The invention is related to analog-to-digital conversion, and, in particular, to an apparatus and method for coarse channel calibration for a folding analog-to-digital converter.
An analog-to-digital converter (ADC) is employed to change/convert an analog input signal into a digital output signal. There are several different types of ADCs in current use, including pipeline, flash and folding. For pipeline ADCs, separate decoding stages are arranged in a pipeline to convert the analog signal into a digital signal.
In a flash ADC, k bits of resolution employ 2k comparators to convert an analog signal into a digital signal. Folding ADCs are a variation of a typical flash ADC architecture except that they are arranged to map the analog input signal range into N regions where each of these N regions share the same comparators. In a folding ADC, the total number of comparators is typically 2k/N. Also, a folding ADC includes a coarse channel for determining from which of the N input regions the analog input signal originated. Usually, the coarse channel is configured to use coarse reference voltages that are spaced according to the voltage spacing between each folded region.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings, in which:
Various embodiments of the present invention will be described in detail with reference to the drawings, where like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the invention, which is limited only by the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the claimed invention.
Throughout the specification and claims, the following terms take at least the meanings explicitly associated herein, unless the context clearly dictates otherwise. The meanings identified below are not intended to limit the terms, but merely provide illustrative examples for the terms. The meaning of “a,” “an,” and “the” includes plural reference, the meaning of “in” includes “in” and “on.” The phrase “in one embodiment,” as used herein does not necessarily refer to the same embodiment, although it may. The term “connected” means a direct electrical connection between the items connected, without any intermediate devices. The term “coupled” means either a direct electrical connection between the items connected, or an indirect connection through one or more passive or active intermediary devices. The term “circuit” means either a single component or a multiplicity of components, either active and/or passive, that are coupled together to provide a desired function. The term “signal” means at least one current, voltage, charge, temperature, data, or other signal.
Briefly stated, the invention is related to calibrating a coarse channel circuit for accuracy in a folding analog-to-digital converter. A reference value is input to the coarse channel circuit and its output is sensed. A parameter is subsequently adjusted until the coarse channel circuit is calibrated to a level of accuracy.
A calibration signal (CAL) corresponds to a first logic level if calibration of circuit 100 is enabled and corresponds to a second logic level if the calibration is disabled. The CAL signal is employed to control the operation of multiplexer 170. According to one embodiment, circuit 100 is calibrated at power-on, and is also calibrated if the signal level at a calibration node (pin) is reversed, e.g., changing the voltage at the pin from low to high or high to low. In another embodiment, the calibration of circuit 100 may be performed at periodic intervals. In yet another embodiment, the calibration of circuit 100 may be performed continuously in the background.
Also, multiplexer circuit 170 is configured to provide an analog input signal (VIN) to an input of track-and hold circuit 160 if signal CAL corresponds to a second logic level. Multiplexer circuit 170 is further configured to receive a voltage reference signal (REF) and provide the received REF signal to the input of track-and-hold circuit 160 if signal CAL corresponds to the first logic level. Track-and-hold circuit 160 is further configured to sample-and-hold the signal at its input to provide a coarse channel input signal (DIN) to the inputs of fine channel circuit 120 and course channel circuit 122. In one embodiment, track-and-hold circuit 160 is a switched capacitor circuit, and the like.
Encoder circuit 180 provides a digital output signal (DIG) based on signals provided in parallel by fine channel circuit 120 and coarse channel circuit 122. Coarse channel circuit 122 and fine channel circuit 120 are configured to convert in parallel the DIN signal received from track-and-hold circuit 160 into signals that are subsequently provided to the inputs of encoder circuit 180. Encoder circuit 180 is configured to provide signal DIG using signal information from both coarse channel circuit 122 and fine channel circuit 120. In one embodiment, coarse channel circuit 122 is a (non-folded) flash ADC. Also, fine channel circuit 120 includes folding stages. Additionally, since encoder circuit 180 is not employed during the calibration process, it may be disabled if signal CAL corresponds to the second logic level, such that signal DIG is not provided.
