., 2400° F., 2350° F., 2300° F., 2250° F., 2200° F., 2150° F., 2100° F., 2050° F., 2000° F., 1950° F., 1900° F., 1850° F., or within a range of 1800-2600° F., 1800-2500° F., 1900-1300° F., or 2000-2200° F. This relatively low ash fusion temperature can enable formation of the diffusion ash layer, e.g., in the drying region of the cupola, that prevents cooking of the coke, or more particularly the core 1105, prior to the reaction region. Additionally or alternatively, this relatively low ash fusion temperature can optimize contact time between the coke 1100 and the metal within the cupola once the metal melts and becomes molten at the reaction region of the cupola. As a result, more carbon can be transferred from the coke 1100 to the metal. This is in contrast to conventional coke products, which can have a higher ash fusion temperature that results in ash being formed deeper (i.e., downstream) of the reaction region and thus limits the contact time between the coke and the molten metal, thereby resulting in relatively less carbon transfer.


The second diffusion layer 1115 is formed as the coke particle 1100 is heated within the cupola and the coke core 1105 shrinks. The second diffusion layer can further limit cooking of the coke within the drying region and/or help ensure the vast majority of combustion and oxidation of the coke does not occur until the coke 1100 reaches the reaction region. Additionally or alternatively, carbon and sulfur may compete with one another to pass through the second diffusion layer 1115. That is, the presence of sulfur can undesirably decrease the transfer rate of carbon from and out of the coke 1100.


In some embodiments, the coke can be pre-fluxed and/or include (e.g., doped with) an additive (e.g., calcium, iron, calcium oxide, magnesium oxide, iron oxide, sodium oxide, and potassium oxide, and/or other oxides having a relatively low melting point) that acts as a catalytic material. As an example, sodium can act as a pre-fluxing agent, and iron can act as a pre-fluxing and catalytic agent. The catalytic material can trap sulfur and therein be utilized to flux the sulfur out of the coke. In some embodiments, the pre-fluxed coke is a result of selecting coals to produce the coke that have ash materials proportionally higher in the oxides described above. This is in contrast to coke products that may add calcium oxide or calcium carbonate particles/rocks as a flux to remove ash, as such methods are inefficient due to the very low surface to volume ratio for the fluxing to actually occur. Additionally, the pre-fluxed coke and/or catalytic agents can promote the carbon deposition via the Boudouard reaction, thereby generating more heat and increasing the amount of carbon that is present within the reaction region (e.g., the combustion zone) of the cupola. Without being bound by theory, the pre-fluxing agents can alter the liquid is temperature of the slag (e.g., slag 116; FIG. 1) or, more particularly, can alter the liquid is temperature of the ash at the surface or interior of the coke that is blended into the bulk slag.


Improved coke chemistry aims at increasing carbon dissolution from the coke particle 1100 into the metal (i.e., the iron or steel) within the cupola. In operation, as carbon dissolves into the bulk liquid iron within the cupola, the coke core 1105 shrinks and the ash and impurities are built up at the surface. Additionally, carbon and sulfur both dissociate from the surface, which can be aided by catalytic activity of Fe, Ni and other metals. A lower ash melting temperature, represented by an ash fusion temperature (as described elsewhere herein), allows improved ash removal by faster conversion of ash into a liquid phase and reduces ash resistance. Carbon and sulfur diffuse through the thin iron diffusion layer. Additionally, carbon and sulfur are competitive and resistant to dissolving or transferring of each other. As such, a low sulfur content of the coke improves carbon transfer. In addition, coke products having a high coke reactivity index (CRI) or a low coke strength after reaction (CSR) (as described elsewhere herein) allows more reactive carbon forms to dissociate from the surface thereby increasing the carbon dissolution rate.


Various metals added to a foundry coke product produced from a coal blend via ash in the coal blend or otherwise introduced into the foundry coke product can provide catalytic functions that increases a carbon dissolution rate. In some embodiments, a multi-oxidation state element (e.g., a metal) may change oxidation states in a coke product to provide catalytic activity. For example, a coke product may include sodium, which may transition from an unoxidized state Na into a first ionic oxidation state Na+. Alternatively, or additionally, a coke product may include iron, which may transition from an unoxidized state Fe into the oxidized states Fe2+ or Fe3+. Furthermore, the coke product may include the multi-oxidation state elements in an oxidized form. For example, the coke product may include Nat in the form of a salt or Fe3+ in the form of Fe2O3. The coke product may also include other types of metals, such as nickel, copper, etc. The catalytic material embedded in the coke product increases carbon dissolution during steel production because at least some of the catalytic material will remain in contact with the interface between the coke product and a liquid iron bath during steel production.



FIG. 12 depicts an example foundry coke product and a table of foundry coke properties, in accordance with one or more embodiments of the present technology. Some embodiments can use a coke oven, such as the oven 200 of FIG. 2, to produce a foundry coke product 1200. In some embodiments, the foundry coke product 1200 can be generally oblong shaped and can have different or similar dimensions along a first length 1212, a second length 1214, or a third length 1216. For example, the first length 1212 can be greater than 6.0 inches (e.g., 9.0 inches), the second length can be greater than 2.5 inches (e.g. 4.0 inches), and the third length can be greater than 2.5 inches (e.g., 4.0 inches). In some embodiments, one or more lengths of the shape of the foundry coke product 1200 can be limited to a maximum value. For example, the first length 1212 can be between 6.0 inches and 12.0 inches.


Due to variations in the specific shape of foundry coke products, a foundry coke product can be characterized by a range of hydraulic diameters. For example, the foundry coke product 1200 can have a hydraulic diameter that is greater than or equal to 1.0 inches, greater than or equal to 2.0 inches, or greater than or equal to 3.0 inches, etc. In some embodiments, the hydraulic diameter of a foundry coke product can be greater than an actual diameter of the foundry coke product due to the cross-sectional geometry of the foundry coke product.


The table 1250 includes a set of attributes of the foundry coke product 1200. The attributes of foundry coke products shown in the table 1250 can characterize coke products produced by the operations described in this disclosure. Such attributes can be advantageous for foundry operations, such as having lower AFT values in comparison to conventional coke products. Such lower AFT values can be represented in various forms, such as the IDT or ST values. For example, sample “S4” shown in the table 1250 has an ash fusion IDT equal to 2150° F. (1177° C.). Some embodiments can perform operations to reduce a low ash fusion to a coke product based on an AFT threshold or target ash fusion range.


In some embodiments, a target AFT value or AFT range can vary based on the type of ash fusion value being used. In some embodiments, a produced coke product can have an IDT that is between 2100° F. and 2400° F. Some embodiments can include stricter limits on coke products. For example, some embodiments of the present technology can include a coke product having an IDT that is between 2100° F. (1149° C.) and 2250° F. (1232° C.). Some embodiments can change coal blends, soak times, or durations at different damper positions to satisfy a target IDT. For example, some embodiments of the present technology can select a coal blend or determine oven operations based on a target IDT value of approximately 2100° F., approximately 2150° F., approximately 2200° F., approximately 2250° F., approximately 2300° F., approximately 2350° F., or approximately 2400° F. In some embodiments, a soak time can be established as starting after a peak crown temperature or other peak temperature is reached. Alternatively, a soak time can be established as starting after a sole flue temperature or crown temperature begins decreasing without any gas flow. Furthermore, the soak time can be reduced due to the increased coking time of a pyrolysis duration, where the soak time can be less than 10.0 hours, less than 5.0 hours, or even less than 1.0 hour. Furthermore, some embodiments of the present technology can use various total cycle times, and can characterize an operation based on a ratio of a soak time to a pyrolysis duration, where the ration can be less than 33.0%, less than 15.0%, less than 5.0%, or less than some other threshold that is less than 50%.


Similarly, some embodiments of the present technology can produce coke products using operations described in this disclosure having an ST that is within a specified range, such as between 2150° F. and 2500° F. Some embodiments can implement operations that satisfy a stricter range for an ST, such as modifying operations to produce coke products having an ST between 2150° F. and 2300° F. Furthermore, some embodiments of the present technology can change coal blends, soak times, or durations at different damper positions to satisfy a target ST. For example, some embodiments of the present technology can select a coal blend or determine oven operations based on a target ST value of approximately 2100° F., approximately 2150° F., approximately 2200° F., approximately 2250° F., approximately 2300° F., approximately 2350° F., approximately 2400° F., approximately 2450° F., or approximately 2500° F. Furthermore, some embodiments of the present technology can set a target IDT value as a function of a target ST value.


Similarly, some embodiments of the present technology can produce coke products using operations described in this disclosure having an HT that is within a specified range, such as between 2200° F. and 2350° F. Some embodiments can implement operations that satisfy a stricter range for an HT, such as modifying operations to produce coke products having an HT between 2150° F. and 2300° F. Furthermore, some embodiments of the present technology can change coal blends, soak times, or durations at different damper positions to satisfy a target HT. For example, some embodiments of the present technology can select a coal blend or determine oven operations based on a target HT value of approximately 2200° F., approximately 2250° F., approximately 2300° F., approximately 2350° F., approximately 2400° F., approximately 2450° F., or approximately 2500° F.


Similarly, some embodiments of the present technology can produce coke products using operations described in this disclosure having an FT that is within a specified range, such as an FT between 2250° F. and 2600° F. Some embodiments can implement operations that satisfy a stricter range for an FT, such as modifying operations to produce coke products having an FT between 2250° F. and 2400° F. Furthermore, some embodiments of the present technology can change coal blends, soak times, or durations at different damper positions to satisfy a target FT. For example, some embodiments of the present technology can select a coal blend or determine oven operations based on a target FT value of approximately 2250° F., approximately 2300° F., approximately 2350° F., approximately 2400° F., approximately 2450° F., approximately 2500° F., approximately 2550° F., or approximately 2600° F.


Some embodiments can produce coke products that satisfy multiple target ranges for different types of AFT values. For example, some embodiments of the present technology can include a coke product having an IDT between 2100° F. and 2250° F., an ST between 2150° F. and 2300° F., an HT between 2200° F. and 2350° F., or an FT between 2250° F. and 2400° F. Alternatively, or additionally, various other combination of target ranges for a coke product are possible. For example, some embodiments of the present technology can include a coke product having an IDT between 2100° F. and 2250° F., an ST between 2150° F. and 2300° F., an HT between 2200° F. and 2350° F., and an FT between 2250° F. and 2400° F.


Some embodiments can generate coke products having AFTs that are within various composition boundaries to satisfy an AFT value. For example, some embodiments produce coke products having an AFT that is greater than 2300° F. or less than 2600° F. Some embodiments can include stricter tolerances for the production or selection of coke products for downstream use, such as being between 1800° F. and 2600° F., between 2200° F. and 2500° F., between 2300° F. and 2400° F., between 2400° F. and 2600° F., or between 2500° F. and 2600° F.


Some embodiments can use operations described in this disclosure to produce a coke product characterized by specific types of AFT values. For example, some embodiments of the present technology can produce a coke product having an AFT ST between 982° C. (1800° F.) and 1427° C. (2600° F.), 1177° C. (2150° F.) and 1371° C. (2500° F.) or a coke product having an AFT HT between 1204° C. (2200° F.) and 1371° C. (2500° F.), or an AFT flow temperature (FT) between 1232° C. (2250° F.) and 1371° C. (2500° F.).


As shown in the table 1250, the CRI value of the foundry coke products can be 36.5% or another value that is greater than 35%. Some embodiments can implement coke production operations that produce batches of foundry coke that satisfy one or more CRI thresholds. For example, some embodiments of the present technology can change durations between changes in damper configurations or select between different damper positions based on a CRI threshold. For example, some embodiments of the present technology can produce foundry having a CRI that is at least 25.0%, at least 30.0%, at least 35.0%, at least 40.0%, at least 45.0%, or another value that is at least 30.0%. Some embodiments can perform operations to select coke products that have CRI greater than a minimum CRI threshold for downstream use. In some embodiments, a CRI for a coke product may indicate a mass loss from a reaction, where a greater CRI for a coke product may indicate a greater efficiency or usefulness of the coke product. In some embodiments, the CRI may be computed using a model based on known properties of a coke product or the coal blend used to generate the coke product. Alternatively, or additionally, a CRI may be experimentally obtained as a measured weight loss using an established testing protocol. For example, some embodiments may use a CRI-measuring method such as the ASTM method D5341 to determine a CRI value.


As shown in the table 1250, the CSR value of the foundry coke products can be 26%, 15.6%, or another value that is greater than a CSR threshold such as 7.0%. Some embodiments can implement coke production operations that produce batches of foundry coke that satisfy one or more CSR thresholds. For example, some embodiments of the present technology can change durations between changes in damper configurations or select between different damper positions based on satisfying a target CSR threshold, such as a CSR threshold requiring that foundry coke have a CSR that is less than or equal to 40.0%, less than or equal to 35.0%, less than or equal to 30.0%, less than or equal to 25.0%, less than or equal to 20.0%, less than or equal to 15.0%, less than or equal to 10.0%, or less than or equal to 7.0%.


As shown in the table 1250, an SiO2 composition in coke product ash can include 49.4%, 48.9%, 48.8%, 49.1%, or 46.0%. Other embodiments can include other SiO2 mass fractions in ash, such as other values less than 70%, less than 50.0%, less than 45.0%, etc. In some embodiments, a mass fraction of approximately 50.0% SiO2 in coke product ash can correspond with a low amount of SiO2 in the coke product itself.


Furthermore, some embodiments of the present technology can generate coke products having a fixed carbon content (e.g., a fixed carbon mass fraction) that is greater than or equal to a fixed carbon threshold. For example, some embodiments of the present technology can produce foundry coke products having a fixed carbon mass fraction that is greater than 80.0%, 85.0%, 90.0%, 90.5%, 91.0%, or some other value. In some embodiments, the fixed carbon content can be a targeted range. For example, some embodiments of the present technology can perform a set of operations to generate coke products having a fixed carbon content that is less than or equal to 94.5% but greater than or equal to 85.0% (though other ranges of values are possible) such as between 94.5% and 85.0%. Various other target ranges are possible, such as coke products having a range between 90.0% and 95.0%, 85% and 99%, etc.


Furthermore, some embodiments of the present technology can generate coke products having an ash mass fraction within a targeted bounded or unbounded range. For example, some embodiments of the present technology can produce foundry coke products having an ash mass fraction that is greater than or equal to 1.0%, 5.0%, 8.0%, 9.0%, 10.0%, or a value greater than 10.0%. Furthermore, some embodiments of the present technology can include an upper bound to an ash mass fraction. For example, some embodiments of the present technology can produce foundry coke products having an ash mass fraction that is less than 1.0%, 5.0%, 9.0%, 10.0%, or a value greater than 10.0%. Some embodiments can combine these upper and lower limits of ash mass fractions such that a produced coke product has a range of 5.0% to 10.0%, 8.5% to 9.0%, 8.0% to 10.0%, 5.0% to 15.0%, etc.



FIG. 13 is a chart indicating foundry coke product yield in accordance with one or more embodiments of the present technology. As shown in the chart 1300, the foundry yield for different batches of coke products produced from a coal blend using operations described in this disclosure can vary. As shown by the range 1302, the yield can range between approximately 40% and 60% in some embodiments, where this yield can be a dry yield (i.e., the dry mass fraction of foundry coke product can be 40% or 60% of the dry mass fraction of the total population of coke products). As shown by the data point 1353, some embodiments perform operations that result in a yield that is approximately 57%, though the yield can be lower in other cases. For example, as shown by the data point 1351, the yield in some coke production operations can be lower, such as being as low as 41%. In many cases, some embodiments of the present technology can implement operations that satisfy a minimum yield threshold, such as operations that result in a yield that is at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, etc. While some embodiments of the present technology can implement controller optimization operations to increase a yield, some embodiments of the present technology can permit a predicted yield to be less than an expected maximum yield in order to satisfy other target coke product parameters.



