Coated cutting insert

Information

  • Patent Grant
  • 8215879
  • Patent Number
    8,215,879
  • Date Filed
    Monday, August 15, 2011
    13 years ago
  • Date Issued
    Tuesday, July 10, 2012
    12 years ago
Abstract
Coated cemented carbide inserts (cutting tools), particularly useful for wet or dry machining of steels and stainless steels, are disclosed. The cutting tool insert is characterized by a cemented carbide substrate and a coating formed from an about 0.5 to 5 μm thick innermost layer of (Ti,Al)N and an about 1 to 5 μm thick layer of (Al,Cr)2O3.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to Swedish Application No. 0702781-6 filed Dec. 14, 2007, the entire disclosure of which is incorporated herein by reference.


FIELD OF THE INVENTION

This invention relates to coated cemented carbide inserts (cutting tools) particularly useful for wet or dry machining of steels and stainless steels.


BACKGROUND OF THE INVENTION

When machining low and medium alloyed steels and stainless steels with cemented carbide tools, the cutting edge is worn according to different wear mechanisms, such as chemical wear, abrasive wear, and adhesive wear and by edge chipping caused by cracks formed along the cutting edge. The domination of any of the wear mechanisms is determined by the application, and is dependent on properties of the machined material, applied cutting parameters, and the properties of the tool material. In general, it is very difficult to improve all tool properties simultaneously, and commercial cemented carbide grades have usually been optimized with respect to one or few of the above mentioned wear types, and have consequently been optimized for specific application areas.


WO 2007/069973 discloses a coated cutting tool insert particularly useful for dry and wet machining, preferably milling, in low and medium alloyed steels, stainless steels, with or without raw surface zones. The insert is characterized by a WC—TaC—NbC—Co cemented carbide with a W alloyed Co-binder phase and a coating including an innermost layer of TiCxNyOz with columnar grains and a top layer at least on the rake face of a smooth α-Al2O3.


U.S. Pat. No. 5,879,823 discloses a coated cutting tool with a (Ti,Al)N-layer applied by PVD and an alumina layer applied by PVD on top of the (Ti,Al)N-layer.


U.S. Pat. No. 5,310,607 discloses a hard coating including mainly (Al,Cr)2O3 crystals and a chrome content higher than 5 at % wherein the (Al,Cr)2O3 is a single crystal. The coating is deposited at a temperature lower or equal to 500° C. The hard coating is deposited by a CVD or PVD process.


What is needed is a coated cutting tool with enhanced performance for machining of steels and stainless steels. The invention is directed to these, as well as other, important needs.


SUMMARY OF THE INVENTION

Accordingly, the invention is directed to cutting tool inserts, comprising a cemented carbide substrate with a wear resisting coating comprising a first, innermost, layer of (Ti,Al)N and a second layer of (Al,Cr)2O3, particularly useful for wet or dry machining of steels and stainless steels.


In one embodiment, the invention is directed to cutting tool inserts, particularly useful for wet or dry machining of steels and stainless steels, comprising:


a cemented carbide substrate; and


a coating;


wherein said coating comprises:


a first (innermost) layer of Ti1-xAlxN with about 0.25≦x≦ about 0.7 with columnar grains and a total thickness of about 0.5-5 μm; and

    • a layer of (Al1-yCry)2O3 with about 0.1≦y≦ about 0.6 with a thickness of about 1-5 μm with columnar grains.


In other embodiments, the invention is directed to methods for machining of steel or stainless steel, comprising the step of:


using a cutting tool insert described herein at cutting speeds of about 75-600 m/min with an average feed, per tooth in the case of milling, of about 0.08-0.5 mm.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:



FIG. 1 shows in 20000× a scanning electron microscopy image of a fracture cross section of a cemented carbide insert according to the present invention in which


1. Cemented carbide substrate,


2. Innermost (Ti,Al)N layer and


3. (Al,Cr)2O3 layer.





The coating deposited on a cemented carbide substrate comprises:


a first (innermost) layer of Ti1-xAlxN with about 0.25≦x≦ about 0.7, preferably x>about 0.4, more preferably x>about 0.6, with columnar grains and a total thickness of about 0.5-5 preferably, about 1-4 μm.


a layer of (Al1-yCry)2O3 with about 0.1≦y≦about 0.6, preferably with about 0.3≦y≦about 0.55, most preferably y=about 0.5, with a thickness of about 1-5 μm, preferably about 1.5-4.5 μm, more preferably about 2-4 with columnar grains.


