Coated cutting insert

Information

  • Patent Grant
  • 7431542
  • Patent Number
    7,431,542
  • Date Filed
    Monday, October 31, 2005
    19 years ago
  • Date Issued
    Tuesday, October 7, 2008
    16 years ago
Abstract
A cutting insert preferably for milling of extremely highly alloyed grey cast iron, of a substrate and a coating and methods of making and using the insert are disclosed. The cemented carbide substrate includes WC, of from about 3 to about 8 weight-% Co and less than about 0.5 weight-% carbides of metals from groups IVb, Vb or VIb of the periodic table. The coating has a first, innermost layer of TiCxNyOz with x+y+z=1, y>x and z less than about 0.2, preferably y greater than about 0.8, and z=0, with equiaxed grains with size less than about 0.5 μm and a total thickness of from about 0.1 to about 1.5 μm,a layer of TiCxNy with x+y=1, x greater than about 0.3 and y greater than about 0.3, preferably x greater than or equal to about 0.5, with a thickness of greater than about 3 to about 5 μm with columnar grains with an average diameter of less than about 5 μm,a layer of a smooth, fine-grained, grain size of from about 0.5 to about 2 μm, κ-Al2O3 with a thickness of from about 0.5 to about 3 μm andan outermost layer of TiN with a thickness of less than about 2 μm.
Description
BACKGROUND OF THE INVENTION

The present invention relates to a coated cemented carbide insert particularly useful for dry milling of extremely highly alloyed grey cast iron in particular, grey cast iron further alloyed with carbide forming elements such as Cr, Ti and Mo.


U.S. Pat. No. 6,177,178 discloses a coated milling insert particularly useful for milling in low and medium alloyed steels with or without raw surface zones during wet or dry conditions. The insert is characterized by a WC—Co cemented carbide with a low content of cubic carbides and a highly W-alloyed binder phase and a coating including an inner layer of TiCxNyOz with columnar grains, a layer of κ-Al2O3 and, preferably, a top layer of TiN.


U.S. Pat. No. 6,333,098 discloses a coated cutting insert particularly useful for dry milling of grey cast iron. The insert is characterized by a WC—Co cemented carbide substrate and a coating including an innermost layer of TiCxNyOz with columnar grains and a top coating of a fine-grained α-Al2O3 layer.


Grey cast-iron is a material, which, in general, is reasonably easy to machine with cemented carbide tools. Often, long tool life can be obtained. However, the machinability of cast iron can vary considerably. The tool life may be influenced significantly by small variations in the chemical composition within the material, which may be related to the casting technique used, such as the cooling conditions. Other causes for variations are the casting skin and sand inclusions, if present, or even the stability of the machine used for cutting the material.


Extremely highly alloyed cast iron is used in some types of car engines in order to obtain high strength of the engine.


With extremely highly alloyed grey cast iron is herein meant cast iron alloyed with additives such as Cr, Mo, Ti, which form different types of carbides in the matrix. Preferably, the contents of these elements are Cr greater than about 0.15, Mo greater than about 0.04, and/or Ti greater than about 0.015 weight-%.


When machining such cast irons by coated milling inserts, abrasive wear type is dominating because of the presence of the carbides. That is, fragments or individual grains of the layers and later also parts of the cemented carbide are successively pulled away from the cutting edge by the work piece chip formed. Such wear mechanism is further accelerated by the formation of cracks about 50 μm apart along and perpendicular to the cutting edge. As soon as the coating is worn out, the underlying cemented carbide will wear fast. The increased specific surface contributes to higher cutting forces, increased temperature and increased chemical reaction between workpiece material and the coating/substrate.


OBJECTS AND SUMMARY OF THE INVENTION

It is an object of the present invention to provide a coated cutting tool insert with a reliable and stable tool life in mass volume production and in particular when unmanned production is employed.


It is a further object of the present invention to provide a coated cutting tool insert that can withstand or delay comb crack formation as long as possible and a coating that adheres well to the cemented carbide.


It is a further object of the present invention to provide a coated cutting tool insert with low adhesion forces between the chip and the coating and with a high internal strength.


It is a still further object of the present invention to provide a coated cutting tool insert particularly useful for milling of extremely highly alloyed cast iron.