FIG. 14 is a chart indicating particle size, in accordance with one or more embodiments of the present technology. As shown in the chart 1400, the mean batch lengths in inches for different batches of coke products produced from a coal blend using operations described in this disclosure can vary. As shown by a range 1402, the coke product mean length can range between approximately 5.5 inches to approximately 7.5 inches in some embodiments. As shown by a data point 1453, some embodiments perform operations that result in a coke product mean length that is approximately 7.4 inches, though the coke product mean length can be lower in other cases. For example, as shown by a data point 1451, the coke product mean length in some coke production operations can be lower, such as being as low as 5.5 inches. In many cases, some embodiments of the present technology can implement operations that satisfy a minimum coke product mean length threshold, such as operations that result in a coke product mean length that is at least 2.5 inches, 4.0 inches, 5.0 inches, 6.0 inches, 7.0 inches, 8.0 inches, 9.0 inches, or some other length. In some embodiments, a larger coke product can result in more efficient foundry operations as a result. While some embodiments of the present technology can implement controller optimization operations to increase a coke product mean length, some embodiments of the present technology can permit a predicted coke product mean length to be less than an expected maximum coke product mean length in order to satisfy other target coke product parameters.



FIG. 15 is a chart indicating 4-inch drop shatter properties, in accordance with one or more embodiments of the present technology. As shown in the chart 1500, the 4-inch drop shatter survival rates for different batches of coke products produced from a coal blend using operations described in this disclosure can vary. As shown by a range 1502, the 4-inch drop shatter survival rate can range between approximately 80% to approximately 95% in some embodiments. As shown by a data point 1553, some embodiments perform operations that result in a 4-inch drop shatter survival rate that is approximately 93%, though the 4-inch drop shatter survival rate can be lower in other cases. For example, as shown by a data point 1551, the 4-inch drop shatter survival rate in some coke production operations can be lower, such as being as low as 81%. In many cases, some embodiments of the present technology can implement operations that satisfy a minimum 4-inch drop shatter survival rate threshold, such as operations that result in a 4-inch drop shatter survival rate that is at least 80%, at least 85%, at least 90%, or at least 95%, or at least some other 4-inch drop shatter threshold. In many cases, a greater drop shatter survival rate is useful for downstream foundry operations because more coke products survive transportation and downstream processing.



FIG. 16 is a chart indicating 6-inch drop shatter properties, in accordance with one or more embodiments of the present technology. As shown in the chart 1600, the 6-inch drop shatter survival rates for different batches of coke products produced from a coal blend using operations described in this disclosure can vary. As shown by a range 1602, the 6-inch drop shatter survival rate can range between approximately 30% to approximately 80% in some embodiments. As shown by a data point 1653, some embodiments perform operations that result in a 6-inch drop shatter survival rate that is approximately 80%, though the 6-inch drop shatter survival rate can be lower in other cases. For example, as shown by a data point 1651, the 6-inch drop shatter survival rate in some coke production operations can be lower, such as being as low as 30%. In many cases, some embodiments of the present technology can implement operations that satisfy a minimum 6-inch drop shatter survival rate threshold, such as operations that result in a 6-inch drop shatter survival rate that is at least 60%, at least 70%, at least 80%, or at least some other 6-inch drop shatter threshold, where the 6-inch drop shatter threshold can be less than a 4-inch drop shatter threshold.



FIG. 17 is a chart indicating an ash mass fraction, in accordance with one or more embodiments of the present technology. As shown in the chart 1700, the ash mass fractions for different batches of coke products produced from a coal blend using operations described in this disclosure can vary. As shown by a range 1702, the ash mass fraction can range between approximately 7% to approximately 10% in some embodiments. As shown by a data point 1753, some embodiments perform operations that result in an ash mass fraction that is approximately 9.7%, though the ash mass fraction can be lower in other cases. For example, as shown by a data point 1754, the ash mass fraction in some coke production operations can be 8.8%. Additionally, or alternatively, as shown by the data point 1751, the ash mass fraction in some coke production operations can be lower, such as being as low as 7.2%.


In some embodiments, an ash content of a coke product produced using operations described in this disclosure can be less than an ash mass fraction threshold, where the ash mass fraction threshold can be 10.0%, 9.0%, 8.5%, 8.0%, 7.5%, or another value less than 50.0%. In some embodiments, the ash mass fraction can be unconventionally high, such as greater than 10.0%. Alternatively, or additionally, some embodiments of the present technology can produce a coke product having an ash mass fraction threshold that satisfies an ash mass fraction threshold that is less than 10.0%, less than 9.0%, less than 8.5%, less than 8.0%, less than 7.5%, or less than 7.0%. Some embodiments can include ash within a range, such as between 5.5% and 7.0%, 6.0% and 6.5%, between 8.0% and 10.0%, or between some other values. Furthermore, some embodiments of the present technology can produce a set of coke products that satisfies a target mass fraction value. For example, some embodiments of the present technology can produce a coke product having an ash mass fraction that satisfies a target ash mass fraction, where the target ash mass fraction can be approximately 9.0%, approximately 8.5%, approximately 8.0%, approximately 7.5%, or approximately 7.0%.


In some embodiments, some embodiments of the present technology can implement operations that produce coke products which satisfies a minimum ash mass fraction threshold, such as coke products having an ash mass fraction that is at least 7.0%, at least 8.0%, at least 9.0%, or at least some other ash mass fraction. Furthermore, some embodiments of the present technology can determine coal blend formulations or perform coke oven operations that have an ash mass fraction that is within a pre-defined range, such as between 7.0% and 10.0%.



FIG. 18 is a chart indicating a moisture mass fraction, in accordance with one or more embodiments of the present technology. As shown in the chart 1800, the coke product moisture mass fractions for different batches of coke products produced from a coal blend using operations described in this disclosure can vary. As shown by a range 1802, the coke product moisture mass fractions can range between approximately 0% to approximately 15% in some embodiments. As shown by the data point 1853, some embodiments perform operations that result in a coke product moisture mass fraction that is approximately 15%, though the coke product moisture mass fraction can be lower in other cases. Additionally, as shown by the data point 1851, the coke product moisture mass fraction in some coke production operations can be lower, such as being as low as 0.5%. In many cases, some embodiments of the present technology can implement operations that satisfy a minimum coke product moisture mass fraction threshold, such as operations that result in a coke product moisture mass fraction that is at least 7.0%, at least 8.0%, at least 9.0%, or at least some other coke product moisture mass fraction. Furthermore, some embodiments of the present technology can determine coal blend formulations or perform coke oven operations that have a coke product moisture mass fraction that is within a pre-defined range, such as between 7.0% and 10.0%. Furthermore, some embodiments of the present technology can determine coal blend formulations or perform coke oven operations that have a coke product moisture mass fraction that is less than a pre-defined value, such as less than or equal to 10.0%, less or equal to 8.0%, less than or equal 7.0%, less than or equal to 5.0%, etc.



FIG. 19 is a chart indicating a sulfur mass fraction, in accordance with one or more embodiments of the present technology. As shown in the chart 1900, the sulfur mass fractions for different batches of coke products produced from a coal blend using operations described in this disclosure can vary. As shown by a range 1902, the sulfur mass fractions can range between approximately 0.60% to approximately 0.75% in some embodiments. As shown by a data point 1953, some embodiments perform operations that result in a sulfur mass fraction that is approximately 0.73%, though the sulfur mass fraction can be lower in other cases. Additionally, as shown by the data point 1951, the sulfur mass fraction in some coke production operations can be lower, such as being as low as 0.63%.


In some embodiments, the sulfur content of the coke product can be less than a sulfur mass fraction threshold. For example, the sulfur content of a coke product can be less than 1.0%, less than 0.9%, less than 0.8%, less than 0.7%, less than 0.6%, less than 0.5%, less than 0.3%, less than 0.2%, or less than 0.1%. Some embodiments determine the formulation of a coal blend, determine a soak time, or determine a damper control schedule to reduce the amount of sulfur in a coke product. Furthermore, a coke product can be produced based on a target sulfur content value, such as a target sulfur mass fraction of 0.65%. As described elsewhere, by reducing the sulfur content of coke products, some embodiments of the present technology can enhance the efficiency of foundry operations.



FIG. 20 is a chart depicting SiO2 mass fractions vs. Al2O3 mass fractions in the ash of foundry coke products, in accordance with one or more embodiments of the present technology. In some embodiments, a coke product can be characterized based on their mass fractions of SiO2 and Al2O3 or ratios of these mass fractions. As shown in the chart 2000, different samples of coke ash can indicate different mass fractions or mass fraction ratios of SiO2 and Al2O3. For example, the point 2050 indicates a sample having an SiO2 mass fraction of approximately 48.0% and an Al2O3 mass fraction of approximately 24.3%, which suggests that some ash of coke products can have a ratio of approximately 2:1 for a mass fraction ratio of SiO2 to Al2O3. As indicated by the range 2001, the SiO2 mass fractions of different samples can range between 48.0% and 51.0% in some embodiments. Furthermore, as indicated by the range 2002, the SiO2 mass fractions of different samples can range between 24.3% and 28.4% in some embodiments.


Some embodiments can produce a coke product that minimizes the combination of Al2O3 and SiO2 or has a low amount of Al2O3 and SiO2. For example, some embodiments of the present technology can perform operations that produce coke products such that the ash of the coke products have a combined Al2O3 mass fraction and SiO2 mass fraction of that is less than or equal to 65%. By reducing the amount of Al and Si in a coke product, some embodiments of the present technology can increase the efficiency of foundry operations by reducing their interference with carbon dissolution during foundry operations.


Some embodiments can produce a coke product or a coal blend used to produce the coal blend that satisfy other thresholds for Al2O3 or SiO2. For example, some embodiments of the present technology can produce a coke product such that an Al2O3 mass fraction of the ash of the coke product, or an ash of a coal blend used to create the coke product, is less than or approximately 30%, less than or approximately 25%, or less than or approximately 20%. Alternatively, or additionally, some embodiments of the present technology can produce a coke product such that an SiO2 mass fraction of the ash of the coke product or an ash of a coal blend used to create the coke product is less than or approximately 50%, less than or approximately 45%, less than or approximately 40%, or less than or approximately 35%.


Alternatively or additionally, some embodiments of the present technology can produce a coke product such that a sum of a SiO2 mass fraction and Al2O3 mass fraction of an ash of the coke product or an ash of a coal blend used to create the coke product is less than or approximately 80%, less than or approximately 75%, less than or approximately 70%, less than or approximately 65%.



FIG. 21 is a chart depicting Fe2O3 mass fractions vs. CaO mass fractions in the ash of foundry coke products, in accordance with one or more embodiments of the present technology. In some embodiments, a coke product can be characterized based on their mass fractions of Fe2O3 and CaO or ratios of these mass fractions. As shown in the chart 2100, different data points representing coke ash samples can indicate different mass fractions and mass fraction ratios of Fe2O3 and CaO. For example, the point 2151 indicates a sample having an Fe2O3 mass fraction of approximately 12.1% and an CaO mass fraction of approximately 2.4%. Furthermore, the point 2152 indicates a sample having an Fe2O3 mass fraction of approximately 15.0% and an CaO mass fraction of approximately 2.8%. Furthermore, the point 2152 indicates a sample having an Fe2O3 mass fraction of approximately 12.0% and an CaO mass fraction of approximately 4.5%. Collectively, the points 2151 indicate that the mass fraction ratios of Fe2O3 and CaO for some samples can range between being approximately 5:1 to approximately 5:2 in some embodiments. Furthermore, as indicated by the range 2101, the Fe2O3 mass fractions of different samples can range between 11.0% and 15.0% in some embodiments. Furthermore, as indicated by the range 2102, the Fe2O3 mass fractions of CaO can range between 2.5% and 4.5% in some embodiments.


Some embodiments can produce a coke product using operations to increase the amount of CaO in a coke product. For example, some embodiments of the present technology can perform operations that produce coke products such that the ash of the coke products have a CaO mass fraction that is greater than or equal to 3.0%. Alternatively, or additionally, other maximum CaO thresholds can be used. For example, some embodiments of the present technology can produce coke products such that the ash of the coke products have a CaO mass fraction that is greater than or equal to 10.0%, greater than or equal to 9.0%, greater than or equal to 8.0%, greater than or equal to 7.0%, greater than or equal to 6.0%, greater than or equal to 5.0%, greater than or equal to 4.0%, greater than or equal to 3.0%, greater than or equal to 2.0%, greater than or equal to 1.0%, etc. Some embodiments can create a coke product from a coal blend having a high content of CaO, where this content can be determined by an ash composition. Such a high content of CaO can increase a carbon dissolution rate of the coke product.



FIG. 22 is a chart depicting Ash Softening Temperatures vs. Model Ash Fusion Temperatures of different batches of foundry coke products, in accordance with one or more embodiments of the present technology. In some embodiments, a coke product can be characterized based on their ash ST values, model AFT values, or ratios of these two values. As shown in the chart 2200, different samples of coke ash can have different ST and model AFT values. For example, the point 2251 indicates a sample having an ash ST value equal to approximately 2300° F. and a model AFT value equal to approximately 2460° F. Furthermore, the point 2252 indicates a sample having an ash ST value equal to approximately 2550° F. and a model AFT value equal to approximately 2580° F. Furthermore, as indicated by a range 2201, the ash ST value of different samples can range between 2300° F. and 2600° F. in some embodiments. Furthermore, as indicated by a range 2202, the model AFT values of some samples can range between 2450° F. and 2600° F. in some embodiments.



FIG. 23 is a chart depicting Ash Softening Temperatures vs. Ash Mass Fractions of different batches of foundry coke products, in accordance with one or more embodiments of the present technology. In some embodiments, a coke product can be characterized based on their ash mass fractions or observed ash ST values. As shown in the chart 2300, different samples of coke ash can indicate different ash mass fractions and observed STs for the different ash samples. For example, the point 2351 indicates a sample having an ST value equal to approximately 2350° F. and an ash mass fraction of approximately 7.8%. Furthermore, the point 2152 indicates a sample having an ST value equal to approximately 2560° F. and an ash mass fraction of approximately 8.1%. Furthermore, the point 2153 indicates a sample having an ST value equal to approximately 2500° F. and an ash mass fraction of approximately 8.8%. Some embodiments can produce coke products having lower ash content and lower AFT than coke products using conventional coal blends or conventional operations. By reducing the ash of a coke product available to build up at a coke surface, some embodiments of the present technology can thus improve a carbon dissolution rate during a foundry operation. Similarly, by reducing an ash fusion temperature of a coke product, some embodiments of the present technology can improve an ash dissolution rate by reducing the temperature required to ash from a coke surface during a foundry operation.


In some embodiments, as indicated by the range 2301, the ash content values of different samples can range between 2300° F. and 2560° F. Furthermore, as indicated by the range 2302, the ash content can range between approximately 7.8% to 8.8%. As shown in the chart 2300, some embodiments of the present technology can produce a coke product having an ash mass fraction that is less than 10.0%, less than 9.0%, or less than another maximum ash mass fraction threshold. Furthermore, some embodiments of the present technology can perform operations to maintain a minimum amount of ash product. For example, some embodiments of the present technology can implement coke oven operations to produce coke products having at least 1.0% ash, 5.0% ash, 7.0% ash, etc.



FIG. 24 is a chart depicting Observed Ash Fusion Temperatures vs. Model Ash Fusion Temperatures of different batches of foundry coke products, in accordance with one or more embodiments of the present technology. The chart 2400 includes a first range 2401, which indicates the range of observed AFT values that range from approximately 1990° F. to approximately 2800° F. The chart 2400 includes a second range, which indicates the range of model AFT values that range between 1900° F. to 2750° F. As shown by the chart 2400, coke products can show an approximate direct correlation between model AFT values and observed AFT values.


From the foregoing, it will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications can be made without deviating from the spirit and scope of the technology. Further, certain aspects of the new technology described in the context of particular embodiments can be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments can also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. Thus, the disclosure is not limited except as by the appended claims.