Control circuit 110 is configured to provide a select signal (SEL) for selecting a voltage reference. Further, control circuit 110 is arranged to assert a timing signal (TIM) for latching coarse channel calibration circuit 140 at a pre-determined amount of time after it changes the select signal (SEL). For example, signal TIM may be asserted after a pre-determined settling time has occurred.
Voltage reference circuit 130 is configured to provide signal REF, which is associated with signal SEL. In one embodiment, voltage reference circuit 130 includes a relatively accurate voltage reference subdivided across a resistor ladder, and CMOS switches to select one of the reference voltages. In other embodiments, reference circuit 130 may have different architectures.
Track-and-hold circuit 160 is configured to receive signal REF during calibration. Coarse channel circuit 122 is configured to receive an output signal from track-and-hold circuit 122. Coarse channel circuit 122 is further configured to provide an output signal (OUT) in response to the output signal from the track-and-hold circuit. Signal OUT includes a plurality of comparator outputs (COMPOUT1–COMPOUTK) (as shown in more detail in
Also, in one embodiment, coarse channel circuit 122 is arranged to provide a feedback signal (FB). According to one embodiment, the FB signal includes at least a portion of the OUT signal. In another embodiment, although not shown, signal FB may be provided by an off-chip digital signal processor (DSP).
Further, coarse channel calibration circuit 140 is arranged to receive the FB signal. Coarse channel calibration circuit 140 is further arranged to latch the FB signal in response to the assertion of the TIM signal. Coarse channel calibration circuit 140 is further arranged to provide an adjustment signal (ADJ) to coarse channel calibration circuit 140 in response to the FB signal. Additionally, coarse channel calibration circuit 140 is configured to adjust a parameter of coarse channel circuit 122 via the ADJ signal, until the OUT signal is successfully calibrated for the currently selected voltage reference signal (REF).
Amplifier array 220 is configured to receive signal ADJ (e.g. signals bcout1 and bcoutr, as described below). However, in another embodiment, signal ADJ may be received by another part of coarse channel circuit 122, such as a subsequent amplifier stage (not shown), comparator array 230, and the like.
According to another exemplary embodiment, signal ADJ includes K differential signals, ADJ1–ADJK. In this case, amplifier array 220 would include K amplifiers where each of the K amplifiers is configured to receive a corresponding one of the differential signals ADJ 1-ADJK. Also, each of the differential signals ADJ 1-ADJK may comprise a differential current, where each differential current is provided by a corresponding pair of current DACs. According to other embodiments, signal ADJ can include virtually any number of differential signals, or only one differential signal. According to one embodiment, signal ADJ includes one or more differential signals. According to another embodiment, signal ADJ includes one or more single-ended signals.
Signal COUNT includes signal COUNT1, signal FB includes signal FB1, and signal ADJ includes signal ADJ1. Also, counter circuit 302 is configured to provide signal COUNT1 in response to signal FB1 and signal TIM. Parameter adjustment circuit 304 is configured to receive signal COUNT1 and adjust the parameter of coarse channel circuit 122 in response to signal COUNT1. Counter circuit 302 is configured to, if latched by signal TIM: increment a count value that is associated with signal COUNT1 if signal FB1 corresponds to a first logic level, and decrement the count value if signal FB1 corresponds to a second logic level.
According to one embodiment, signal COUNT includes signals (COUNT1–COUNTK), signal FB includes signals FB1–FBK, and signal ADJ includes signals ADJ1–ADJK. In this embodiment, coarse channel circuit 122 includes K counter circuits and K parameter adjustment circuits. Each of the K counter circuits provides a corresponding signal COUNT1–COUNTK in response to a corresponding comparator output signal COMPOUT1–COMPOUTK. Each of the K parameter adjustment circuits receives a corresponding signal COUNT1–COUNTK and provides a corresponding signal ADJ1–ADJK.