In a further alternative embodiment, there is a thin, less than about 1 μm thick, TiN layer on top of the (Al,Cr)2O3 layer.


In a first embodiment, the cemented carbide substrate has a composition of about 9.3-10.9 wt-% Co, preferably about 9.75-10.7 wt-% Co, more preferably about 9.9-10.5 wt-% Co; about 0.5-2.5 wt-%, about preferably 1.0-2.0 wt-%, more preferably about 1.2-1.8 wt-% total amount of the metals Ti, Nb, and Ta; and balance WC. Ti, Ta, and/or Nb may also be partially or totally replaced by other elements from groups IVb, Vb, or VIb of the periodic table. The content of Ti is preferably on a level corresponding to a technical impurity. Preferably, the ratio between the weight concentrations of Ta and Nb is within about 7.0-12.0, preferably about 7.6-11.4, more preferably about 8.2-10.5. The cemented carbide has a coercivity (Hc) of about 10-15, preferably about 11-14, more preferably about 11.5-13.5 kA/m.


In a second embodiment the a cemented carbide substrate has a composition of about 4.7-5.9 wt-% Co, preferably about 4.9-5.6 wt-% Co, more preferably about 5.0-5.5 wt-% Co; about 5.0-10.0 wt-%, preferably about 6.0-9.0 wt-%, more preferably about 7.0-8.0 wt-% total amount of the metals Ti, Nb and Ta; and balance WC. Ti, Ta, and/or Nb may also be partially or totally replaced by other elements from groups IVb, Vb, or VIb of the periodic table. Preferably, the weight ratio between Ta and Nb is about 1.0-5.0, more preferably about 1.5-4.5. The cemented carbide has a coercivity (Hc) of about 11-17, preferably about 12-16, more preferably about 13-15 kA/m.


A cutting insert according to the invention are made by powder metallurgical technique, wet milling of powders forming hard constituents and binder phase, compacting the milled mixture to bodies of desired shape and size and sintering, comprising a cemented carbide substrate, with compositions according to the above, and a coating comprising a layer of (Ti,Al)N and a layer of (Al,Cr)2O3.


The layer of (Ti,Al)N is arc-deposited using known technique. The (Al,Cr)2O3 layer is deposited according to Example 1 in US 2007/0000772.


In an alternative embodiment, a thin, less than about 1 μm, TiN top layer is deposited on the (Al,Cr)2O3 layer using known techniques.


In a further preferred embodiment, the cutting tool insert as described above is treated after coating with a wet blasting or brushing operation, such that the surface quality of the coated tool is improved.


The invention also relates to the use of cutting tool inserts according to the above for wet or dry milling of steels and stainless steels at cutting speeds of about 75-600 m/min, preferably about 150-500 m/min, with an average feed, per tooth in the case of milling, of about 0.08-0.5 mm, preferably about 0.1-0.4 mm depending on cutting speed and insert geometry.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned hereunder are incorporated herein by reference. Unless mentioned otherwise, the techniques employed or contemplated herein are standard methodologies well known to one of ordinary skill in the art. The materials, methods, and examples are illustrative only and not limiting.


The present invention is further defined in the following Examples, in which all parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.


EXAMPLES
Example 1

Grade A: A cemented carbide substrate with the composition 10.3 wt % Co, 1.35 wt % Ta, 0.15 wt % Nb and balance WC, was produced by conventional milling of the powders, pressing of green compacts and subsequent sintering at 1430° C. The He value of the cemented carbide was 12.5 kA/m, indicating a mean intercept length of about 0.7 μm. The substrate was coated with a 3.0 μm thick layer of (Ti0.5Al0.5)N, according to known arc evaporation technique, columnar grains, a 2.9 μm thick layer of columnar (Al0.5Cr0.5)2O3 deposited according to Example 1 in US2007/0000772. FIG. 1 shows in 20000× a scanning electron microscopy image of a fracture cross section of the coated cemented carbide.


Example 2

Grade B: Example 1 was repeated using a carbide substrate with the composition 5.3 wt % Co, 2.0 wt % Ti, 3.4 wt % Ta, 2.0 wt % Nb, and balance WC. The He value of the cemented carbide was 13.8 kA/m.


Example 3

Grade C: A layer of 6.0 μm Ti0.33Al0.67N was deposited on the substrates according to Examples 1 and 2 using known arc evaporation techniques.


Example 4

Grades A and C were tested in machining in steel.


