V. Conclusion

It will be apparent to those having skill in the art that changes can be made to the details of the above-described embodiments without departing from the underlying principles of the present disclosure. In some cases, well known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the present technology. Although steps of methods can be presented herein in a particular order, alternative embodiments can perform the steps in a different order. Similarly, certain aspects of the present technology disclosed in the context of particular embodiments can be combined or eliminated in other embodiments. Furthermore, while advantages associated with certain embodiments of the present technology can have been disclosed in the context of those embodiments, other embodiments can also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages or other advantages disclosed herein to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein, and the invention is not limited except as by the appended claims.


Reference herein to “one embodiment,” “an embodiment,” “some embodiments,” or similar formulations means that a particular feature, structure, operation, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present technology. Thus, the appearances of such phrases or formulations herein are not necessarily all referring to the same embodiment. Furthermore, various particular features, structures, operations, or characteristics can be combined in any suitable manner in one or more embodiments.


Unless otherwise indicated, all numbers expressing weight percentages, concentrations, compositions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “approximately.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the present technology. As used in this disclosure, unless otherwise disclosed, a value can be considered to be approximately a target value if a difference between the value and the target value is less than or equal to 10% of the target value. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Additionally, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a range of “1 to 10” includes any and all subranges between (and including) the minimum value of 1 and the maximum value of 10 (i.e., any and all subranges having a minimum value of equal to or greater than 1 and a maximum value of equal to or less than 10, e.g., 5.5 to 10).


Although the present invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.


As used throughout this application, the word “can” is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must). The words “comprise,” “comprising,” “include,” “including,” “includes,” and the like mean including, but not limited to. As used throughout this application, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Thus, for example, reference to “an element” or “an element” includes a combination of two or more elements, notwithstanding use of other terms and phrases for one or more elements, such as “one or more.”


Various other aspects, features, and advantages will be apparent through the detailed description of this disclosure and the drawings attached hereto. It is also to be understood that the description of this disclosure are examples, and not restrictive of the scope of the invention. As used in the specification and in the claims, the singular forms of “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Additionally, as used in the specification, “a portion” refers to a part of, or the entirety (i.e., the entire portion), of a given item (e.g., data) unless the context clearly dictates otherwise. Furthermore, a “set” can refer to a singular form or a plural form, such that a “set of items” can refer to one item or a plurality of items.


The term “or” is non-exclusive (i.e., encompassing both “and” and “or”), unless the context clearly indicates otherwise. Terms describing conditional relationships (e.g., “in response to X, Y,” “upon X, Y,” “if X, Y,” “when X, Y,” and the like) encompass causal relationships in which the antecedent is a necessary causal condition, the antecedent is a sufficient causal condition, or the antecedent is a contributory causal condition of the consequent (e.g., “state X occurs upon condition Y obtaining” is generic to “X occurs solely upon Y” and “X occurs upon Y and Z”). Such conditional relationships are not limited to consequences that instantly follow the antecedent obtaining, as some consequences can be delayed, and in conditional statements, antecedents are connected to their consequents (e.g., the antecedent is relevant to the likelihood of the consequent occurring). Statements in which a plurality of attributes or functions are mapped to a plurality of objects (e.g., one or more processors performing steps/operations A, B, C, and D) encompass both all such attributes or functions being mapped to all such objects and subsets of the attributes or functions being mapped to subsets of the objects (e.g., both all processors each performing steps/operations A-D, and a case in which processor 1 performs step/operation A, processor 2 performs step/operation B and part of step/operation C, and processor 3 performs part of step/operation C and step/operation D), unless otherwise indicated. Further, unless otherwise indicated, statements that one value or action is “based on” another condition or value encompass both instances in which the condition or value is the sole factor and instances in which the condition or value is one factor among a plurality of factors.


Unless the context clearly indicates otherwise, statements that “each” instance of some collection have some property should not be read to exclude cases where some otherwise identical or similar members of a larger collection do not have the property (i.e., each does not necessarily mean each and every). Limitations as to sequence of recited steps should not be read into the claims unless explicitly specified (e.g., with explicit language like “after performing X, performing Y”), in contrast to statements that might be improperly argued to imply sequence limitations (e.g., “performing X on items, performing Y on the X'ed items”) used for purposes of making claims more readable rather than specifying sequence. Statements referring to “at least Z of A, B, and C” and the like (e.g., “at least Z of A, B, or C”) refer to at least Z of the listed categories (A, B, and C) and do not require at least Z units in each category. Unless the context clearly indicates otherwise, it is appreciated that throughout this specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like refer to actions or processes of a specific apparatus, such as a special purpose computer or a similar special purpose electronic processing/computing device.


ENUMERATED EMBODIMENTS

The present technology is illustrated, for example, according to various aspects described below as numbered embodiments (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the present technology. It is noted that any of the dependent embodiments can be combined in any combination, and placed into a respective independent embodiment.


A1. A coal blend, comprising:

    • first coals having a first volatile matter mass fraction less than or equal to a first threshold; and
    • second coals having a second volatile matter mass fraction greater than or equal to a second threshold,
    • wherein:
      • the first threshold is less than the second threshold by at least 4.0%;
      • an ash fusion temperature of the coal blend is less than 2600° F.; and
      • the coal blend has an aggregated volatile matter mass fraction between 15% and 25%.


A2. A coal blend, comprising:

    • first coals having a first vitrinite fraction comprising V8 vitrinite fraction, V9 vitrinite fraction, V10 vitrinite fraction, and V11 vitrinite fraction, wherein a sum of the V8 vitrinite fraction, the V9 vitrinite fraction, the V10 vitrinite fraction, and the V11 vitrinite fraction is greater than 50%; and
    • first coals having a first vitrinite fraction comprising V14 vitrinite fraction, V15 vitrinite fraction, V16 vitrinite fraction, V17 vitrinite fraction, and V18 vitrinite fraction wherein a sum of the V14 vitrinite fraction, the V15 vitrinite fraction, the V16 vitrinite fraction, the V17 vitrinite fraction, and the V18 vitrinite fraction is greater than 50%.


A3. The coal blend of any one of embodiments A1 to A2, wherein the coal blend does not comprise any coals having a volatile mass fraction greater than the first threshold and less than the second threshold.


A4. The coal blend of any one of embodiment 1 to A3, wherein the coal blend comprises only the first coals and the second coals.


A5. The coal blend of any one of embodiments A1 to A4, wherein the first threshold is less than 21.0% and the second threshold is greater than 25.0%.


A6. The coal blend of any one of embodiments A1 to A5, wherein an ash fusion temperature of the coal blend is no more than 2450° F., 2400° F., 2350° F., 2300° F., 2250° F., 2200° F., or 1800° F.


A7. The coal blend of any one of embodiments A1 to A6, further comprising coke breeze.


A8. The coal blend of embodiment 6, wherein the coke breeze comprises 1-20% of the coal blend.


A9. The coal blend of any one of embodiments A7 to A8, wherein 5.0% or less of the coke breeze is characterized as a 10 mesh coke breeze or larger.


A10. The coal blend of any one of embodiments A6 to A8, wherein 10.0% or less of the coke breeze is characterized as a 20 mesh coke breeze or larger, or characterized as a 90 mesh coke breeze or smaller (15-25%).


A11. The coal blend of any one of embodiments A1 to A10, wherein:

    • the first coals are greater than or equal to 60% of the coal blend; and
    • the second coals are greater than or equal to 15% of the coal blend.


A12. The coal blend of any one of embodiments A1 to A11, wherein:

    • the first coals are greater than or equal to 15% of the coal blend; and
    • the second coals are greater than or equal to 60% of the coal blend.


A13. The coal blend of any one of embodiments A1 to A12, wherein a calcium oxide mass fraction, a lime mass fraction, a trona mass fraction, a soda ash mass fraction, a caustic soda mass fraction, a low ash fusion slag mass fraction, a basic oxygen furnace (BOF) slag mass fraction, a cupola slag mass fraction, an iron mass fraction, a nickel mass fraction, a potassium mass fraction, a magnesium mass fraction, a sodium mass fraction, a calcium sulfate mass fraction, a rockwool mass fraction, or a biomass mass fraction of the coal blend is less than 5.0%, or is less than 3.0%, or is less than 1.0%.


A14. The coal blend of any one of embodiments A1 to A13, wherein an ash mass fraction of the coal blend is greater than 10.0%, or is between 8.0%-10.0%, or is between 5.5-7.0%.


A15. The coal blend of any one of embodiments A1 to A14, wherein a fluidity of the coal blend is at least 100 dial divisions per minute (ddpm), 150 ddpm, 200 ddpm, 250 ddpm, 260 ddpm, 270 ddpm, 280 ddpm, 290 ddpm, or within a range of 250-300 ddpm.


A16. The coal blend of any one of embodiments A1 to A15, further comprising third coals having a third volatile matter mass fraction less than or equal to the first threshold.


A17. The coal blend of any one of embodiments A1 to A16, wherein the first coals have a V16 vitrinite mass fraction that is greater than 25%.


A18. The coal blend of any one of embodiments A1 to A17, wherein a sum of a V8 vitrinite fraction, a V9 vitrinite fraction, and a V10 vitrinite fraction of the second coals is greater than 40%.


A19. The coal blend of any one of embodiments A1 to A18, wherein a sulfur mass weight fraction of the coal blend is at least 5.0%.


A20. The coal blend of any one of embodiments A1 to A19, wherein a calcium weight fraction of the coal blend is at least 5.0%.


A21. The coal blend of any one of embodiments A1 to A20, wherein an inert content of the coal blend is greater than or equal to 32.0%, is between 33.0-35.0%, or is between 28.0-40.0%.


A22. The coal blend of any one of embodiments A1 to A21, wherein an alumina content of an ash of the coal blend is less than 7.0%.


A23. The coal blend of any one of embodiments A1 to A22, wherein the first threshold is 20% and the second threshold is 30%.


A24. A coal blend, comprising:

    • first coals having a first volatile matter mass fraction less than or equal to a first threshold; and
    • second coals having a second volatile matter mass fraction greater than or equal to a second threshold,
    • wherein:
      • the first threshold is less than 21.0%;
      • the second threshold is greater than 25.0%;
      • an ash fusion temperature of the coal blend is less than 2600° F. or is less than 2450° F.; and
      • an aggregated volatile matter mass fraction of the coal blend is between 15% and 25%.


A25. The coal blend of embodiment A24, wherein the ash fusion temperature is less than 2300° F.


A26. The coal blend of any one of embodiments A24 to A25, wherein the ash fusion temperature is less than 2100° F.


A27. The coal blend of any one of embodiments A24 to A26, further comprising third coals having a third volatile matter mass fraction less than or equal to the first threshold, wherein the first coals and third coals each comprise V14 vitrinite, V15 vitrinite, V16 vitrinite, and V17 vitrinite.


A28. The coal blend of any one of embodiments A24 to A27, wherein:

    • the first coals comprise V14 vitrinite, V15 vitrinite, and V16 vitrinite;
    • a fraction of the V16 vitrinite of the first coals is greater than a fraction of the V15 vitrinite of the first coals; and
    • the fraction of the V15 vitrinite of the first coals is greater than a fraction of the V14 vitrinite of the first coals.


A29. The coal blend of any one of embodiments A24 to A28, wherein the first threshold is less than 20.0%.


A30. The coal blend of any one of embodiments A24 to A29, wherein the second threshold is greater than 28%.


A31. The coal blend of any one of embodiments A24 to A30, wherein a difference between the first threshold and the second threshold is greater than 10%.


A32. A method of determining a coal blend for coke product production comprising:

    • obtaining a plurality of coal parameters corresponding with first coals and second coals, wherein:
      • the first coals have a first volatile matter mass fraction less than or equal to a first threshold; and
      • the second coals have a second volatile matter mass fraction greater than or equal to a second threshold, wherein the first threshold is less than the second threshold by at least 4.0%;
    • obtaining a target coke product parameter;
    • determining a plurality of coke product parameters based on the plurality of coal parameters and the target coke product parameter; and
    • based on the plurality of coke product parameters, determining a coal blend formulation for a coal blend comprising a combination of the first coals and the second coals.


A33. The method of embodiment A32, further comprising obtaining breeze parameters for coke breeze, wherein:

    • the breeze parameters indicate at least one of a breeze volatile matter mass fraction, a breeze ash mass fraction, or a breeze sulfur mass fraction; and
    • determining the coal blend formulation comprising determining an amount of coke breeze to add to the coal blend based on the breeze parameters.


A34. The method of any one of embodiments A32 to A33, wherein the first threshold is less than 21.0%, and wherein the second threshold is greater than 28.0%.


B1. A method of producing a coke product, the method comprising:

    • adding water to a coal blend to increase a moisture content of the coal blend;
    • charging the coal blend into a coke oven; and heating the charged coal blend such that, during a pyrolysis duration of a coking cycle for the charged coal blend, a crown temperature of the coke oven is greater than a lower bound coking temperature, wherein:
      • the lower bound coking temperature is within a range of 1200-2300° F.;
      • the pyrolysis duration begins when the crown of the oven is greater than the lower bound coking temperature;
      • the pyrolysis duration ends when the crown temperature of the oven is less than the lower bound coking temperature; and the pyrolysis duration is greater than 24 hours.


B2. A method of embodiment B 1, wherein the lower bound coking temperature is within a range of 1800-2200° F.


B3. The method of any one of embodiments B1 to B2, wherein an upper limit of the crown temperature is limited by an upper bound coking temperature that is greater than 2300° F.


B4. The method of any one of embodiments B1 to B3, wherein an upper limit of the crown temperature is limited by an upper bound coking temperature that is greater than 2500° F.


B5. The method of embodiment B4, wherein the crown temperature is greater than a sole flue temperature of the coke oven throughout the pyrolysis duration.


B6. The method of any one of embodiments B1 to B5, wherein the crown temperature of the coke oven during the pyrolysis duration is between 2100-2300° F.


B7. The method of any one of embodiments B1 to B6, wherein the crown temperature is within a 100° F. temperature range during at least twelve hours of the pyrolysis duration.


B8. The method of any one of embodiments B1 to B7, wherein, during the pyrolysis duration, a sole flue temperature is below 2000° F., 1900° F., 1800° F., or 1700° F.


B9. The method of any one of embodiments B1 to B8, wherein, during the pyrolysis duration, a sole flue temperature is between 1400-1800° F.


B10. The method of any one of embodiments B1 to B9, wherein a soak time of the charged coal blend is less than 1.0 hour, 5.0 hours, or 10.0 hours.


B11. The method of any one of embodiments B1 to B10, wherein adding water to the coal blend comprises:

    • determining whether a testing moisture of the coal blend satisfies a set of target moisture values; and
    • in response to a determination that the testing moisture of the coal blend does not satisfy the set of target moisture values, exposing the coal blend to more water.


B12. The method of any one of embodiments B1 to B11, wherein a moisture weight fraction of the coal blend charged into the coke oven is at least 8.0%, 9.0%, 10.0%, 11.0%, 12.0%, or between 8.0-13%.


B13. The method of any one of embodiments B1 to B12, wherein adding water to the coal blend comprises adding water to a belt carrying the coal blend.


B14. The method of any one of embodiments B1 to B13, wherein adding water to the coal blend is based on a volatile matter of the coal blend.


B15. The method of any one of embodiments B1 to B14, wherein adding water to the coal blend comprises adding water such that a moisture content of the charged coal is approximately equal to or within 1-5% of a volatile matter mass fraction of the coal blend.


B16. The method of any one of embodiments B1 to B15, wherein the pyrolysis duration is approximately 48 hours.


B17. The method of embodiment B16, wherein the pyrolysis duration is approximately 72 hours.


B18. The method of any one of embodiments B1 to B17, wherein a volatile matter mass fraction of the coal blend is less than 27.0%.


