The present invention relates to a coalescing media; and more particularly relates to a coalescing media for a hydronic air and sediment separation device.
Coalescing removal separators are devices typically installed on hydronic HVAC systems to remove entrained gases (such as air) and solid particles (such as iron oxide) from the fluid flowing through the system. Gasses trapped in a hydronic system lead to potentially harmful corrosion. Solid particulates collect into sediment that can foul moving components in pumps or valves and damage sensors in the system.
Coalescing removal separators work by passing the system fluid into a tank, through a coalescent media, and back to the system. The action of passing the fluid through the coalescent media enables the entrained gasses and particles to be removed from the system. The coalescent media disrupts the fluid flow and slows the fluid velocity, which allows gas bubbles to come out of solution and, through their natural buoyancy, float to the top of the separator tank to be vented out of the system. Likewise, the reduction in fluid velocity allows solids in the fluid, which are heavier than the system fluid, to come out of solution and drop to the bottom of the tank to be later removed through a blow-down action. The blow-down action involves opening a valve at the bottom of the removal separator tank to atmosphere, utilizing the difference between atmospheric pressure and the system pressure inside the separator tank to force out the solid contaminants that have come out of solution as they passed through the coalescing media. The coalescent media also provides a surface for dissolved gasses and solids to collect, or coalesce, around. As more dissolved gas or solids pass through the media pack, the molecules will continue to coalesce until they are either buoyant enough to float to the top or heavy enough to drop to the bottom.
One problem with current coalescing removal separator media is that they significantly increase the pressure drop of the unit, which can negatively impact the overall system efficiency. Another issue is that they may not effectively remove gasses or solids due to their designs.
In view of the aforementioned, there is a need in the industry for a better coalescing media for a hydronic air and sediment separation device.
The present invention provides a new and unique coalescing separator media that improves the pressure drop characteristics across the separator while improving the ability of the device to more effectively remove gasses and solids from the system fluid. By way of example, this media consists of a series of vertically aligned corrugated perforated sheets, e.g., made from stainless steel, arranged such that they fill a large portion of the volume of the separator tank. The corrugated sheets are assembled to each other where the peak of one corrugation is assembled to the crest of the other. The corrugations could also be assembled peak-to-peak and crest-to-crest. The perforated and corrugated sheets have an open area of 58% or greater, which facilitate the improved pressure drop characteristics.
The fluid flows through the corrugated media makes contact with the face of the perforated material to slow down the fluid velocity, enabling the entrained gasses and solids to come out of solution and either rise or sink, respectively. The perforations of the corrugated sheet media provide multiple surfaces for dissolved gasses and solids to coalesce around.
The vertically aligned corrugations of the coalescing media serve two purposes.
First, the angled corrugations direct the fluid to pass through the coalescing media where the greatest surface contact could occur. Likewise, as the fluid has completed its pass through the coalescing media, the angled corrugations direct the fluid to the discharge nozzle to leave the separator, and allow the pressure drop to recover. These motions help reduce the overall pressure drop of the coalescing separator, compared to different designs.
Second, the vertically aligned corrugations are rigid and resist the compressive forces that the coalescing media would be subject to over the course of its operational lifetime. They are also resistant to any rotation.
The corrugated coalescing separator media is to be retained within the separator tank by a tank head at the top and at least one retaining bar at the bottom. This provides sufficient open area to permit gas bubbles to rise to the top of the separator and solids to fall to the bottom.
According to some embodiments, the present invention may take the form of apparatus featuring a coalescing removal separator having a combination of a separator tank and a coalescing media.
The separator tank has a separator input configured to receive a fluid flowing through a system having entrained gas and solid particles, has a tank wall configured to form a volume/chamber inside the separator tank to process the fluid, and has a separator output configured to provide processed fluid having at least some, most or substantially all of the entrained gas and solid particles removed.
The coalescing media is arranged in the volume/chamber of the separator tank, has a series of vertically aligned corrugated perforated sheets substantially filling the volume/chamber of the separator tank and is configured to remove the at least some, most or substantially all of the entrained gas and solid particles from the fluid.
The apparatus may also include one or more of the following features:
The series of vertically aligned corrugated perforated sheets may be made from a metallic material, such as stainless steel.
The series of vertically aligned corrugated perforated sheets may have peaks and crests, and may be assembled to each other where a peak of one corrugation is assembled to a crest of another corrugation.
The series of vertically aligned corrugated perforated sheets may have peaks and crests, and may be assembled to each other peak-to-peak and crest-to-crest.
The series of vertically aligned corrugated perforated sheets may have an open area of about 58% or greater, which facilitates an associated pressure drop characteristics.
The series of vertically aligned corrugated perforated sheets may have perforations that provide multiple surfaces for dissolved gasses and solids to coalesce around.
The series of vertically aligned corrugated perforated sheets may have angled corrugations that direct the fluid to pass through the coalescing media where greatest surface contact occurs.
As the fluid has completed its pass through the coalescing media, the angled corrugations may direct the fluid to the separator output to leave the coalescing removal separator and allow a pressure drop to recover.
The series of vertically aligned corrugated perforated sheets may have vertically aligned corrugations that are rigid and resist compressive and/or rotation forces that the coalescing media is subject to within the separator tank.