Operation
Face milling











Cutter diameter
125
mm










Material
SS1672



Insert type
SEEX1204AFTN-M15











Cutting speed
300
m/min



Feed
0.2
mm/tooth



Depth of cut
2.5
mm



Width of cut
120
mm














Results
Tool life (min)







Grade A (grade according
10



to invention)



Grade C
8










The test was stopped at the same maximum flank wear. The wear resistance was much improved with the grade according to the invention.


Example 5

Grades A and C were tested in machining in stainless steel.


















Operation
Shoulder milling











Cutter diameter
32
mm










Material
SS1672



Insert type
XOEX120408-M07











Cutting speed
275
m/min



Feed
0.25
mm/tooth



Dcpth of cut
3
mm



Width of cut
8.8
mm














Results
Tool life (min)







Grade A (grade according
8



to invention)



Grade C
5










The test was stopped at the same maximum flank wear. The wear resistance was much improved with the grade according to the invention.


Example 6

Grades B and C were tested in machining in stainless steel.


















Operation
Interrupted turning



Material
SS2348



Insert type
CNMG120408-MR3











Cutting speed
80
m/min



Feed
0.3
mm



Dcpth of cut
2
mm














Results
Tool life (cycles)







Grade B (grade according
5



to invention)



Grade C
3










The test was stopped at the same maximum flank wear. The wear resistance was much improved with the grade according to the invention.


Example 7

Grades B and C were tested in machining in steel.


















Operation
Interrupted turning



Material
SS1672



Insert type
CNMG120408-MR3











Cutting speed
400
m/min



Feed
0.3
mm



Depth of cut
2
mm














Results
Tool life (min)







Grade B (grade according
13



to invention)



Grade C
10










The test was stopped at the same maximum flank wear. The wear resistance was much improved with the grade according to the invention.


When ranges are used herein for physical properties, such as molecular weight, or chemical properties, such as chemical formulae, all combinations and subcombinations of ranges specific embodiments therein are intended to be included.


The disclosures of each patent, patent application, and publication cited or described in this document are hereby incorporated herein by reference, in their entirety.


Those skilled in the art will appreciate that numerous changes and modifications can be made to the preferred embodiments of the invention and that such changes and modifications can be made without departing from the spirit of the invention. It is, therefore, intended that the appended claims cover all such equivalent variations as fall within the true spirit and scope of the invention.