B19. The method of any one of embodiments B1 to B18, wherein the coke oven includes an uptake damper movable to a plurality of positions between open and closed, and wherein heating the coal blend comprises maintaining the uptake damper of the coke oven in a position less than half-way open during a majority of the first 24 hours of the coking cycle.


B20. The method of any one of embodiments B1 to B19, wherein the coke oven includes an uptake damper movable to a plurality of positions between open and closed, and wherein heating the coal blend comprises maintaining the uptake damper of the coke oven in a position less than half-way open during a majority of the coking cycle.


B21. The method of any one of embodiments B1 to B20, wherein heating the coal blend comprises:

    • opening an uptake damper at the beginning of the coking cycle;
    • performing, within two hours of charging the coal blend, a first closure operation of the uptake damper from a first configuration to a second configuration, wherein flow through an uptake duct of the coke oven while the uptake damper is in the second configuration is less than flow through the uptake duct while the uptake damper is in the first configuration.


B22. The method of embodiment B21, wherein heating the coal blend is based on a temperature change rate being no more than a temperature rate threshold, wherein the temperature rate threshold is less than or equal to 50° F. per hour.


B23. The method of any one of embodiments B1 to B22, wherein heating the coal blend comprises closing a sole flue damper or maintaining the sole flue damper in a closed position for a majority of the pyrolysis duration.


B24. The method of any one of embodiments B1 to B23, wherein heating the coal blend comprises closing a sole flue damper or maintaining the sole flue damper in a closed position for a majority of the coking cycle.


B25. The method of any one of embodiments B1 to B24, wherein a ratio of the soak time to a cycle duration of the charged coal blend is less than 33.0%, 15%, or 5%.


B26. A method, comprising:

    • heating the coal blend within a coke oven to a coking temperature during a pyrolysis duration of a coking,
    • wherein:
      • the pyrolysis duration begins when a crown of the oven is greater than a lower bound coking temperature;
      • the pyrolysis duration ends when the crown of the oven is less than the lower bound coking temperature;
      • the lower bound coking temperature is within a range of 1200-2300° F.


B27. The method of embodiment B26, wherein, for at least 12 hours of the pyrolysis duration, the coking temperature varies no more than 75° F., 60° F., 50° F., 40° F., or 35° F.


B28. The method of any one of embodiments B26 to B27, further comprising:

    • opening an uptake damper of the coke oven;
    • beginning a closure operation of the uptake damper at least two hours, four hours, six hours, eight hours, ten hours, or twelve hours after opening the uptake, wherein the closure operation closes the uptake damper to a position less than half-way open; and
    • maintaining the uptake damper at no more open than the position for at least twelve hours, sixteen hours, or twenty hours after beginning the closure operation.


B29. The method of any one of embodiments B26 to B28, wherein the coal blend comprises coke breeze, and wherein an ash mass fraction of the coke breeze is greater than or equal to 6.5%, 7.0%, 10.0%, 13%, 15%, or 20%.


B30. The method of any one of embodiments B26 to B29, wherein the coal blend comprises coke breeze, and wherein an ash mass fraction of the coke breeze is greater than or equal to 15.0%.


B31. The method of any one of embodiments B26 to B30, wherein an ash fusion temperature of the coal blend is no more than 2400° F., 2350° F., 2300° F., 2250° F., 2200° F., 2000° F., or 1800° F.


B32. The method of any one of embodiments B26 to B31, wherein a fluidity of the coal blend is at least 100 dial divisions per minute (ddpm), 150 ddpm, 250 ddpm, 260 ddpm, 270 ddpm, 280 ddpm, 290 ddpm, 300 ddpm, 350 ddpm, 400 ddpm, or 100-400 ddpm.


B33. The method of any one of embodiments B26 to B35, wherein an aggregated volatile matter mass fraction of the coal blend is between 18-22%.


B34. A coke oven, comprising:

    • an oven chamber comprising a crown and a sole flue;
    • an uptake duct in fluid communication with the oven chamber, the uptake duct being configured to receive exhaust gases from the oven chamber;
    • an uptake damper in fluid communication with the uptake duct, the uptake damper being positioned at any one of a plurality of positions including fully opened and closed, wherein a manipulation of the uptake damper between positions configures an air flow through the uptake duct;
    • a damper actuator configured to alter the position of the uptake damper between the plurality of positions;
    • a common tunnel in fluid communication with the uptake duct, the common tunnel being configured to receive exhaust gases from the uptake duct; and
    • a controller configured to perform operations during a coking cycle, the operations comprising heating a coal blend within a coke oven to a coking temperature during a pyrolysis duration of a coking cycle, wherein:
      • the pyrolysis duration begins when a crown of the oven is greater than a lower bound coking temperature;
      • the pyrolysis duration ends when the crown of the oven is less than the lower bound coking temperature;
      • the lower bound coking temperature is within a range of 1200-2300° F.; and
      • a sole flue temperature remains below a crown temperature throughout the pyrolysis duration.


B35. The coke oven of embodiment B34, the controller is further configured to perform operations comprising:

    • opening an uptake damper at the beginning of the coking cycle;
    • performing, within two hours of charging the coal blend, a first closure operation of the uptake damper from a first configuration to a second configuration, wherein flow through an uptake duct of the coke oven while the uptake damper is in the second configuration is less than flow through the uptake duct while the uptake damper is in the first configuration.


B36. The coke oven of any of embodiments B34 to B35, wherein a moisture weight fraction of the coal blend is between 10-12% before heating the coal blend.


C1. A coke product, configured to be combusted in a cupola furnace, wherein the coke product is produced by operations comprising:

    • heating a coal blend in a coke oven to a lower bound coking temperature, wherein a pyrolysis duration begins when a crown temperature of the coke oven reaches the lower bound coking temperature, and wherein the crown temperature is greater than a sole flue temperature of the coke oven during the pyrolysis duration; and removing a coke product produced from the coal blend from the coke oven, wherein a Coke
    • Reactivity Index of the coke product is at least 30%.


C2. The coke product of embodiment C1, wherein the coke product comprises:

    • an oblong shape;
    • a first dimension between 6.0-12.0 inches; and a second dimension, normal to the first dimension, greater than 2.5 inches.


C3. The coke product of any one of embodiments C1 to C2, wherein the operations further comprise:

    • prior to heating the coal blend, charging the coal blend in the coke oven, wherein:
      • the coal blend comprises first coals and second coals;
      • the first coals have a first volatile matter mass fraction less than or equal to 21.0%;
      • the second coals have a second volatile matter mass fraction greater than or equal to 27.0%;
      • the coal blend does not comprise coals having a volatile matter mass fraction that is between 15.0% and 27.0%.


C4. The coke product of any one of embodiments C1 to C3, wherein the coking rate is less than 1 ton of coal blend charge per hour, less than 0.75 ton of coal blend charge per hour, or less than 0.50 ton of coal blend charge per hour.


C5. The coke product of any one of embodiments C1 to C4, wherein an ash fusion temperature of the coke product is less than 1800° F. or 2450° F.


C6. The coke product of any one of embodiments C1 to C5, wherein the Coke Reactivity Index of the coke product is at least 35.0%, 40.0%, or 45.0%.


C7. The coke product of any one of embodiments C1 to C6, wherein the coke product has a Coke Strength after Reaction (CSR) that is greater than or equal to 1.0%.


C8. The coke product of any one of embodiments C1 to C7, wherein the coke product has a Coke Reactivity Index (CRI) between 25% and 65% and a Coke Strength after Reaction (CSR) that is greater than or equal to 1%.


C9. The coke product of any one of embodiments C1 to C8, wherein the coke product has a 2-inch drop shatter that is greater than or equal to 90%.


C10. The coke product of any one of embodiments C1 to C9, wherein the coke product has a 4-inch drop shatter that is greater than or equal to 80%.


C11. The coke product of any one of embodiments C1 to C10, wherein producing the coke product further comprises performing a closing operation of an uptake damper of the coke oven within four hours of a start of the pyrolysis duration.


C12. A population of coke products, wherein the population of coke products is produced by operations comprising:

    • heating a coal blend in a coke oven to a lower bound coking temperature, wherein a pyrolysis duration begins when a crown temperature of the coke oven reaches the lower bound coking temperature; and
    • performing a closing operation of an uptake damper of the coke oven within four hours of a start of the pyrolysis duration, wherein the crown temperature is greater than a sole flue temperature of the coke oven during the pyrolysis duration, and wherein the population of coke products comprises foundry coke products having a Coke Reactivity Index of at least 30%, egg coke products, and coke breeze products.


C13. The population of coke products of any one of embodiments C12, wherein:

    • the foundry coke products comprise at least 40% of the population of coke products; and
    • the egg coke products and the coke breeze products comprise at least 20% of the population.


C14. The population of coke products of embodiment C13, wherein:

    • the foundry coke products comprise at least 60% of the population of coke products; and
    • the egg coke products and the coke breeze products comprise at least 20% of the population of coke products.


C15. The population of coke products of any one of embodiments C12 to C14, wherein a mass fraction of ash in the foundry coke products is between 5.0% and 10.0%.


C16. The population of coke products of any one of embodiments C12 to C15, wherein a volatile matter mass fraction of the foundry coke products is less than 1.0%.


C17. The population of coke products of any one of embodiments C12 to C16, wherein a product of the foundry coke products has a 4-inch drop shatter that is greater than or equal to 80%.


C18. The population of coke products of any one of embodiments C12 to C17, wherein the coal blend has volatile matter between 15% and 40%, and wherein the coal blend has a fluidity that is greater than or equal to 100 dial division per minute.


C19. The population of coke products of any one of embodiments C12 to C18, wherein a product of the egg coke products has a hydraulic diameter that is less than 2.0 inches.


C20. A coke product, wherein the coke product is produced by operations comprising heating a coal blend in a coke oven to a lower bound coking temperature to produce a coke product, wherein:

    • a pyrolysis duration begins when a crown temperature of the coke oven reaches the lower bound coking temperature;
    • the crown temperature is greater than a sole flue temperature of the coke oven during the pyrolysis duration; and
    • an ash fusion temperature of the coke product is less than 2300° F., less than 2400° F., or less than 2600° F.


C21. The coke product of embodiment C20, wherein the operations further comprise:

    • increasing a moisture of the coal blend to a moisture of at least 5.0%, 7.5%, or 10.0%; and
    • charging the coal blend into the coke oven after increasing the moisture of the coal blend.


D1. A coke product, comprising:

    • a Coke Reactivity Index (CRI) of at least 30%; and
    • an ash fusion temperature (AFT) no more than 1316° C.


D2. A coke product, comprising:

    • an ash having a composition that satisfies the following equation:

      Ash Fusion Temperature(AFT)=19×(Al2O3_mass_fraction)+15×(SiO2_mass_fraction+TiO2_mass_fraction)+10×(CaO_mass_fraction+MgO_mass_fraction)+6×(Fe2O3_mass_fraction+Na2O_mass_fraction),
      • wherein:
        • the AFT is a value between 1204° C. and 1426° C.;
        • the SiO2_mass_fraction is an SiO2 mass fraction of the ash;
        • the Al2O3_mass_fraction is an Al2O3 mass fraction of the ash;
        • the Fe2O3_mass_fraction is an Fe2O3 mass fraction of the ash;
        • the CaO_mass_fraction is a CaO mass fraction of the ash; and
        • the MgO_mass_fraction is an MgO mass fraction of the ash.


D3. A coke product, comprising:

    • an ash having a composition that satisfies the following equation:

      Ash Fusion Temperature(AFT)=19×(Al2O3_mass_fraction)+15×(SiO2_mass_fraction+TiO2_mass_fraction)+10×(CaO_mass_fraction+MgO_mass_fraction)+6×(Fe2O3_mass_fraction+Na2O_mass_fraction+K2O_mass_fraction),
      • wherein:
        • the AFT is a value between 982° C. ° C. and 1426° C.;
        • the SiO2_mass_fraction is an SiO2 mass fraction of the ash;
        • the Al2O3_mass_fraction is an Al2O3 mass fraction of the ash;
        • the Fe2O3_mass_fraction is an Fe2O3 mass fraction of the ash;
        • the CaO_mass_fraction is a CaO mass fraction of the ash;
        • the MgO_mass_fraction is an MgO mass fraction of the ash; and
        • the K2O_mass_fraction is an K2O mass fraction of the ash.


D4. A coke product, comprising:

    • an ash having a composition that satisfies the following equation:

      Ash Fusion Temperature(AFT)=401.5+26.3×SiO2_mass_fraction+40.7×Al2O3_mass_fraction−11.0×Fe2O3_Mass_Fraction−7.9×CaO_mass_fraction−112×MgO_mass_fraction,
      • wherein:
        • the AFT is a value between 982° C. and 1204° C.;
        • the SiO2_mass_fraction is an SiO2 mass fraction of the ash;
        • the Al2O3_mass_fraction is an Al2O3 mass fraction of the ash;
        • the Fe2O3_mass_fraction is an Fe2O3 mass fraction of the ash;
        • the CaO_mass_fraction is a CaO mass fraction of the ash;
        • the MgO_mass_fraction is an MgO mass fraction of the ash.


D5. The coke product of any one of embodiments D1 to D4, wherein the AFT is approximately equal to at least one of 1204° C., 1260° C., 1288° C., 1316° C., 1343° C., 1371° C., 1399° C., or 1427° C.


D6. The coke product of any one of embodiments D1 to D5, wherein the coke product has an initial deformation temperature between 1149° C. and 1316° C.


D7. The coke product of any one of embodiments D1 to D6, wherein the coke product has a softening temperature between 1177° C. and 1371° C.


D8. The coke product of any one of embodiments D1 to D7, wherein the coke product has a hemispherical temperature between 1204° C. and 1371° C.


D9. The coke product of any one of embodiments D1 to D8, wherein the coke product has a fluid temperature between and 1232° C. and 1427° C.


D10. The coke product of any one of embodiments D1 to D9, wherein a mass fraction of the ash of the coke product is no more than 10.0%.


D11. The coke product of any one of embodiments D1 to D10, wherein a mass fraction of sulfur or sulfur oxide of the coke product is no more than 1.0%.


D12. The coke product of any one of embodiments D1 to D11, wherein:

    • the coke product is produced from a coal blend comprising ash including Al2O3 and SiO2; and
    • a combined mass fraction of the Al2O3 and SiO2 of the ash is no more than 65%.


D13. The coke product of any one of embodiments D1 to D12, wherein the AFT is approximately 1204° C.


D14. The coke product of any one of embodiments D1 to D13, wherein:

    • the coke product is produced from a coal blend comprising ash including Al2O3 and SiO2; and
    • a combined mass fraction of the Al2O3 and the SiO2 of the ash is between 65% and 80%.


D15. The coke product of any one of embodiments D1 to D14, wherein the AFT is between 1204° C. and 1260° C.


D16. The coke product of any one of embodiments D1 to D15, wherein:

    • the coke product is made from a coal blend comprising ash including CaO; and
    • a CaO mass fraction of the ash is at least 2.0%.


D17. The coke product of any one of embodiments D1 to D16, wherein the coke product has a coke reactivity index (CRI) of is at least 25.0%.


D18. The coke product of any one of embodiments D1 to D17, wherein the coke product has a Coke Strength After Reaction (CSR) that is no more than 40.0%.


D19. The coke product of any one of embodiments D1 to D18, wherein the coke product has a 2-inch drop shatter of at least 90%.


D20. The coke product of any one of embodiments D1 to D19, wherein the coke product has a 4-inch drop shatter of at least 80%.


D21. The coke product of any one of embodiments D1 to D20, wherein a mass fraction of the ash of the coke product is at least 8.0%.


D22. The coke product of any one of embodiments D1 to D21, wherein a volatile matter mass fraction of the coke product is no more than 1.0%.


D23. The coke product of any one of embodiments D1 to D22, wherein a fixed carbon content of the coke product is at least 94.5%.