Counter circuit 302 is configured to be latched by signal TIM to allow timing requirements (e.g. settling time) to be met. Control circuit 110 is configured to provide signal TIM at a pre-determined period of time after signal SEL is changed such that the timing requirements are met.
According to one embodiment, counter circuit 302 is a bi-directional counter, and the like. However, in another embodiment, counter circuit 302 may be a uni-directional counter, and the like.
After a start block, the process proceeds to block 402 where a voltage reference is selected. At block 404, the process waits for a settling period of time to finish. Next, the process steps to block 406 where a comparator output for the coarse channel circuit is latched. From block 406 the process advances to decision block 408, where a determination is made as to whether the comparator output corresponds to a first logic level. If no, the process moves to block 410 where the count value of the counter circuit is decremented (e.g. by one). Next, the process proceeds to block 412 where a parameter of the coarse channel circuit is decreased. From block 412, the process moves to a return block and returns to performing other actions.
However, if the determination at decision block 408 was affirmative (i.e. if the comparator output corresponds to a second logic level), the process would have moved to block 414 where the count value would be incremented (e.g. by one). Next, the process would advance to block 416 where the parameter of the coarse channel circuit would be increased. Next, the process would proceed to the return block and return to performing other actions.
The process may be repeated for each reference voltage. In one embodiment, a different reference voltage would be selected for each iteration of the process. In another embodiment, the process would be repeated several times for the same reference voltage. The number of iterations to ensure a full range of calibration would be dependent on the number of bits used by the counter circuit. A counter circuit with a larger number of bits would enable a greater resolution in the calibration, but require a greater number of iterations to ensure that the full calibration range is reached. Once calibration is successfully completed, the comparator output can toggle between a logical one and a logical zero. Accordingly, a successful calibration enables the OUT signal to have an error corresponding to one least significant bit of the count value. This error can be made small compared to the allowable tolerance by adjusting the smallest adjustment step size.
Prior to beginning process 400, the count value may be reset to a mid-point value. In this way, less iterations may be required to cover the full calibration range. For example, a five-bit bi-directional counter may be used, with the count value being reset to a mid-point value (e.g. binary number 10000) before initiating process 400. A minimum of sixteen iterations would be required for the count value to go from 10000 to 00000. If the count value was not reset at the beginning of the calibration, a minimum of 31 iterations would be required to ensure covering the full calibration range. For example, the count value could initially be at 00000, and a minimum of 31 iterations would be required to go from 00000 to 11111.
Additionally, process 400 may be performed for one, some, or all of the comparators in the coarse channel circuit. Also, according to the embodiment illustrated in
Transistors M6–M10 are each configured to operate as a switch. Transistors M6–M10 are each configured to be on when its gate terminal is at an active level, and off when its gate terminal is at an inactive level. Transistors M1–M5 are each configured to provide a scaled current. For example, transistors M1–M5 may each be scaled at a ratio of 32:16:8:4:1. Accordingly, the current associated with signal cout1 is decoded according to signal COUNT, and the current associated with signal coutr is decoded according to the inverted count signal.
Optional transistor M21 is configured to operate as a cascode transistor and provide signal bcout1 in response to signal cout1. Transistor M21 is configured to operate as a current buffer. Additionally, bias signal cbias is a cascode bias signal for transistor M21.
In one embodiment, the parameter adjustment circuit (304) shown in
The above specification, examples and data provide a description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
4137525 | Tyrrel | Jan 1979 | A |
5126742 | Schmidt et al. | Jun 1992 | A |
5184127 | Myers | Feb 1993 | A |
5309157 | Yee | May 1994 | A |
5835047 | Vorenkamp et al. | Nov 1998 | A |
5926123 | Ostrom et al. | Jul 1999 | A |
6175323 | Flynn | Jan 2001 | B1 |
6535156 | Wang et al. | Mar 2003 | B1 |
6628216 | Chen et al. | Sep 2003 | B1 |
6677879 | Nix et al. | Jan 2004 | B1 |
6791484 | Lee et al. | Sep 2004 | B1 |