Claims
  • 1. A method for machining of steel or stainless steel, comprising: providing a cutting tool insert formed from a cemented carbide substrate having a coercivity of about 10-15 kA/m and a coating, the coating comprisinga first (innermost) layer of Ti1-xAlxN with about 0.25≦x≦about 0.7 with columnar grains and a total thickness of about 0.5-5 μm, anda layer of (Al1-yCry)2O3 with about 0.1≦y≦about 0.6 with a thickness of about 1-5 μm with columnar grains; andcutting with the cutting tool insert at a cutting speed of about 75-600 m/min with an average feed, per tooth in the case of milling, of about 0.08-0.5 mm.
  • 2. The method according to claim 1, wherein the cutting speed is 150-500 m/min.
  • 3. The method according to claim 1, wherein the average feed is 0.1-0.4 mm.
  • 4. The method according to claim 1, wherein x>about 0.4.
  • 5. The method according to claim 1, wherein x>about 0.6.
  • 6. The method according to claim 1, wherein said first (innermost) layer of Ti1-xAlxN has a total thickness of about 1-4 μm.
  • 7. The method according to claim 1, wherein about 0.3≦y≦about 0.55.
  • 8. The method according to claim 1, wherein y is about 0.5.
  • 9. The method according to claim 1, wherein said layer of (Al1-yCry)2O3 has a thickness of about 1.5-4.5 μm.
  • 10. The method according to claim 1, wherein said layer of (Al1-yCry)2O3 has a thickness of about 2-4 μm.
  • 11. The method according to claim 1, wherein said cemented carbide substrate comprises:about 9.3-10.9 wt % Co;about 0.5-2.5 wt % total amount of cubic carbides of metals selected from the group consisting of Group IVb metal, Group Vb metal, Group VIb metal, and combinations thereof; andbalance WC.
  • 12. The method according to claim 11, wherein said cemented carbide substrate comprises about 9.75-10.7 wt % Co.
  • 13. The method according to claim 11, wherein said cemented carbide substrate comprises about 1.0-2.0 wt % total amount of cubic carbides of the metals of Nb and Ta.
  • 14. The method according to claim 11, wherein said cemented carbide substrate has a coercivity of about 11-14 kA/m.
  • 15. The method according to claim 11, wherein a weight ratio of Ta and Nb is about 7.0-12.0.
  • 16. The method according to claim 11, wherein a weight ratio of Ta and Nb is about 7.6-11.4.
  • 17. The method according to claim 1, wherein said cemented carbide substrate, comprises:about 4.7-5.9 wt-% Co;about 5.0-10.0 wt-% total amount of cubic carbides of metals selected from the group consisting of Group IVb metal, Group Vb metal, Group VIb metal, and combinations thereof; andbalance WC;wherein said cemented carbide substrate has a coercivity of about 11-17 kA/m.
  • 18. The method according to claim 17, wherein said cemented carbide substrate comprises about 4.9-5.6 wt-% Co.
  • 19. The method according to claim 17, wherein said cemented carbide substrate comprises about 5.0-5.5 wt-% Co.
  • 20. The method according to claim 17, wherein said cemented carbide substrate comprises about 6.0-9.0 wt-% total amount of cubic carbides of the metals of Ti, Nb and Ta.
  • 21. A method for machining of steel or stainless steel, comprising: providing a cutting tool insert formed from a cemented carbide substrate having a coercivity of about 10-15 kA/m and a coating, the coating comprisinga first (innermost) layer of Ti1-xAlxN with 0.25≦x≦about 0.7 with columnar grains and a total thickness of about 0.5-5 μm, anda layer of (Al1-yCry)2O3 with about 0.1≦y≦about 0.6 with a thickness of about 1-5 μm with columnar grains; andcutting with the cutting tool insert at a cutting speed of about 75-600 m/min with an average feed, per tooth in the case of milling, of about 0.08-0.5 mm,wherein said cemented carbide substrate comprises:about 9.3-10.9 wt % Co;about 0.5-2.5 wt % total amount of cubic carbides of metals selected from the group consisting of Group IVb metal, Group Vb metal, Group VIb metal, and combinations thereof; andbalance WC.
  • 22. A method for machining of steel or stainless steel, comprising: providing a cutting tool insert formed from a cemented carbide substrate having a coercivity of about 11-17 kA/m and a coating, the coating comprisinga first (innermost) layer of Ti1-xAlxN with 0.25≦x≦about 0.7 with columnar grains and a total thickness of about 0.5-5 μm, anda layer of (Al1-yCry)2O3 with about 0.1≦y≦about 0.6 with a thickness of about 1-5 μm with columnar grains; andcutting with the cutting tool insert at a cutting speed of about 75-600 m/min with an average feed, per tooth in the case of milling, of about 0.08-0.5 mm,wherein said cemented carbide substrate comprises:about 4.7-5.9 wt-% Co;about 5.0-10.0 wt-% total amount of cubic carbides of metals selected from the group consisting of Group IVb metal, Group Vb metal, Group VIb metal, and combinations thereof; andbalance WC.
Priority Claims (1)
Number Date Country Kind
0702781 Dec 2007 SE national
US Referenced Citations (20)
Number Name Date Kind
5310607 Schulz May 1994 A
5656383 Tanaka Aug 1997 A
5750247 Bryant May 1998 A
5879823 Prizzi Mar 1999 A
6062776 Sandman May 2000 A
6200671 Lindskog Mar 2001 B1
6333100 Palmqvist Dec 2001 B1
6395379 Braendle May 2002 B1
6632514 Sulin Oct 2003 B1
6767627 Morikawa Jul 2004 B2
7097901 Larsson Aug 2006 B2
7132153 Zackrisson Nov 2006 B2
7431542 Hessman Oct 2008 B2
7674520 Schier Mar 2010 B2
7767319 Åkesson Aug 2010 B2
20040022662 Lipkin Feb 2004 A1
20040033393 Nordgren Feb 2004 A1
20040121147 Morikawa Jun 2004 A1
20060219325 Kohara Oct 2006 A1
20070000772 Ramm Jan 2007 A1
Foreign Referenced Citations (4)
Number Date Country
2002-053946 Feb 2002 JP
2002053945 Feb 2002 JP
9803691 Jan 1998 WO
2007069973 Jun 2007 WO
Related Publications (1)
Number Date Country
20110299950 A1 Dec 2011 US
Divisions (1)
Number Date Country
Parent 12332874 Dec 2008 US
Child 13209652 US