D24. The coke product of any one of embodiments D1 to D23, wherein a fixed carbon content of the coke product is at least 85.0%.


D25. The coke product of any one of embodiments D1 to D24, wherein the coke product comprises at least Na+1, Fe2+, or F3+.

Claims
  • 1. A coal blend, comprising: first coals having a first volatile matter mass fraction less than or equal to a first threshold; andsecond coals having a second volatile matter mass fraction greater than or equal to a second threshold,wherein: the first threshold is less than the second threshold by at least 4.0%;an ash fusion temperature of the coal blend is less than 2600° F.; andthe coal blend has an aggregated volatile matter mass fraction between 15% and 25%.
  • 2. The coal blend of claim 1, wherein the coal blend does not comprise any coals having a volatile mass fraction greater than the first threshold and less than the second threshold.
  • 3. The coal blend of claim 1, wherein the coal blend comprises only the first coals and the second coals.
  • 4. The coal blend of claim 1, wherein the first threshold is less than 21.0% and the second threshold is greater than 25.0%.
  • 5. The coal blend of claim 1, wherein an ash fusion temperature of the coal blend is no more than 2450° F.
  • 6. The coal blend of claim 1, further comprising coke breeze.
  • 7. The coal blend of claim 6, wherein the coke breeze comprises 1-20% of the coal blend.
  • 8. The coal blend of claim 6, wherein no more than 5.0% of the coke breeze is characterized as a 10 mesh coke breeze or larger.
  • 9. The coal blend of claim 1, wherein: the first coals are greater than or equal to 60% of the coal blend; andthe second coals are greater than or equal to 15% of the coal blend.
  • 10. The coal blend of claim 1, wherein: the first coals are greater than or equal to 15% of the coal blend; andthe second coals are greater than or equal to 60% of the coal blend.
  • 11. The coal blend of claim 1, wherein at least one of a calcium oxide mass fraction, a lime mass fraction, a trona mass fraction, a soda ash mass fraction, a caustic soda mass fraction, a low ash fusion slag mass fraction, a basic oxygen furnace (BOF) slag mass fraction, a cupola slag mass fraction, an iron mass fraction, a nickel mass fraction, a potassium mass fraction, a magnesium mass fraction, a sodium mass fraction, a calcium sulfate mass fraction, a rockwool mass fraction, or a biomass mass fraction of the coal blend is less than 5.0% of the coal blend.
  • 12. The coal blend of claim 1, wherein an ash mass fraction of the coal blend is greater than 10.0%.
  • 13. The coal blend of claim 1, wherein a fluidity of the coal blend is at least 100 dial divisions per minute (ddpm).
  • 14. The coal blend of claim 1, further comprising third coals having a third volatile matter mass fraction less than or equal to the first threshold.
  • 15. The coal blend of claim 1, wherein the first coals have a V16 vitrinite mass fraction that is greater than 25%.
  • 16. The coal blend of claim 1, wherein a sum of a V8 vitrinite fraction, a V9 vitrinite fraction, and a V10 vitrinite fraction of the second coals is greater than 40%.
  • 17. The coal blend of claim 1, wherein a sulfur mass weight fraction of the coal blend is at least 5.0% and/or a calcium weight fraction of the coal blend is at least 5.0%.
  • 18. The coal blend of claim 1, wherein: the first coals comprise a V8 vitrinite fraction, a V9 vitrinite fraction, a V10 vitrinite fraction, and a V11 vitrinite fraction,a sum of the V8 vitrinite fraction, the V9 vitrinite fraction, the V10 vitrinite fraction, and the V11 vitrinite fraction is greater than 50%,the second coals comprise a V14 vitrinite fraction, a V15 vitrinite fraction, a V16 vitrinite fraction, a V17 vitrinite fraction, and a V18 vitrinite fraction, anda sum of the V14 vitrinite fraction, the V15 vitrinite fraction, the V16 vitrinite fraction, the V17 vitrinite fraction, and the V18 vitrinite fraction is greater than 50%.
  • 19. A coal blend, comprising: first coals having a first volatile matter mass fraction less than or equal to a first threshold; andsecond coals having a second volatile matter mass fraction greater than or equal to a second threshold,wherein: the first threshold is less than 21.0%;the second threshold is greater than 25.0%; andan ash fusion temperature of the coal blend is less than 2600° F.
  • 20. The coal blend of claim 19, further comprising third coals having a third volatile matter mass fraction less than or equal to the first threshold, wherein the first coals and third coals each comprise V14 vitrinite, V15 vitrinite, V16 vitrinite, and V17 vitrinite.
  • 21. The coal blend of claim 19, wherein: the first coals comprise V14 vitrinite, V15 vitrinite, and V16 vitrinite;a fraction of the V16 vitrinite of the first coals is greater than a fraction of the V15 vitrinite of the first coals; andthe fraction of the V15 vitrinite of the first coals is greater than a fraction of the V14 vitrinite of the first coals.
  • 22. The coal blend of claim 19, wherein a difference between the first threshold and the second threshold is greater than 10%.
  • 23. A method of determining a coal blend for coke product production comprising: obtaining a plurality of coal parameters of first coals and second coals, wherein: the first coals have a first volatile matter mass fraction less than or equal to a first threshold; andthe second coals have a second volatile matter mass fraction greater than or equal to a second threshold, wherein the first threshold is less than the second threshold by at least 4.0%;determining a plurality of coke product parameters based on the plurality of coal parameters; andbased on the plurality of coke product parameters, determining a coal blend formulation for a coal blend comprising a combination of the first coals and the second coals.
  • 24. The method of claim 23, further comprising obtaining breeze parameters for coke breeze, wherein: the breeze parameters indicate at least one of a breeze volatile matter mass fraction, a breeze ash mass fraction, or a breeze sulfur mass fraction; anddetermining the coal blend formulation comprises determining an amount of coke breeze to add to the coal blend based on the breeze parameters.
  • 25. The method of claim 23, wherein the first threshold is less than 21.0%, and wherein the second threshold is greater than 28.0%.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 63/382,446 filed Nov. 4, 2022, the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (543)
Number Name Date Kind
425797 Hunt Apr 1890 A
469868 Osbourn Mar 1892 A
705926 Hemingway Jul 1902 A
760372 Beam May 1904 A
845719 Schniewind Feb 1907 A
875989 Garner Jan 1908 A
976580 Krause Jul 1909 A
1140798 Carpenter May 1915 A
1378782 Floyd May 1921 A
1424777 Schondeling Aug 1922 A
1429346 Horn Sep 1922 A
1430027 Plantinga Sep 1922 A
1486401 Van Ackeren Mar 1924 A
1530995 Geiger Mar 1925 A
1572391 Klaiber Feb 1926 A
1677973 Marquard Jul 1928 A
1705039 Thornhill Mar 1929 A
1721813 Geipert Jul 1929 A
1757682 Palm May 1930 A
1818370 Wine Aug 1931 A
1818994 Kreisinger Aug 1931 A
1830951 Lovett Nov 1931 A
1848818 Becker Mar 1932 A
1895202 Montgomery Jan 1933 A
1947499 Schrader et al. Feb 1934 A
1955962 Jones Apr 1934 A
1979507 Underwood Nov 1934 A
2075337 Burnaugh Mar 1937 A
2141035 Daniels Dec 1938 A
2195466 Otto Apr 1940 A
2235970 Wilputte Mar 1941 A
2340283 Vladu Jan 1944 A
2340981 Otto Feb 1944 A
2343034 Weber Feb 1944 A
2394173 Harris et al. Feb 1946 A
2424012 Bangham et al. Jul 1947 A
2486199 Nier Oct 1949 A
2609948 Laveley Sep 1952 A
2641575 Otto Jun 1953 A
2649978 Smith Aug 1953 A
2667185 Beavers Jan 1954 A
2723725 Keiffer Nov 1955 A
2756842 Chamberlin et al. Jul 1956 A
2813708 Frey Nov 1957 A
2827424 Homan Mar 1958 A
2873816 Emil et al. Feb 1959 A
2902991 Whitman Sep 1959 A
2907698 Schulz Oct 1959 A
2968083 Lentz et al. Jan 1961 A
3015893 McCreary Jan 1962 A
3026715 Briggs Mar 1962 A
3033764 Hannes May 1962 A
3175961 Samson Mar 1965 A
3199135 Trucker Aug 1965 A
3224805 Clyatt Dec 1965 A
3259551 Thompson, Jr. Jul 1966 A
3265044 Juchtern Aug 1966 A
3267913 Jakob Aug 1966 A
3327521 Briggs Jun 1967 A
3342990 Barrington et al. Sep 1967 A
3444046 Harlow May 1969 A
3444047 Wilde May 1969 A
3448012 Allred Jun 1969 A
3453839 Sabin Jul 1969 A
3462345 Kernan Aug 1969 A
3511030 Brown et al. May 1970 A
3542650 Kulakov Nov 1970 A
3545470 Paton Dec 1970 A
3587198 Hensel Jun 1971 A
3591827 Hall Jul 1971 A
3592742 Thompson Jul 1971 A
3616408 Hickam Oct 1971 A
3623511 Levin Nov 1971 A
3630852 Nashan et al. Dec 1971 A
3652403 Knappstein et al. Mar 1972 A
3676305 Cremer Jul 1972 A
3709794 Kinzler et al. Jan 1973 A
3710551 Sved Jan 1973 A
3746626 Morrison, Jr. Jul 1973 A
3748235 Pries Jul 1973 A
3784034 Thompson Jan 1974 A
3806032 Pries Apr 1974 A
3811572 Tatterson May 1974 A
3836161 Pries Oct 1974 A
3839156 Jakobi et al. Oct 1974 A
3844900 Schulte Oct 1974 A
3857758 Mole Dec 1974 A
3875016 Schmidt-Balve Apr 1975 A
3876143 Rossow et al. Apr 1975 A
3876506 Dix et al. Apr 1975 A
3878053 Hyde Apr 1975 A
3894302 Lasater Jul 1975 A
3897312 Armour et al. Jul 1975 A
3906992 Leach Sep 1975 A
3912091 Thompson Oct 1975 A
3912597 MacDonald Oct 1975 A
3917458 Polak Nov 1975 A
3928144 Jakimowicz Dec 1975 A
3930961 Sustarsic et al. Jan 1976 A
3933443 Lohrmann Jan 1976 A
3957591 Riecker May 1976 A
3959084 Price May 1976 A
3963582 Helm et al. Jun 1976 A
3969191 Bollenbach Jul 1976 A
3975148 Fukuda et al. Aug 1976 A
3979870 Moore Sep 1976 A
3984289 Sustarsic et al. Oct 1976 A
3990948 Lindgren Nov 1976 A
4004702 Szendroi Jan 1977 A
4004983 Pries Jan 1977 A
4025395 Ekholm et al. May 1977 A
4040910 Knappstein et al. Aug 1977 A
4045056 Kandakov et al. Aug 1977 A
4045299 McDonald Aug 1977 A
4059885 Oldengott Nov 1977 A
4065059 Jablin Dec 1977 A
4067462 Thompson Jan 1978 A
4077848 Grainer et al. Mar 1978 A
4083753 Rogers et al. Apr 1978 A
4086231 Ikio Apr 1978 A
4093245 Connor Jun 1978 A
4100033 Holter Jul 1978 A
4100491 Newman, Jr. et al. Jul 1978 A
4100889 Chayes Jul 1978 A
4111757 Carimboli Sep 1978 A
4124450 MacDonald Nov 1978 A
4133720 Franzer et al. Jan 1979 A
4135948 Mertens et al. Jan 1979 A
4141796 Clark et al. Feb 1979 A
4143104 van Konijnenburg et al. Mar 1979 A
4145195 Knappstein et al. Mar 1979 A
4147230 Ormond et al. Apr 1979 A
4162546 Shortell et al. Jul 1979 A
4176013 Garthus et al. Nov 1979 A
4181459 Price Jan 1980 A
4189272 Gregor et al. Feb 1980 A
4194951 Pries Mar 1980 A
4196053 Grohmann Apr 1980 A
4211608 Kwasnoski et al. Jul 1980 A
4211611 Bocsanczy Jul 1980 A
4213489 Cain Jul 1980 A
4213828 Calderon Jul 1980 A
4222748 Argo et al. Sep 1980 A
4222824 Flockenhaus et al. Sep 1980 A
4224109 Flockenhaus et al. Sep 1980 A
4225393 Gregor et al. Sep 1980 A
4226113 Pelletier et al. Oct 1980 A
4230498 Ruecki Oct 1980 A
4235830 Bennett et al. Nov 1980 A
4239602 La Bate Dec 1980 A
4248671 Belding Feb 1981 A
4249997 Schmitz Feb 1981 A
4263099 Porter Apr 1981 A
4268360 Tsuzuki et al. May 1981 A
4271814 Lister Jun 1981 A
4284478 Brommel Aug 1981 A
4285772 Kress Aug 1981 A
4287024 Thompson Sep 1981 A
4289479 Johnson Sep 1981 A
4289584 Chuss et al. Sep 1981 A
4289585 Wagener et al. Sep 1981 A
4296938 Offermann et al. Oct 1981 A
4298497 Colombo Nov 1981 A
4299666 Ostmann Nov 1981 A
4302935 Cousimano Dec 1981 A
4303615 Jarmell et al. Dec 1981 A
4307673 Caughey Dec 1981 A
4314787 Kwasnik et al. Feb 1982 A
4316435 Nagamatsu et al. Feb 1982 A
4324568 Wilcox et al. Apr 1982 A
4330372 Cairns et al. May 1982 A
4334963 Stog Jun 1982 A
4336107 Irwin Jun 1982 A
4336843 Petty Jun 1982 A
4340445 Kucher et al. Jul 1982 A
4342195 Lo Aug 1982 A
4344820 Thompson Aug 1982 A
4344822 Schwartz et al. Aug 1982 A
4353189 Thiersch et al. Oct 1982 A
4366029 Bixby et al. Dec 1982 A
4373244 Mertens et al. Feb 1983 A
4375388 Hara et al. Mar 1983 A
4385962 Stewen et al. May 1983 A
4391674 Velmin et al. Jul 1983 A
4392824 Struck et al. Jul 1983 A
4394217 Holz et al. Jul 1983 A
4395269 Schuler Jul 1983 A
4396394 Li et al. Aug 1983 A
4396461 Neubaum et al. Aug 1983 A
4406619 Oldengott Sep 1983 A
4407237 Merritt Oct 1983 A
4421070 Sullivan Dec 1983 A
4431484 Weber et al. Feb 1984 A
4439277 Dix Mar 1984 A
4440098 Adams Apr 1984 A
4441892 Schuster Apr 1984 A
4445977 Husher May 1984 A
4446018 Cerwick May 1984 A
4448541 Lucas May 1984 A
4452749 Kolvek et al. Jun 1984 A
4459103 Gieskieng Jul 1984 A
4469446 Goodboy Sep 1984 A
4474344 Bennett Oct 1984 A
4487137 Horvat et al. Dec 1984 A
4498786 Ruscheweyh Feb 1985 A
4506025 Kleeb et al. Mar 1985 A
4508539 Nakai Apr 1985 A
4518461 Gelfand May 1985 A
4527488 Lindgren Jul 1985 A
4564420 Spindeler et al. Jan 1986 A
4568426 Orlando Feb 1986 A
4570670 Johnson Feb 1986 A
4614567 Stahlherm et al. Sep 1986 A
4643327 Campbell Feb 1987 A
4645513 Kubota et al. Feb 1987 A
4655193 Blacket Apr 1987 A
4655804 Kercheval et al. Apr 1987 A
4666675 Parker et al. May 1987 A
4680167 Orlando Jul 1987 A
4690689 Malcosky et al. Sep 1987 A
4704195 Janicka et al. Nov 1987 A
4720262 Durr et al. Jan 1988 A
4724976 Lee Feb 1988 A
4726465 Kwasnik et al. Feb 1988 A
4732652 Durselen et al. Mar 1988 A