In one aspect of the invention, there is provided a cutting insert comprising a substrate and a coating wherein said substrate comprises WC with an average grain size of from about 1 to about 2.5 μm, from about 5 to about 8 wt-% Co and less than about 0.5 wt-% cubic carbides of metals Ta, Ti and or Nb and a highly W-alloyed binder phase with a CW-ratio of 0.75-0.93 with less than about 1 vol-% eta-phase and said coating comprises

    • a first, innermost layer of TiCxNyOz with x+y+z=1, y>x and z less than about 0.2 with equiaxed grains with size less than about 0.5 μm and a total thickness of from about 0.1 to about 1.5 μm,
    • a layer of TiCxNy with x+y=1, x greater than about 0.3 and y greater than about 0.3 with a thickness of greater than about 3 to about 5 μm with columnar grains with an average diameter of less than about 5 μm,
    • a layer of a smooth, fine-grained, grain size of from about 0.5 to about 2 μm, κ-Al2O3 with a thickness of from about 0.5 to about 3 μm and
    • an outermost layer of TiN with a thickness of less than about 2 μm.


In another aspect of the invention, there is provided a method of making a cutting insert comprising a substrate of a cemented carbide body consisting of WC with an average grain size of from about 1 to about 2.5 μm, from about 5 to about 8 wt-% Co and less than about 0.5 wt-% cubic carbides of metals Ta, Ti and or Nb and a highly W-alloyed binder phase with a CW-ratio of 0.75-0.93 with less than about 1 vol-% eta-phase and a coating, the method comprising the steps of coating said substrate with

    • a first, innermost layer of TiCxNyOz with x+y+z=1, y>x and z less than about 0.2 with equiaxed grains with size less than about 0.5 μm and a thickness of from about 0.1 to about 1.5 μm, using known CVD-methods,
    • a layer of TiCxNy with x+y=1, x greater than about 0.3 and y greater than about 0.3 with a thickness of greater than about 3 to about 5 μm with columnar grains with an average diameter of less than about 5 μm, deposited by MTCVD-technique, using acetonitrile as the carbon and nitrogen source for forming the layer in the temperature range of from about 700 to about 900° C.
    • a layer of a smooth, fine-grained, grain size of from about 0.5 to about 2 μm, κ-Al2O3 with a thickness of from about 0.5 to about 3 μm according to known CVD-technique and
    • an outermost layer of TiN with a thickness of less than about 2 using known CVD-methods.


In still another aspect of the invention, there is provided the use of tool inserts as described above for use as inserts for dry milling of extremely highly alloyed cast iron at a cutting speed of from about 70 to about 220 m/min and a feed of from about 0.15 to about 0.35 mm/tooth depending on cutting speed and insert geometry.







DETAILED DESCRIPTION OF THE INVENTION

According to the present invention, a cutting tool insert is provided with a cemented carbide body of a composition of from about 5 to about 8 wt-% Co, preferably of from about 5 to about 7 wt-% Co, less than about 0.5 wt-%, preferably 0 wt-%,cubic carbides of the metals Ti, Ta and/or Nb and balance WC. The average grain size of the WC is in the range of from about 1 to about 2.5 μm. The cobalt binder phase is highly alloyed with W. The content of W in the binder phase can be expressed as the

CW-ratio=Ms/(wt-% Co·0.0161),

where Ms is the measured saturation magnetization of the cemented carbide body in hAm2/kg and wt-% Co is the weight percentage of Co in the cemented carbide. The CW-value is a function of the W content in the Co inder phase. A low CW-value corresponds to a high W-content in the binder phase.


According to the present invention, improved cutting performance is achieved if the cemented carbide body has a CW-ratio of from about 0.75 to about 0.93, preferably of from about 0.80 to about 0.90. The cemented carbide body may contain small amounts, less than about 1 volume-%, of eta phase (M6C), without any detrimental effect.


The radius of the uncoated cutting edge of the insert is from about 20 to about 50 μm, preferably from about 30 to about 40 μm.