The separator tank may include a top portion having a tank head configured to retain a corresponding bottom portion of the coalescing media; and a bottom portion having at least one retaining bar configured to retain a corresponding top portion of the coalescing media.
The top portion and the bottom portion may be configured to provide a sufficient open area to permit gas bubbles to rise to the top of the separator tank and solids to fall to the bottom of the separator tank.
The apparatus is, or take the form of, an HVAC system.
The drawing, which is not necessarily drawn to scale, includes the following Figures:
Similar parts or components in Figures are labeled with similar reference numerals and labels for consistency. Every lead line and associated reference label for every element is not included in every Figure of the drawing to reduce clutter in the drawing as a whole.
According to some embodiments, the present invention may take the form of apparatus featuring a coalescing removal separator generally indicated as 10 having a combination of a separator tank 20 and a coalescing media 30, e.g., as shown in
The separator tank 20 has a separator input I configured to receive a fluid flowing through a system having entrained gas and solid particles G/P, has a tank wall 22 configured to form a volume/chamber 24 inside the separator tank 20 to process the fluid F, and has a separator output O configured to provide processed fluid F having at least some, most or substantially all of the entrained gas and solid particles G/P removed.
The coalescing media 30 is arranged in the volume/chamber 24 of the separator tank 20, has a series of vertically aligned corrugated perforated sheets 32 (see
By way of example, the apparatus may take the form of an HVAC system (
The series of vertically aligned corrugated perforated sheets 32 may have peaks 32a, crests 32b and surfaces 32c inbetween, and may be assembled to each other where a peak 32a of one corrugation is assembled to a crest 32b of another corrugation. Alternatively, the series of vertically aligned corrugated perforated sheets 32 having the peaks 32a and crests 32b may be assembled to each other peak-to-peak and crest-to-crest. In other words, the scope of the invention is not intended to be limited to any particular alignment of peaks and crests of the vertically aligned corrugated perforated sheets 32. In
The series of vertically aligned corrugated perforated sheets 32 may have multiple openings or perforations 34 that provide multiple surfaces 34a for dissolved gasses G and solids or particles P to coalesce around. By way of example, and consistent with that shown in
Moreover, and by way of further example, and consistent with that shown in
Moreover still, and by way of still further example, and consistent with that shown in
The series of vertically aligned corrugated perforated sheets 32 may have angled corrugations that direct the fluid to pass through the coalescing media 30 where greatest surface contact occurs. By way of example, and consistent with that shown in
The series of vertically aligned corrugated perforated sheets 32 may have vertically aligned corrugations that are rigid and resist compressive and/or rotation forces that the coalescing media 30 is subject to within the separator tank 20. By way of example, the series of vertically aligned corrugated perforated sheets 32 may be made from a metallic material, such as stainless steel. However, the scope of the invention is intended to include, and embodiments are envisioned that include, the series of vertically aligned corrugated perforated sheets 32 being made from other types or kinds of material, e.g., including other metal or non-metallic material within the spirit of the underlying invention. For example, in one type of application the series of vertically aligned corrugated perforated sheets 32 may be made from one type of material, while in another application, the series of vertically aligned corrugated perforated sheets 32 may be made from one another and different material, e.g., as one skilled in the art would appreciate.
The separator tank 20 may include a top portion 26 having a tank head 26a configured to retain a corresponding top portion 36 of the coalescing media 30; and a bottom portion 28 having at least one retaining bar 28a configured to retain a corresponding bottom portion 38 of the coalescing media 30.
The at least one retaining bar 28a may include two or more retainer bars 28a, e.g., depending on the application. For example, in one application, one retainer bar 28 may be configured to retain the corresponding bottom portion 38 of the coalescing media 30, while in another application, two or more retainer bars 28 may be configured to retain the corresponding bottom portion 38 of the coalescing media 30. The scope of the invention is not intended to be limited to the number of retainer bars used to retain the corresponding bottom portion 38 of the coalescing media 30.
The top portion 26 and the bottom portion 28 may be configured to provide a sufficient open area to permit gas bubbles G to rise to the top of the separator tank 20 and solids or particles P to fall to the bottom of the separator tank 20. In
By way of example, the series of vertically aligned corrugated perforated sheets 32 may have an open area of about 58% or greater, which facilitates an associated pressure drop characteristics. The open area may be configured or formed by the openings generally indicated by 50 (
The embodiments shown and described in detail herein are provided by way of example only; and the scope of the invention is not intended to be limited to the particular configurations, dimensionalities, and/or design details of these parts or elements included herein. In other words, one skilled in the art would appreciate that design changes to these embodiments may be made and such that the resulting embodiments would be different than the embodiments disclosed herein, but would still be within the overall spirit of the present invention.
It should be understood that, unless stated otherwise herein, any of the features, characteristics, alternatives or modifications described regarding a particular embodiment herein may also be applied, used, or incorporated with any other embodiment described herein.
Although the invention has been described and illustrated with respect to exemplary embodiments thereof, the foregoing and various other additions and omissions may be made therein and thereto without departing from the spirit and scope of the present invention.
This application claims benefit to provisional patent application Ser. No. 63/109,472, filed 4 Nov. 2020, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63109472 | Nov 2020 | US |