4749446 van Laar et al. Jun 1988 A
4793981 Doyle et al. Dec 1988 A
4821473 Cowell Apr 1989 A
4824614 Jones et al. Apr 1989 A
4889698 Moller et al. Dec 1989 A
4898021 Weaver et al. Feb 1990 A
4918975 Voss Apr 1990 A
4919170 Kallinich et al. Apr 1990 A
4929179 Breidenbach et al. May 1990 A
4941824 Holter et al. Jul 1990 A
5013408 Asai et al. May 1991 A
5052922 Stokman et al. Oct 1991 A
5062925 Durselen et al. Nov 1991 A
5078822 Hodges et al. Jan 1992 A
5087328 Wegerer et al. Feb 1992 A
5114542 Childress et al. May 1992 A
5213138 Presz May 1993 A
5227106 Kolvek Jul 1993 A
5228955 Westbrook, III Jul 1993 A
5234601 Janke et al. Aug 1993 A
5318671 Pruitt Jun 1994 A
5370218 Johnson et al. Dec 1994 A
5398543 Fukushima et al. Mar 1995 A
5423152 Kolvek Jun 1995 A
5447606 Pruitt Sep 1995 A
5480594 Wilkerson et al. Jan 1996 A
5542650 Abel et al. Aug 1996 A
5597452 Hippe et al. Jan 1997 A
5603810 Michler Feb 1997 A
5622280 Mays et al. Apr 1997 A
5659110 Herden et al. Aug 1997 A
5670025 Baird Sep 1997 A
5687768 Albrecht et al. Nov 1997 A
5705037 Reinke et al. Jan 1998 A
5715962 McDonnell Feb 1998 A
5720855 Baird Feb 1998 A
5745969 Yamada et al. May 1998 A
5752548 Matsumoto et al. May 1998 A
5752993 Eatough et al. May 1998 A
5787821 Bhat et al. Aug 1998 A
5810032 Hong et al. Sep 1998 A
5816210 Yamaguchi Oct 1998 A
5857308 Dismore et al. Jan 1999 A
5881551 Dang Mar 1999 A
5913448 Mann et al. Jun 1999 A
5928476 Daniels Jul 1999 A
5966886 Di Loreto Oct 1999 A
5968320 Sprague Oct 1999 A
6002993 Naito et al. Dec 1999 A
6003706 Rosen Dec 1999 A
6017214 Sturgulewski Jan 2000 A
6022112 Isler et al. Feb 2000 A
6059932 Sturgulewski May 2000 A
6126910 Wilhelm et al. Oct 2000 A
6139692 Tamura et al. Oct 2000 A
6152668 Knoch Nov 2000 A
6156688 Ando et al. Dec 2000 A
6173679 Bruckner et al. Jan 2001 B1
6187148 Sturgulewski Feb 2001 B1
6189819 Racine Feb 2001 B1
6290494 Barkdoll Sep 2001 B1
6412221 Emsbo Jul 2002 B1
6495268 Harth, III et al. Dec 2002 B1
6539602 Ozawa et al. Apr 2003 B1
6596128 Westbrook Jul 2003 B2
6626984 Taylor Sep 2003 B1
6699035 Brooker Mar 2004 B2
6712576 Skarzenski et al. Mar 2004 B2
6758875 Reid et al. Jul 2004 B2
6786941 Reeves et al. Sep 2004 B2
6830660 Yamauchi et al. Dec 2004 B1
6907895 Johnson et al. Jun 2005 B2
6946011 Snyder Sep 2005 B2
6964236 Schucker Nov 2005 B2
7056390 Fratello Jun 2006 B2
7077892 Lee Jul 2006 B2
7314060 Chen et al. Jan 2008 B2
7331298 Barkdoll et al. Feb 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7497930 Barkdoll et al. Mar 2009 B2
7547377 Inamasu et al. Jun 2009 B2
7611609 Valia et al. Nov 2009 B1
7644711 Creel Jan 2010 B2
7722843 Srinivasachar May 2010 B1
7727307 Winkler Jun 2010 B2
7785447 Eatough et al. Aug 2010 B2
7803627 Hodges et al. Sep 2010 B2
7823401 Takeuchi et al. Nov 2010 B2
7827689 Crane Nov 2010 B2
7998316 Barkdoll Aug 2011 B2
8071060 Ukai et al. Dec 2011 B2
8079751 Kapila et al. Dec 2011 B2
8080088 Srinivasachar Dec 2011 B1
8146376 Williams et al. Apr 2012 B1
8152970 Barkdoll et al. Apr 2012 B2
8172930 Barkdoll May 2012 B2
8236142 Westbrook Aug 2012 B2
8266853 Bloom et al. Sep 2012 B2
8311777 Suguira et al. Nov 2012 B2
8383055 Palmer Feb 2013 B2
8398935 Howell et al. Mar 2013 B2
8409405 Kim et al. Apr 2013 B2
8500881 Orita et al. Aug 2013 B2
8515508 Kawamura et al. Aug 2013 B2
8568568 Schuecker et al. Oct 2013 B2
8640635 Bloom et al. Feb 2014 B2
8647476 Kim et al. Feb 2014 B2
8800795 Hwang Aug 2014 B2
8956995 Masatsugu et al. Feb 2015 B2
8980063 Kim et al. Mar 2015 B2
9039869 Kim et al. May 2015 B2
9057023 Reichelt et al. Jun 2015 B2
9103234 Gu et al. Aug 2015 B2
9169439 Sarpen et al. Oct 2015 B2
9193913 Quanci et al. Nov 2015 B2
9193915 West et al. Nov 2015 B2
9200225 Barkdoll et al. Dec 2015 B2
9238778 Quanci et al. Jan 2016 B2
9243186 Quanci et al. Jan 2016 B2
9249357 Quanci et al. Feb 2016 B2
9273249 Quanci et al. Mar 2016 B2
9273250 Choi et al. Mar 2016 B2
9321965 Barkdoll Apr 2016 B2
9359554 Quanci et al. Jun 2016 B2
9404043 Kim Aug 2016 B2
9463980 Fukada et al. Oct 2016 B2
9476547 Quanci et al. Oct 2016 B2
9498786 Pearson Nov 2016 B2
9580656 Quanci et al. Feb 2017 B2
9672499 Quanci et al. Jun 2017 B2
9683740 Rodgers et al. Jun 2017 B2
9708542 Quanci et al. Jul 2017 B2
9862888 Quanci et al. Jan 2018 B2
9976089 Quanci et al. May 2018 B2
10016714 Quanci et al. Jul 2018 B2
10041002 Quanci et al. Aug 2018 B2
10047295 Chun et al. Aug 2018 B2
10047296 Chun et al. Aug 2018 B2
10053627 Sarpen et al. Aug 2018 B2
10233392 Quanci et al. Mar 2019 B2
10308876 Quanci et al. Jun 2019 B2
10323192 Quanci et al. Jun 2019 B2
10392563 Kim et al. Aug 2019 B2
10435042 Weymouth Oct 2019 B1
10526541 West et al. Jan 2020 B2
10526542 Quanci et al. Jan 2020 B2
10578521 Dinakaran et al. Mar 2020 B1
10611965 Quanci et al. Apr 2020 B2
10619101 Quanci et al. Apr 2020 B2
10732621 Cella et al. Aug 2020 B2
10760002 Ball et al. Sep 2020 B2
10851306 Crum et al. Dec 2020 B2
10877007 Steele et al. Dec 2020 B2
10883051 Quanci et al. Jan 2021 B2
10920148 Quanci et al. Feb 2021 B2
10927303 Choi et al. Feb 2021 B2
10947455 Quanci et al. Mar 2021 B2
10968393 West et al. Apr 2021 B2
10968395 Quanci et al. Apr 2021 B2
10975309 Quanci et al. Apr 2021 B2
10975310 Quanci et al. Apr 2021 B2
10975311 Quanci et al. Apr 2021 B2
11008517 Chun et al. May 2021 B2
11008518 Quanci et al. May 2021 B2
11021655 Quanci et al. Jun 2021 B2
11053444 Quanci et al. Jul 2021 B2
11060032 Quanci et al. Jul 2021 B2
11071935 Quanci et al. Jul 2021 B2
11098252 Quanci et al. Aug 2021 B2
11117087 Quanci Sep 2021 B2
11142699 West et al. Oct 2021 B2
11186778 Crum et al. Nov 2021 B2
11193069 Quanci et al. Dec 2021 B2
11214739 Quanci et al. Jan 2022 B2
11261381 Quanci et al. Mar 2022 B2
11359145 Ball et al. Jun 2022 B2
11359146 Quanci et al. Jun 2022 B2
11365355 Quanci et al. Jun 2022 B2
11395989 Quanci et al. Jul 2022 B2
11441077 Quanci et al. Sep 2022 B2
11441078 Quanci et al. Sep 2022 B2
11486572 Quanci et al. Nov 2022 B2
11505747 Quanci et al. Nov 2022 B2
11508230 Quanci et al. Nov 2022 B2
11597881 Quanci et al. Mar 2023 B2
11643602 Quanci et al. May 2023 B2
11680208 Quanci et al. Jun 2023 B2
11692138 Quanci et al. Jul 2023 B2
11746296 Choi et al. Sep 2023 B2
11760937 Quanci et al. Sep 2023 B2
11767482 Quanci et al. Sep 2023 B2
11788012 Quanci et al. Oct 2023 B2
11795400 West et al. Oct 2023 B2
11807812 Quanci et al. Nov 2023 B2
11819802 Quanci et al. Nov 2023 B2
11845037 Quanci et al. Dec 2023 B2
11845897 Quanci et al. Dec 2023 B2
11845898 Crum et al. Dec 2023 B2
11851724 Quanci et al. Dec 2023 B2
20020170605 Shiraishi et al. Nov 2002 A1
20030014954 Ronning et al. Jan 2003 A1
20030015809 Carson Jan 2003 A1
20030057083 Eatough et al. Mar 2003 A1
20040016377 Johnson et al. Jan 2004 A1
20040220840 Bonissone et al. Nov 2004 A1
20050087767 Fitzgerald et al. Apr 2005 A1
20050096759 Benjamin et al. May 2005 A1
20060029532 Breen et al. Feb 2006 A1
20060102420 Huber et al. May 2006 A1
20060149407 Markham et al. Jul 2006 A1
20070087946 Quest et al. Apr 2007 A1
20070102278 Inamasu et al. May 2007 A1
20070116619 Taylor et al. May 2007 A1
20070251198 Witter Nov 2007 A1
20080028935 Andersson Feb 2008 A1
20080116052 Eatough et al. May 2008 A1
20080179165 Chen et al. Jul 2008 A1
20080250863 Moore Oct 2008 A1
20080257236 Green Oct 2008 A1
20080271985 Yamasaki Nov 2008 A1
20080289305 Girondi Nov 2008 A1
20090007785 Kimura et al. Jan 2009 A1
20090032385 Engle Feb 2009 A1
20090105852 Wintrich et al. Apr 2009 A1
20090152092 Kim et al. Jun 2009 A1
20090162269 Barger et al. Jun 2009 A1
20090217576 Kim et al. Sep 2009 A1
20090257932 Canari et al. Oct 2009 A1
20090283395 Hippe Nov 2009 A1
20100015564 Chun et al. Jan 2010 A1
20100095521 Kartal et al. Apr 2010 A1
20100106310 Grohman Apr 2010 A1
20100113266 Abe et al. May 2010 A1
20100115912 Worley May 2010 A1
20100119425 Palmer May 2010 A1
20100181297 Whysail Jul 2010 A1
20100196597 Di Loreto Aug 2010 A1
20100276269 Schuecker et al. Nov 2010 A1
20100287871 Bloom et al. Nov 2010 A1
20100300867 Kim et al. Dec 2010 A1
20100314234 Knoch et al. Dec 2010 A1
20110000284 Kumar et al. Jan 2011 A1
20110014406 Coleman et al. Jan 2011 A1
20110048917 Kim et al. Mar 2011 A1
20110083314 Baird Apr 2011 A1
20110088600 McRae Apr 2011 A1
20110100273 Ptacek May 2011 A1
20110120852 Kim May 2011 A1
20110144406 Masatsugu et al. Jun 2011 A1
20110156902 Wang et al. Jun 2011 A1
20110168482 Merchant et al. Jul 2011 A1
20110174301 Haydock et al. Jul 2011 A1
20110192395 Kim Aug 2011 A1
20110198206 Kim et al. Aug 2011 A1
20110223088 Chang et al. Sep 2011 A1
20110253521 Kim Oct 2011 A1
20110291827 Baldocchi et al. Dec 2011 A1
20110313218 Dana Dec 2011 A1
20110315538 Kim et al. Dec 2011 A1
20120031076 Frank et al. Feb 2012 A1
20120125709 Merchant et al. May 2012 A1
20120152720 Reichelt et al. Jun 2012 A1
20120177541 Mutsuda et al. Jul 2012 A1
20120179421 Dasgupta Jul 2012 A1
20120180133 Ai-Harbi et al. Jul 2012 A1
20120195815 Moore et al. Aug 2012 A1
20120228115 Westbrook Sep 2012 A1
20120247939 Kim et al. Oct 2012 A1
20120285080 Despen et al. Nov 2012 A1
20120305380 Wang et al. Dec 2012 A1
20120312019 Rechtman Dec 2012 A1
20130020781 Kishikawa Jan 2013 A1
20130045149 Miller Feb 2013 A1
20130213114 Wetzig et al. Aug 2013 A1
20130216717 Rago et al. Aug 2013 A1
20130220373 Kim Aug 2013 A1
20130306462 Kim et al. Nov 2013 A1
20140039833 Sharpe, Jr. et al. Feb 2014 A1
20140156584 Motukuri et al. Jun 2014 A1
20140208997 Alferyev et al. Jul 2014 A1
20140224123 Walters Aug 2014 A1
20150041304 Kiim et al. Feb 2015 A1
20150075962 Shimoyama Mar 2015 A1
20150122629 Freimuth et al. May 2015 A1
20150143908 Cetinkaya May 2015 A1
20150175433 Micka et al. Jun 2015 A1
20150176095 Connors et al. Jun 2015 A1
20150219530 Li et al. Aug 2015 A1
20150226499 Mikkelsen Aug 2015 A1
20160026193 Rhodes et al. Jan 2016 A1
20160048139 Samples et al. Feb 2016 A1
20160149944 Obermeirer et al. May 2016 A1
20160154171 Kato et al. Jun 2016 A1
20160370082 Olivo Dec 2016 A1
20160377430 Kalagnanam et al. Dec 2016 A1
20170173519 Naito Jun 2017 A1
20170182447 Sappok et al. Jun 2017 A1
20170226425 Kim et al. Aug 2017 A1
20170261417 Zhang Sep 2017 A1
20170313943 Valdevies Nov 2017 A1
20190317167 LaBorde et al. Oct 2019 A1
20200071190 Wiederin et al. Mar 2020 A1
20200139273 Badiei May 2020 A1
20200173679 O'Reilly et al. Jun 2020 A1
20200208063 Quanci Jul 2020 A1
20210198579 Quanci et al. Jul 2021 A1
20210261877 Despen et al. Aug 2021 A1
20210340454 Quanci Nov 2021 A1
20210363427 Quanci et al. Nov 2021 A1
20220056342 Quanci et al. Feb 2022 A1
20220204858 West et al. Jun 2022 A1
20220298423 Quanci et al. Sep 2022 A1
20220356410 Quanci et al. Nov 2022 A1
20230142380 Quanci et al. May 2023 A1
20230258326 Quanci et al. Aug 2023 A1
20230360511 Quanci et al. Nov 2023 A1
20230416629 Quanci et al. Dec 2023 A1
20240110103 Quanci et al. Apr 2024 A1
Foreign Referenced Citations (252)
Number Date Country
1172895 Aug 1984 CA
2775992 May 2011 CA
2822841 Jul 2012 CA
2822857 Jul 2012 CA
2905110 Sep 2014 CA
87212113 Jun 1988 CN
87107195 Jul 1988 CN
2064363 Oct 1990 CN
2139121 Jul 1993 CN
1092457 Sep 1994 CN
1255528 Jun 2000 CN
1270983 Oct 2000 CN
2528771 Feb 2002 CN
1358822 Jul 2002 CN
2521473 Nov 2002 CN
1468364 Jan 2004 CN
1527872 Sep 2004 CN
2668641 Jan 2005 CN
1957204 May 2007 CN
101037603 Sep 2007 CN
101058731 Oct 2007 CN
101157874 Apr 2008 CN
101211495 Jul 2008 CN
201121178 Sep 2008 CN
101395248 Mar 2009 CN
100510004 Jul 2009 CN
101486017 Jul 2009 CN
201264981 Jul 2009 CN
101497835 Aug 2009 CN
101509427 Aug 2009 CN
101886466 Nov 2010 CN
101910530 Dec 2010 CN
102072829 May 2011 CN
102155300 Aug 2011 CN
2509188 Nov 2011 CN
202226816 May 2012 CN
202265541 Jun 2012 CN
102584294 Jul 2012 CN
202415446 Sep 2012 CN
202470353 Oct 2012 CN
103399536 Nov 2013 CN
103468289 Dec 2013 CN
103756699 Apr 2014 CN
103913193 Jul 2014 CN
203981700 Dec 2014 CN
104498059 Apr 2015 CN
105001914 Oct 2015 CN
105137947 Dec 2015 CN
105189704 Dec 2015 CN
105264448 Jan 2016 CN
105467949 Apr 2016 CN
106661456 May 2017 CN
106687564 May 2017 CN
107022359 Aug 2017 CN
107267183 Oct 2017 CN
107445633 Dec 2017 CN
100500619 Jun 2020 CN
111778048 Oct 2020 CN
113322085 Aug 2021 CN
113462415 Oct 2021 CN
114517099 May 2022 CN
101921643 Dec 2022 CN
201729 Sep 1908 DE
212176 Jul 1909 DE
1212037 Mar 1966 DE
2212544 Jan 1973 DE
2720688 Nov 1978 DE
3231697 Jan 1984 DE
3328702 Feb 1984 DE
3315738 Mar 1984 DE
3329367 Nov 1984 DE
3407487 Jun 1985 DE
19545736 Jun 1997 DE
19803455 Aug 1999 DE
10122531 Nov 2002 DE
10154785 May 2003 DE
102004062936 Jul 2006 DE
102005015301 Oct 2006 DE
102006004669 Aug 2007 DE
102006026521 Dec 2007 DE
102009031436 Jan 2011 DE
102011052785 Dec 2012 DE
010510 Oct 2008 EA
0126399 Nov 1984 EP
0208490 Jan 1987 EP
0903393 Mar 1999 EP
1538503 Jun 2005 EP
1860034 Nov 2007 EP
2295129 Mar 2011 EP
2468837 Jun 2012 EP
2339664 Aug 1977 FR
2517802 Jun 1983 FR
2764978 Dec 1998 FR
364236 Jan 1932 GB
368649 Mar 1932 GB
441784 Jan 1936 GB
606340 Aug 1948 GB
611524 Nov 1948 GB
725865 Mar 1955 GB
783720 Sep 1957 GB
871094 Jun 1961 GB
923205 May 1963 GB
2000193 Jan 1979 GB
S50148405 Nov 1975 JP
S5319301 Feb 1978 JP
54054101 Apr 1979 JP
S5453103 Apr 1979 JP
57051786 Mar 1982 JP
57051787 Mar 1982 JP