The coating comprises

    • a first, innermost layer of TiCxNyOz with x+y+z=1, y>x and z less than about 0.2, preferably y greater than about 0.8, and z=0, with equiaxed grains with size less than about 0.5 μm and a thickness of from about 0.1 to about 1.5 μm,
    • a layer of TiCxNy with x+y=1, x greater than about 0.3 and y greater than about 0.3, preferably x greater than or equal to about 0.5, with a thickness of greater than about 3 to about 5 μm with columnar grains with an average diameter of less than about 5 μm,
    • a layer of a smooth, fine-grained, grain size of from about 0.5 to about 2 μm, Al2O3 consisting essentially of the κ-phase. However, the layer may contain small amounts, 1-3 vol-%, of the θ- or the α-phases as determined by XRD-measurement. The Al2O3-layer has a thickness of from about 0.5 to about 3 μm, preferably from about 0.5 to about 2 μm, and most preferably of from about 0.5 to about 1.5 μm.
    • a TiN-layer less than about 2, preferably from about 0.5 to about 1.5, μm. This outermost TiN-layer has a surface roughness Rmax≦0.4 μm over a length of 10 μm at least on the cutting edge. The TiN-layer is preferably missing along the cutting edge and the underlying alumina layer may be partly or completely missing along the cutting edge.


The present invention also relates to a method of making a coated cemented carbide body of a composition 5-8 wt-% Co, preferably from about 5 to about 7 wt-% Co, less than about 0.5 wt-%, preferably 0 wt-%, cubic carbides of the metals Ti, Ta and/or Nb and balance WC. The average grain size of the WC is in the range of from about 1 to about 2.5 μm. The cobalt binder phase is highly alloyed with W. The content of W in the binder phase expressed as CW-ratio is from about 0.75 to about 0.93, preferably from about 0.80 to about 0.90.


The uncoated cutting edge is provided with an edge radius of from about 20 to about 50 μm, preferably from about 30 to about 40 μm.


The coating comprises:

    • a first, innermost layer of TiCxNyOz with x+y+z=1, y>x and z less than about 0.2, preferably y greater than about 0.8, and z=0, with equiaxed grains with size less than about 0.5 μm and a thickness of from about 0.1 to about 1.5 μm, using known CVD-methods
    • a layer of TiCxNy with x+y=1, x greater than about 0.3 and y greater than about 0.3, preferably x greater than or equal to about 0.5, with a thickness of greater than about 3 to about 5 μm with columnar grains with an average diameter of less than about 5 μm, deposited by MTCVD-technique, using acetonitrile as the carbon and nitrogen source for forming the layer in the temperature range of from about 700 to about 900° C.,
    • a layer of a smooth, fine-grained, grain size of from about 0.5 to about 2 μm, κ-Al2O3 with a thickness of from about 0.5 to about 3 μm, preferably of from about 0.5 to about 2 μm, most preferably of from about 0.5 to about 1.5 μm, according to known CVD-technique and


a less than about 2, preferably from about 0.5 to about 1.5, μm, thick TiN-layer using known CVD-methods. This outermost TiN-layer is preferably brushed with, e.g., a SiC based brush to a surface roughness Rmax≦0.4 μm over a length of 10 μm at least on the cutting edge. The TiN-layer is preferably removed along the cutting edge and the underlying alumina layer may be partly or completely removed along the cutting edge.


The present invention also relates to the use of inserts according to above for dry milling of extremely highly alloyed cast iron, preferably containing Cr greater than about 0.15, Mo greater than about 0.04, and/or Ti greater than about 0.015 weight-% at a cutting speed of from about 70 to about 220 m/min and a feed of from about 0.15 to about 0.35 mm/tooth depending on cutting speed and insert geometry.


The invention is additionally illustrated in connection with the following examples, which are to be considered as illustrative of the present invention. It should be understood, however, that the invention is not limited to the specific details of the examples.


EXAMPLE 1

A) Cemented carbide milling inserts in accordance with the invention with the composition 6.0 wt-% Co and balance WC were sintered in a conventional way at 1410° C. and cooled down to 1200° C. in 0.6 bar H2 giving inserts with a binder phase alloyed with W, corresponding to a CW-ratio of 0.9. The average WC grain size was 1.3 μm. After conventional edge rounding-treatment to an edge radius of 35 μm, the inserts were coated with a 0.5 μm equiaxed Ti(C,N)-layer (with a high nitrogen content corresponding to an estimated C/N-ratio of 0.05) followed by a 4 μm thick Ti(C,N)-layer with columnar grains using MTCVD-technique (temperature of 885-850° C. and CH3CN as the carbon/nitrogen source). In subsequent steps during the same coating cycle, a 1.0 μm thick layer of Al2O3 was deposited using a temperature of 970° C. and a concentration of H2S dopant of 0.4 weight-% as disclosed in EP-A-523 021. Finally, a 1.0 μm layer of TiN was deposited on top according to known CVD-technique. XRD-measurement showed that the Al2O3-layer consisted of 100% κ-phase. The cemented carbide body had a WC grain size averaging 1.8 μm. The coated inserts were dry brushed by a nylon straw brush containing SiC grains. Examination of the brushed inserts in a light microscope showed that the thin TiN-layer had been brushed away only along the cutting edge leaving there a smooth Al2O3-layer surface. Coating thickness measurements on cross-sectioned brushed samples showed no reduction of the coating along the edge line except for the outer TiN-layer that was removed.