57083585 May 1982 JP
57090092 Jun 1982 JP
S57172978 Oct 1982 JP
58091788 May 1983 JP
59051978 Mar 1984 JP
59053589 Mar 1984 JP
59071388 Apr 1984 JP
59108083 Jun 1984 JP
59145281 Aug 1984 JP
60004588 Jan 1985 JP
61106690 May 1986 JP
62011794 Jan 1987 JP
62285980 Dec 1987 JP
01103694 Apr 1989 JP
01249886 Oct 1989 JP
H0319127 Mar 1991 JP
03197588 Aug 1991 JP
04159392 Jun 1992 JP
H04178494 Jun 1992 JP
H05230466 Sep 1993 JP
H0649450 Feb 1994 JP
H0654753 Jul 1994 JP
H06264062 Sep 1994 JP
H06299156 Oct 1994 JP
07188668 Jul 1995 JP
07216357 Aug 1995 JP
H07204432 Aug 1995 JP
H0843314 Feb 1996 JP
H08104875 Apr 1996 JP
08127778 May 1996 JP
H08218071 Aug 1996 JP
H10273672 Oct 1998 JP
H11131074 May 1999 JP
H11256166 Sep 1999 JP
2000204373 Jul 2000 JP
2000219883 Aug 2000 JP
2001055576 Feb 2001 JP
2001200258 Jul 2001 JP
2002097472 Apr 2002 JP
2002106941 Apr 2002 JP
2003041258 Feb 2003 JP
2003051082 Feb 2003 JP
2003071313 Mar 2003 JP
2003292968 Oct 2003 JP
2003342581 Dec 2003 JP
2004169016 Jun 2004 JP
2005503448 Feb 2005 JP
2005135422 May 2005 JP
2005154597 Jun 2005 JP
2005263983 Sep 2005 JP
2005344085 Dec 2005 JP
2006188608 Jul 2006 JP
2007063420 Mar 2007 JP
3924064 Jun 2007 JP
2007169484 Jul 2007 JP
2007231326 Sep 2007 JP
4101226 Jun 2008 JP
2008231278 Oct 2008 JP
2009019106 Jan 2009 JP
2009073864 Apr 2009 JP
2009073865 Apr 2009 JP
2009135276 Jun 2009 JP
2009144121 Jul 2009 JP
2010229239 Oct 2010 JP
2010248389 Nov 2010 JP
2011504947 Feb 2011 JP
2011068733 Apr 2011 JP
2011102351 May 2011 JP
2012072389 Apr 2012 JP
2012102302 May 2012 JP
2012102325 May 2012 JP
2013006957 Jan 2013 JP
2013510910 Mar 2013 JP
2013189322 Sep 2013 JP
2014040502 Mar 2014 JP
2015094091 May 2015 JP
2015-199791 Nov 2015 JP
2016169897 Sep 2016 JP
1019960008754 Oct 1996 KR
19990017156 May 1999 KR
1019990054426 Jul 1999 KR
20000042375 Jul 2000 KR
100296700 Oct 2001 KR
20030012458 Feb 2003 KR
1020040020883 Mar 2004 KR
20040107204 Dec 2004 KR
20050053861 Jun 2005 KR
20060132336 Dec 2006 KR
100737393 Jul 2007 KR
100797852 Jan 2008 KR
20080069170 Jul 2008 KR
20110010452 Feb 2011 KR
101314288 Apr 2011 KR
20120033091 Apr 2012 KR
20130050807 May 2013 KR
101318388 Oct 2013 KR
20140042526 Apr 2014 KR
10-2014-0076155 Jun 2014 KR
20150011084 Jan 2015 KR
20150068557 Jun 2015 KR
20170038102 Apr 2017 KR
20170058808 May 2017 KR
20170103857 Sep 2017 KR
101862491 May 2018 KR
2083532 Jul 1997 RU
2441898 Feb 2012 RU
2493233 Sep 2013 RU
1535880 Jan 1990 SU
201241166 Oct 2012 TW
201245431 Nov 2012 TW
50580 Oct 2002 UA
WO9012074 Oct 1990 WO
WO9945083 Sep 1999 WO
WO02062922 Aug 2002 WO
WO-03025093 Mar 2003 WO
WO2005023649 Mar 2005 WO
WO2005031297 Apr 2005 WO
WO2005115583 Dec 2005 WO
WO2007103649 Sep 2007 WO
WO2008034424 Mar 2008 WO
WO2008105269 Sep 2008 WO
WO2009147983 Dec 2009 WO
2010-032734 Mar 2010 WO
WO2010103992 Sep 2010 WO
WO2011000447 Jan 2011 WO
WO2011126043 Oct 2011 WO
WO2012029979 Mar 2012 WO
WO2012031726 Mar 2012 WO
WO2013023872 Feb 2013 WO
WO2010107513 Sep 2013 WO
WO-2013145679 Oct 2013 WO
WO2013153557 Oct 2013 WO
WO2014021909 Feb 2014 WO
WO2014043667 Mar 2014 WO
WO2014105064 Jul 2014 WO
WO2014153050 Sep 2014 WO
WO2016004106 Jan 2016 WO
WO2016033511 Mar 2016 WO
WO2016033515 Mar 2016 WO
WO2016086322 Jun 2016 WO
WO2016109854 Jul 2016 WO
WO2022159604 Jul 2022 WO
WO-2022235839 Aug 2023 WO
Non-Patent Literature Citations (194)
Entry
WO-2013145679-A1 Description Translations (2013).
WO-2013145679-A1 BIB Translation (2013).
U.S. Appl. No. 18/313,622, filed May 8, 2023, Quanci et al..
U.S. Appl. No. 18/313,647, filed May 8, 2023, Quanci et al..
U.S. Appl. No. 18/321,530, filed May 22, 2023, Quanci et al..
U.S. Appl. No. 18/363,465, filed Aug. 1, 2023, Quanci et al..
U.S. Appl. No. 18/363,508, filed Aug. 1, 2023, Choi et al..
U.S. Appl. No. 18/366,244, filed Aug. 7, 2023, Quanci et al..
U.S. Appl. No. 18/466,549, filed Sep. 13, 2023, Quanci et al..
U.S. Appl. No. 18/469,704, filed Sep. 19, 2023, Crum et al..
U.S. Appl. No. 18/473,135, filed Sep. 22, 2023, Quanci et al..
U.S. Appl. No. 18/473,143, filed Sep. 22, 2023, Quanci et al..
U.S. Appl. No. 18/483,019, filed Oct. 9, 2023, West et al..
U.S. Appl. No. 18/486,021, filed Oct. 12, 2023, Quanci et al..
U.S. Appl. No. 18/492,913, filed Oct. 24, 2023, Quanci et al..
U.S. Appl. No. 18/501,795, filed Nov. 3, 2023, Quanci et al..
U.S. Appl. No. 18/506,616, filed Nov. 10, 2023, Quanci et al..
U.S. Appl. No. 18/506,746 Filed Nov. 10, 23, Quanci et al..
U.S. Appl. No. 18/511,148, filed Nov. 16, 2023, Quanci et al..
U.S. Appl. No. 18/511,621, filed Nov. 16, 2023, Quanci et al..
“ASBESTOS”, Virginia Department of Health, https://www.vdh.virginia.gov/environmental-health/public-health-toxicology/asbestos/, updated 2023, 2 pages.
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010.
Astrom, et al., “Feedback Systems: An Introduction for Scientists and Engineers,” Sep. 16, 2006, available on line at http://people/duke.edu/-hpgavin/SystemID/References/Astrom-Feedback-2006.pdf ; 404 pages.
Basset et al., “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Instn Mech Engrs., vol. 215, Part C, p. 861-881 IMechIE 2001.
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67.
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64.
Boyes, Walt. (2003), Instrumentation Reference Book (3rd Edition)—34.7.4.6 Infrared and Thermal Cameras, Elsevier. Online version available at: https://app.knovel.com/hotlink/pdf/id:kt004QMGV6/instrumentation-reference-2/ditigal-video.
“Ceramic fibers wool—to 1,300° C.”, gTeek, Dec. 29, 2017 (date obtained from google search tools), https://www.gteek.com/ceramic-fibers-woolp-to1-300-%C2%B0C, 15 pages.
Chaudhari, K., Cupola Furnace, engineersgalary.com Jan. 24, 2016; 4 pages.
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages.
“Conveyor Chain Designer Guild”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, available online at: http://www.renold/com/upload/renoldswitzerland/conveyor_chain_-_designer_guide.pdf.
Costa, et al., “Edge Effects on the Flow Characteristics in a 90 deg Tee Junction,” Transactions of the ASME, Nov. 2006, vol. 128, pp. 1204-1217.
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546.
Database WPI, Week 199115, Thomson Scientific, Lond, GB; An 1991-107552.
de Cordova, et al. “Coke oven life prolongation—A multidisciplinary approach.” 10.5151/2594-357X-2610 (2015) 12 pages.
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412.
“High Alumina Cement-Manufacture, Characteristics and Uses,” TheConstructor.org, https://theconstructor.org/concrete/high-alumina-cement/23686/; 12 pages.
“How Glass Is Made,” Corning, https://www.corning.com/worldwide/en/innovation/materials-science/glass/how-glass-made.html, 2 pages.
Industrial Furnace Design Handbook, Editor-in-Chief: First Design Institute of First Ministry of Machinery Industry, Beijing: Mechanical Industry Press, pp. 180-183, Oct. 1981.
Ishiwata, et al. “Effect of coke diameter and oxygen concentration of blast on cupola operation.” ISIJ International, 2011, vol. 51, pp. 1353-1359.
Ivanova, V. A. “Analysis of the requirements for foundry coke.” IOP Conference Series: Materials Science and Engineering, 2020, vol. 986, pp. 1-6.
Joseph, B., “A tutorial on inferential control and its applications,” Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, 1999, pp. 3106-3118 vol. 5.
Kerlin, Thomas (1999), Practical Thermocouple Thermometry—1.1 The Thermocouple. ISA. Online version available at https:app.knovel.com/pdf/id:kt007XPTM3/practical-thermocouple/the-thermocouple.
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32.
Knoerzer et al. “Jewell-Thompson Non-Recovery Cokemaking”, Steel Times, Fuel & Metallurgical Journals Ltd. London, GB, vol. 221, No. 4, Apr. 1, 1993, pp. 172-173,184.
Kusiorowski, et al., “Thermal decomposition of different types of abestos,” Journal of Thermal Analysis and Calorimetry ⋅ Feb. 2012, 109, 693-704 (2012).
Lin, Rongying et al., “Study on the synergistic effect of calcium and aluminum on improving ash fusion temperature of semi-coke,” International Journal of Coal Preparation and Utilization, May 31, 2019 (published online), vol. 42, No. 3, pp. 556-564.
Lipunov, et al. “Diagnostics of the Heating Systgem and Lining of Coke Ovens,” Coke and Chemistry, 2014, Vopl. 57, No. 12, pp. 489-492.
Madias, et al., “A review on stamped charging of coals” (2013). Available at https://www.researchgate.net/publication/263887759_A_review_on_stamped_charging_of_coals.
Metallurgical Coke MSDS, ArcelorMittal, May 30, 2011, available online at http://dofasco.arcelormittal.com/-/media/Files/A/Arcelormittal-Canada/material-safety/metallurgical-coke.pdf.
“Middletown Coke Company HRSG Maintenance BACT Analysis Option 1—Individual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case #1—24.5 VM”, (Sep. 1, 2009), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplication/mcc/new/262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 * p. 7 * * pp. 8-11 *.
Pearson, D.E., “Influence of Geology on CSR (Coke Strength After Reaction with C02),” 2009, 8 pages.
Practical Technical Manual of Refractories, Baoyu Hu, etc., Beijing: Metallurgical Industry Press, Chapter 6; 2004, 6-30.
Powell, et al. “Cupola Furnaces”, ASM International, downloaded from http://dl.asminternational.org/handbooks/edited-volume/chapter-pdf/501030/a0005197.pdf; 9 pages.
Refractories for Ironmaking and Steelmaking: A History of Battles over High Temperatures; Kyoshi Sugita (Japan, Shaolin Zhang), 1995, p. 160, 2004, 2-29.
“Refractory Castables,” Victas.com, Dec. 28, 2011 (date obtained from WayBack Machine), https://www/vitcas.com/refactory-castables; 5 pages.
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages.
Tiwari, et al., “A novel technique for assessing the coking potential of coals/cole blends for non-recovery coke making process,” Fuel, vol. 107, May 2013, pp. 615-622.
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25.
Walker, et al., “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental impact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue De Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23.
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28.
“What is dead-band control,” forum post by user “wireaddict” on AllAboutCircuits.com message board, Feb. 8, 2007, accessed Oct. 24, 2018 at https:/forum.allaboutcircuits.com/threads/what-is-dead-band-control.4728/; 8 pages.
Yu et al., “Coke Oven Production Technology,” Lianoning Science and Technology Press, first edition, Apr. 2014, pp. 356-358.
“Resources and Utilization of Coking Coal in China,” Mingxin Shen ed., Chemical Industry Press, first edition, Jan. 2007, pp. 242-243, 247.
U.S. Appl. No. 09/783,195, filed Feb. 14, 2001, now U.S. Pat. No. 6,596,128, titled Coke Oven Flue Gas Sharing.
U.S. Appl. No. 17/471,491, filed Sep. 10, 2021, now U.S. Pat. No. 11,142,699, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 18/363,508, filed Aug. 1, 2023, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 16/047,198, filed Jul. 27, 2018, now U.S. Pat. No. 10,611,965, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, now U.S. Pat. No. 9,476,547, titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 18/366,244, filed Aug. 7, 2023, titled Oven Uptakes.
U.S. Appl. No. 18/052,739, filed Nov. 4, 2022, titled Foundry Coke Products and Associated Processing Methods Via Cupolas.
International Search Report and Written Opinion issued by Korean International Search Authority on Mar. 4, 2024 for PCT/US2023/078656, 10 pages.
International Search Report and Written Opinion issued by the Korean International Search Authority on Mar. 4, 2024 for PCT/US2023/078709; 12 pages.
U.S. Appl. No. 18/584,320, filed Feb. 22, 2024, West et al.
U.S. Appl. No. 18/586,236, filed Feb. 23, 2024, Quanci et al.
Item HT 56107 Briquette, ‘H’ Type Household or Domestic Use, SECV Brown Coal Mine, Yallourn, Victoria, circa 1925, Museums Victoria Collections, https://collections.museumsvictoria.com.au/items/2286568, published on Mar. 2, 2021; 3 pages.
Office of the Federal Register, National Archives and Records Administration. (Apr. 14, 2005). 70 FR 19992—National Emission Standards for Coke Oven Batteries. [Government]. Office of the Federal Register, National Archives and Records Administration. https://www.govinfo.gov/app/details/FR-2005-04-15/05-6942.
U.S. Appl. No. 07/587,742, filed Sep. 25, 1990, now U.S. Pat. No. 5,114,542, titled Nonrecovery Coke Oven Battery and Method of Operation.
U.S. Appl. No. 07/878,904, filed May 6, 1992, now U.S. Pat. No. 5,318,671, titled Method of Operation of Nonrecovery Coke Oven Battery.
U.S. Appl. No. 09/783,195, filed on Feb. 14, 2001, now U.S. Pat. No. 6,596,128, titled Coke Oven Flue Gas Sharing.
U.S. Appl. No. 07/886,804, filed May 22, 1992, now U.S. Pat. No. 5,228,955, titled High Strength Coke Oven Wall Having Gas Flues Therein.
U.S. Appl. No. 08/059,673, filed May 12, 1993, now U.S. Pat. No. 5,447,606, titled Method of and Apparatus for Capturing Coke Oven Charging Emissions.
U.S. Appl. No. 08/914,140, filed Aug. 19, 1997, now U.S. Pat. No. 5,928,476, titled Nonrecovery Coke Oven Door.