EXAMPLE 2

Inserts according to the present invention were tested in face milling of engine blocks in highly alloyed “Grauguss” GG25 (a highly alloyed cast iron containing 0.42 wt-% Cr and 0.03 wt-% Ti.


Tool: Sandvik Coromant R260.31-315


Number of inserts: 50 PCs


Criterion: Surface finish and work piece frittering.


Reference: TNEF 1204EN competitor grade


Cutting data


Cutting speed: Vc=187 m/min


Feed per tooth: Fz=0.17 mm per tooth


Depth of cut: Ap=4 mm


Dry conditions


Tool life reference: 460 cylinder blocks in production.


Tool life of invention: 613 cylinder heads.


Average of 5 tests.


The test shows an increase of tool life of 33% with improved surface finish and productivity.


EXAMPLE 3

Inserts according to the present invention were tested in face milling of engine blocks in extremely highly alloyed grey cast iron GL04+CR (a highly alloyed cast iron containing 0.35 wt-% Cr.


Tool: Sandvik Coromant R260.31-250


Number of inserts: 40 PCs


Criterion: Surface finish and work piece out of tolerance.


Reference: TNEF 1204AN-CA in grade GC3020 from Sandvik Coromant


Cutting data


Cutting speed: Vc=126 m/min


Feed per tooth: Fz=0.2 mm per tooth


Depth of cut: Ap=3.5 mm


Dry conditions


Tool life with reference: 1100 cylinder blocks in production.


Tool life of invention: 1745 cylinder heads.


Average of 5 tests.


The test shows an increase of tool life of 58% with improved surface finish and tolerances.