U.S. Appl. No. 09/680,187, filed Oct. 5, 2000, now U.S. Pat. No. 6,290,494, titled Method and Apparatus for Coal Coking.
U.S. Appl. No. 10/933,866, filed Sep. 3, 2004, now U.S. Pat. No. 7,331,298, titled Coke Oven Rotary Wedge Door Latch.
U.S. Appl. No. 11/424,566, filed Jun. 16, 2006, now U.S. Pat. No. 7,497,930, titled Method and Apparatus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 12/405,269, filed Mar. 17, 2009, now U.S. Pat. No. 7,998,316, titled Flat Push Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 13/205,960, filed Aug. 9, 2011, now U.S. Pat. No. 9,321,965, titled Flat Push Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 11/367,236, filed Mar. 3, 2006, now U.S. Pat. No. 8,152,970, titled Method and Apparatus for Producing Coke.
U.S. Appl. No. 12/403,391, filed Mar. 13, 2009, now U.S. Pat. No. 8,172,930, titled Cleanable in Situ Spark Arrestor.
U.S. Appl. No. 12/849,192, filed Aug. 3, 2010, now U.S. Pat. No. 9,200,225, titled Method and Apparatus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 13/631,215, filed Sep. 28, 2012, now U.S. Pat. No. 9,683,740, titled Methods for Handling Coal Processing Emissions and Associated Systems and Devices.
U.S. Appl. No. 13/730,692, filed Dec. 28, 2012, now U.S. Pat. No. 9,193,913, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle.
U.S. Appl. No. 14/655,204, now U.S. Pat. No. 10,016,714, filed on Jun. 24, 2015, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 16/000,516, now U.S. Pat. No. 11,117,087, filed on Jun. 5, 2018, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 17/459,380, now, U.S. Pat. No. 11,845,037, filed on Jun. 5, 2018, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 18/506,616, filed Nov. 10, 2023, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 13/830,971, filed Mar. 14, 2013, now U.S. Pat. No. 10,047,296, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods, now U.S. Pat. No. 10,047,295.
U.S. Appl. No. 16/026,363, filed Jul. 3, 2018, now U.S. Pat. No. 11,008,517, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods.
U.S. Appl. No. 13/730,796, filed Dec. 28, 2012, now U.S. Pat. No. 10,883,051, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 17/140,564, filed Jan. 4, 2021, now U.S. Pat. No. 11,807,812, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 18/473,143, filed Sep. 22, 2023, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 13/730,598, filed Dec. 28, 2012, now U.S. Pat. No. 9,238,778, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, now U.S. Pat. No. 9,862,888, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 15/830,320, filed Dec. 4, 2017, now U.S. Pat. No. 10,323,192, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 13/730,735, filed Dec. 28, 2012, now U.S. Pat. No, 9,273,249, titled Systems and Methods for Controlling Air Distribution in a Coke Oven.
U.S. Appl. No. 14/655,013, filed Jun. 23, 2015, now U.S. Pat. No. 11,142,699, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 17/471,491, filed Sep. 10, 2021, now U.S. Pat. No. 11,939,526 (Mar. 26, 2024), titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 18/584,320, filed Feb. 22, 2024, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 13/843,166, filed Mar. 15, 2013, now U.S. Pat. No. 9,273,250, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, now, U.S. Pat. No. 10,927,303, titled Methods for Improved Quench Tower Design.
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, now U.S. Pat. No. 11,746,296, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, now U.S. Pat. No. 10,760,002, titled Systems and Methods for Maintaining a Hot Car in a Coke Plant.
U.S. Appl. No. 16/897,957, filed Jun. 10, 2020, now U.S. Pat. No. 11,359,145, titled Systems and Methods for Maintaining a Hot Car in a Coke Plant.
U.S. Appl. No. 13/829,588, filed Mar. 14, 2013, now U.S. Pat. No. 9,193,915, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, now U.S. Pat. No. 10,526,541, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, now U.S. Pat. No. 10,968,383, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 17/190,720, now U.S. Pat. No. 11,795,400, filed on Mar. 3, 2021, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 18/483,019, filed Oct. 9, 2023, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 13/589,009, filed Aug. 17, 2012, now U.S. Pat. No. 9,359,554, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, now U.S. Pat. No. 10,947,455, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 17/176,391, now U.S. Pat. No. 11,692,138, filed Feb. 16, 2021, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 18/321,530, filed May 22, 2023, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 13/588,996, filed Aug. 17, 2012, now U.S. Pat. No. 9,243,186, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 14/959,450, filed Dec. 4, 2015, now U.S. Pat. No. 10,041,002, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 16/047,198, filed on Jul. 27, 2018, now U.S. Pat. No. 10,611,965, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, now U.S. Pat. No. 11,441,077, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 13/589,004, filed Aug. 17, 2012, now U.S. Pat. No. 9,249,357, titled Method and Apparatus for Volatile Matter Sharing in Stamp-Charged Coke Ovens.
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, now U.S. Pat. No. 9,476,547, titled Exhaust Flow Modifier, Duct Intersection Incorporating the and Methods Therefor.
U.S. Appl. No. 15/281,891, filed Sep. 30, 2016, now U.S. Pat. No. 10,975,309, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 17/191,119, filed Mar. 3, 3021, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 13/598,394, filed Aug. 29, 2012, now U.S. Pat. No. 9,169,439, titled Method and Apparatus for Testing Coal Coking Properties.
U.S. Appl. No. 14/865,581, filed Sep. 25, 2015, now U.S. Pat. No. 10,053,627, titled Method and Apparatus for Testing Coal Coking Properties, now U.S. Pat. No. 10,053,627.
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, now U.S. Pat. No. 9,580,656, titled Coke Oven Charging System.
U.S. Appl. No. 15/443,246, filed Feb. 27, 2017, now U.S. Pat. No. 9,976,089, titled Coke Oven Charging System.
U.S. Appl. No. 14/587,670, filed Dec. 31, 2014, now U.S. Pat. No. 10,619,101, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, now U.S. Pat. No. 11,359,146, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, now U.S. Pat. No. 10,975,310, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/983,837, filed Dec. 30, 2015, now U.S. Pat. No. 10,968,395, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, now U.S. Pat. No. 10,975,311, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 17/222,886, filed Apr. 12, 2021, titled Multi- Modal Beds of Coking Material.
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, now U.S. Pat. No. 11,060,032, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 17/172,476, filed Feb. 10, 2021, now U.S. Pat. No. 11,788,012, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 18/473,143, filed Sep. 22, 2023, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, now U.S. Pat. No. 10,233,392, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 16/251,352, filed Jan. 18, 2019, now U.S. Pat. No. 11,053,444, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 14/839,551, filed Aug. 28, 2015, now U.S. Pat. No. 10,308,876, titled Burn Profiles for Coke Operations.
U.S. Appl. No. 16/428,014, filed May 31, 2019, now U.S. Pat. No. 10,920,148, titled Improved Burn Profiles for Coke Operations.
U.S. Appl. No. 17/155,719, filed Jan. 22, 2021, now U.S. Pat. No. 11,441,078, titled Improved Burn Profiles for Coke Operations.
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, now U.S. Pat. No. 9,708,542, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, now U.S. Pat. No. 10,526,542, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 16/735,103, filed Jan. 6, 2020, now U.S. Pat. No. 11,214,739, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, now U.S. Pat. No. 11,508,230, titled Methods and Systems for Automatically Generating a Remedial Action in an Industrial Facility.
U.S. Appl. No. 18/047,916, filed Oct. 19, 2022, titled Methods and Systems for Automatically Generating a Remedial Action in an Industrial Facility.
U.S. Appl. No. 15/987,860, filed May 23, 2018, now U.S. Pat. No. 10,851,306, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/076,563, filed Oct. 21, 2020, now U.S. Pat. No. 11,186,778, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/521,061, now U.S. Pat. No. 11,845,898, filed on Nov. 8, 2021, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 18/469,704, filed Sep. 19, 2023, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/135,483, filed Dec. 28, 2020, titled Oven Health Optimization Systems and Methods.
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, now U.S. Pat. No. 11,760,937, titled Oven Uptakes.
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, now U.S. Pat. No. 11,365,355, titled Systems and Methods for Treating a Surface of a Coke Plant.
U.S. Appl. No. 17/747,708, filed May 18, 2022, titled Systems and Methods for Treating a Surface of a Coke Plant.
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, titled Gaseous Tracer Leak Detection.
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, now U.S. Pat. No. 11,395,989, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant Treatment Systems.
U.S. Appl. No. 17/843,164, filed Jun. 17, 2022, now U.S. Pat. No. 11,819,802, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant Treatment Systems.
U.S. Appl. No. 18/486,021, filed Oct. 12, 2023, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant Treatment Systems.
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, now U.S. Pat. No. 11,486,572, titled Systems and Methods for Utilizing Flue Gas.
U.S. Appl. No. 17/947,520, filed Sep. 19, 2022, titled Systems and Methods for Utilizing Flue Gas.
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, now U.S. Pat. No. 11,008,518, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 17/320,343, filed May 14, 2021, now U.S. Pat. No. 11,597,881, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 18/168,142, filed Feb. 13, 2023, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 16/729,170, now U.S. Pat. No. 11,193,069, filed on Dec. 27, 2019, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 17/532,058, now U.S. Pat. No. 11,505,747, filed on Nov. 22, 2021, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 17/967,615, filed Oct. 17, 2022, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 16/729,157, filed Dec. 27, 2019, now U.S. Pat. No. 11,071,935, titled Particulate Detection for Industrial Facilities, and Associated Systems and Methods.
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, now U.S. Pat. No. 11,021,655, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 17/321,857, filed May 17, 2021, now U.S. Pat. No. 11,643,602, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 18/313,622, filed May 8, 2023, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, now U.S. Pat. No. 11,261,381, titled Heat Recovery Oven Foundation.
U.S. Appl. No. 17/584,672, now U.S. Pat. No. 11,845,897, filed Jan. 26, 2022, titled Heat Recovery Oven Foundation.
U.S. Appl. No. 18/492,913, filed Oct. 24, 2023, titled Heat Recovery Oven Foundation.
U.S. Appl. No. 16/729,219, now U.S. Pat. No. 11,098,252, filed on Dec. 27, 2019, titled Spring-Loaded Heat Recovery Oven System and Method.
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, now, U.S. Pat. No. 11,680,208, titled Spring-Loaded Heat Recovery Oven System and Method.
U.S. Appl. No. 17/736,960, filed May 20, 2022, titled Foundry Coke Products, and Associated Systems and Methods.
U.S. Appl. No. 17/306,895, now U.S. Pat. No. 11,767,482, filed on May 3, 2021, now U.S. Pat. No. 11,767,482, titled High-Quality Coke Products.
U.S. Appl. No. 18/363,465, filed Aug. 1, 2023, titled High-Quality Coke Products.
U.S. Appl. No. 18/466,549, filed Sep. 13, 2023, titled High-Quality Coke Products.
U.S. Appl. No. 18/501,795, filed Nov. 3, 2023, titled Coal Blends, Foundry Coke Products, and Associated Systems, Devices, and Methods.
U.S. Appl. No. 18/052,739, filed Nov. 4, 2022, now U.S. Pat. No. 11,946,108, titled Foundry Coke Products and Associated Processing Methods Via Cupolas.
U.S. Appl. No. 18/586,236, filed Feb. 23, 2024, titled Foundry Coke Products and Associated Processing Methods Via Cupolas.
U.S. Appl. No. 18/052,760, filed Nov. 2, 2022, now U.S. Pat. No. 11,851,724, titled Foundry Coke Products, and Associated Systems, Devices, and Methods.
U.S. Appl. No. 18/506,746, filed Nov. 10, 2023, titled Foundry Coke Products, and Associated Systems, Devices, and Methods.
U.S. Appl. No. 18/511,148, filed Nov. 16, 2023, titled Products Comprising Char and Carbon, and Associated Systems, Devices, and Methods.
U.S. Appl. No. 18/511,621, filed Nov. 16, 2023, titled Pelletized Products and Associated Systems, Devices, and Methods.
Related Publications (1)
Number Date Country
20240150667 A1 May 2024 US
Provisional Applications (1)
Number Date Country
63382446 Nov 2022 US