Although the present invention has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, deletions, modifications, and substitutions not specifically described may be made without department from the spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. Cutting insert comprising a substrate and a coating wherein said substrate comprises WC with an average grain size of from about 1 to about 2.5 μm, from about 5 to about 8 wt-% Co and 0 wt-% cubic carbides of metals Ta, Ti and or Nb and a highly W-alloyed binder phase with a CW-ratio of 0.75-0.93 with less than about 1 vol-% eta-phase and said coating comprises a first, innermost layer of TiCxNyOz with x+y+z=1, y>x and z less than about 0.2 with equiaxed grains with size less than about 0.5 μm and a total thickness of from about 0.1 to about 1.5 μm,a layer of TiCxNy with x+y=1, x greater than about 0.3 and y greater than about 0.3 with a thickness of greater than about 3 to about 5 μm with columnar grains with an average diameter of less than about 5 μm,a layer of a smooth, fine-grained, grain size of from about 0.5 to about 2 μm, κ-Al2O3 with a thickness of from about 0.5 to about 3 μm, andan outermost layer of TiN with a thickness of less than about 2 μm,
  • 2. The cutting insert of claim 1 wherein the outermost TiN-layer has a surface roughness Rmax≦0.4 μm over a length of 10 μm.
  • 3. The cutting insert of claim 1 wherein the cobalt content of said substrate is from about 5 to about 7 wt-%, in said first, innermost layer, y is greater than 0.8 and z=0, in said layer of TiCxNy, x is greater than or equal to 0.5, said κ-Al2O3 layer has a thickness of from about 0.5 to about 2 μm, and said outermost layer of TiN has a thickness of from about 0.5 to about 1.5 μm.
  • 4. The cutting insert of claim 1 wherein the radius of the uncoated cutting edge is from about 30 to about 40 μm.
  • 5. The cutting insert according to claim 1 wherein the outer layer of TiN has a surface roughness Rmax≦0.4 mm over a length of 10 μm at least on an active part of a cutting edge.
  • 6. The cutting insert according to claim 1 wherein the layer κ-Al2O3 includes 1-3 vol-% of θ-Al2O3 or α-Al2O3.
  • 7. The cutting insert according to claim 1 wherein the CW-ratio is 0.8 to 0.9.
  • 8. The cutting insert according to claim 1 wherein the thickness of the layer of κ-Al2O3 is about 0.5 to about 1.75 μm.
  • 9. Use of inserts of claim 1 for dry milling of extremely highly alloyed cast iron at a cutting speed of from about 70 to about 220 m/min and a feed of from about 0.15 to about 0.35 mm/tooth depending on cutting speed and insert geometry.
  • 10. In the use of claim 9 wherein said highly alloyed cast iron contains less than about 0.15 wt-% Cr, less than about 0.04 wt-% Mo and less than about 0.015 wt-% Ti.
  • 11. Method of making a cutting insert comprising a substrate of a cemented carbide body comprising WC with an average grain size of from about 1 to about 2.5 μm, from about 5 to about 8 wt-% Co and 0 wt-% cubic carbides of metals Ta, Ti and or Nb and a highly W-alloyed binder phase with a CW-ratio of 0.75-0.93 with less than about 1 vol-% eta-phase and a coating, the method comprising the steps of coating said substrate with a first, innermost layer of TiCxNyOz with x+y+z=1, y>x and z less than about 0.2 with equiaxed grains with size les than about 0.5 μm and a thickness of from about 0.1 to about 1.5 μm, using known CVD-methods,a layer of TiCxNy with x+y=1, x greater than about 0.3 and y greater than about 0.3 with a thickness of greater than about 3 to about 5 μm with columnar grains with an average diameter of less than about 5 μm, deposited by MTCVD-technique, using acetonitrile as the carbon and nitrogen source for forming the layer in the temperature range of from about 700 to about 900° C.a layer of a smooth, fine-grained, grain size of from about 0.5 to about 2 μm, κ-Al2O3 with a thickness of from about 0.5 to about 3 μm according to known CVD-technique andan outermost layer of TiN with a thickness of less than about 2 μm using known CVD-method; andremoving the outermost TiN-layer along the cutting edge by brushing, wherein the uncoated cutting edge has a radius of 20-50 μm.
  • 12. The method of claim 11 comprising brushing the outermost TiN-layer to a surface roughness Rmax≦0.4 μm over a length of 10 μm.
  • 13. The method of claim 12 comprising brushing the outermost TiN-layer with a SiC-based brush.
  • 14. The method of claim 11 wherein said substrate has a Co-content of from about 5 to about 7 wt-% and said substrate is coated with a coating in which in said first, innermost layer, y is greater than about 0.8 and z=0, in said layer of TiCxNy, x is greater than or equal to about 0.5, said κ-Al2O3 layer has a thickness of from about 0.5 to about μm, and said outermost layer of TiN has a thickness of from about 0.5 to about 1.5 μm.
  • 15. The method of claim 11 wherein said substrate is coated with a coating in which in the κ-Al2O3 layer, the thickness is from about 0.5 to about 1.5 μm.
  • 16. The method of claim 11 comprising providing the uncoated cutting edge with a radius of from about 30 to about 40 μm before the coating steps.
Priority Claims (1)
Number Date Country Kind
0500016 Jan 2005 SE national
US Referenced Citations (15)
Number Name Date Kind
5074721 Kress et al. Dec 1991 A
5863640 Ljungberg et al. Jan 1999 A
5945207 Kutscher et al. Aug 1999 A
5976707 Grab Nov 1999 A
6177178 Ostlund et al. Jan 2001 B1
6200671 Lindskog et al. Mar 2001 B1
6221479 Waldenstrom et al. Apr 2001 B1
6261673 Reineck et al. Jul 2001 B1
6333098 Olsson et al. Dec 2001 B1
6344265 Blomstedt et al. Feb 2002 B1
6406224 Ostlund et al. Jun 2002 B1
6706327 Blomstedt et al. Mar 2004 B2
6767583 Nordgren et al. Jul 2004 B2
20020051886 Blomstedt et al. May 2002 A1
20040033393 Nordgren et al. Feb 2004 A1
Foreign Referenced Citations (5)
Number Date Country
0 709 484 Apr 1999 EP
0 753 603 Jan 2000 EP
0 874 919 Feb 2002 EP
1-184218 Jul 1989 JP
WO 0116389 Mar 2001 WO
Related Publications (1)
Number Date Country
20060147755 A1 Jul 2006 US