The following is a brief description of the drawings that form a part of this patent application:
The present invention is a colored coated cutting tool (such as, for example and without limitation, a ball mill, a drill and a cutting insert), as well as a method for making the colored coated cutting tool. The cutting tool exhibits color corresponding to the nature of the coating scheme as will be discussed in more detail hereinafter. By utilizing color, one can increase brand identification, as well as delineate between different applications for and sizes of and geometries of the cutting tool. The use of color also facilitates better inventory control since it is easier to more quickly identify the nature and properties of the cutting tools that remain in inventory.
Further, the use of a coating scheme that colorizes a cutting tool has another advantage in that the operator can ascertain when the cutting tool has progressed to a point at or near the end of its useful life. In this regard, as the cutting tool wears, the coating scheme also wears so that the visually perceivable color changes in response to the extent of the use (or degree of wear) of the cutting tool. When the cutting tool reaches the end of its useful life, the color of the used cutting edge can be different from that of a new cutting tool thereby indicating to the operator that the cutting tool has reached the end of its useful life. The operator can then remove the cutting tool before it goes past its useful life. This is advantageous because chipforming machining of a workpiece using a cutting tool that has worn past its useful life may not produce satisfactory results.
Referring to the specific embodiment illustrated in
The pre-anodizable coating scheme 32 includes an underlayer coating arrangement shown by brackets 40. The underlayer coating arrangement 40 may take on any one of many different coating architectures. It may comprise a single coating layer or it may comprise a plurality of coating layers possibly in a periodic sequence or not in a periodic sequence. The thicknesses of the various coating layer(s) in the underlayer coating arrangement 40 can also vary depending upon the specific application.
The method to apply the coating underlayer arrangement 40 may also vary depending upon the application wherein the method may include physical vapor deposition, chemical vapor deposition, and various variations or modifications or combinations thereof known to those of ordinary skill in the art. Exemplary coating arrangements that could serve as the underlayer coating arrangement 40 are shown and described in the following U.S. Pat. No. 5,864,297 and U.S. Pat. No. 5,858,181 to Jindal et al. for Physical Vapor Deposition of Titanium Nitride on a Nonconductive Substrate, U.S. Pat. No. 5,879,823 to Prizzi et al. for a Coated Cutting Tool, and U.S. Pat. No. 5,364,209 to Santhanam et al. for a Coated Cutting Tools. Each one of these patents is assigned to Kennametal Inc. of Latrobe, Pa. 15650 United States of America, and is hereby incorporated by reference herein.
The pre-anodizable coating scheme further includes a top anodizable layer 42. The top anodizable layer 42 is deposited on the outer surface 44 of the underlayer coating arrangement 40. The top anodizable layer 42 most preferably, comprises titanium metal. However, in addition to titanium metal, applicant contemplates that the top anodizable layer may comprise an alloy containing titanium and aluminum. Applicant also contemplates that the top anodizable coating layer 42 can be comprised of aluminum metal, zirconium, or chromium, as well as any combination thereof. One preferred method to apply the top anodizable layer 42 is physical vapor deposition. As illustrated in
Upon the top anodizable layer 42 being fully (or completely) anodized, it forms the top colored coating layer 48, which has a top surface 50. The thickness of the top colored coating layer 48 is thickness “B” as illustrated in
Typically, the top colored coating layer 48 is an oxide wherein this oxide is the reaction product of the full (or complete) anodization of the anodizable layer 42. The voltage of the anodization process has a significant impact upon the thickness of the top layer. The top colored coating layer 48 is an interference color type of film (e.g., oxide interference film that visually appears to be colored when viewed under white lighting) so that the thickness of the top colored coating layer 48 determines the specific color exhibited by the film. In the case when the top colored coating layer 48 is titanium oxide, the color of the layer is dependent upon its thickness and it can comprise (without limitation) any one of the primary colors and any mixture thereof. Other colors could also be available depending upon possible variations (or additions) in the composition of the titanium oxide.
As shown in
It should be appreciated that cutting tools exhibiting different colors can be made from the same pre-anodizable cutting tool. The difference in colorization can be controlled by the degree of anodization of the anodizable top coating layer 42.
The overall coating scheme 71 includes an underlayer coating arrangement designated by bracket 78 that is deposited on the surface 74 of the substrate 72. The nature of the underlayer coating arrangement 78, as well as the method to apply the coating scheme, can be the same as the underlayer coating arrangement 40 described hereinabove.
The underlayer coating arrangement 78 has a top surface 80. An electrically insulating coating layer scheme 82 is deposited to the top surface 80 of the underlayer coating arrangement 78. The electrically insulating coating scheme 82 has a top surface 84. While the insulating coating layer scheme 82 generally comprises fewer layers than the underlayer coating arrangement, this may not always be the case. One exemplary electrically insulating coating is alumina (i.e., aluminum oxide).
The insulating coating layer scheme 82 may take on any one of many different coating architectures. It may comprise a single coating layer or it may comprise a plurality of coating layers possibly in a periodic sequence or not. The thicknesses of the various coating layer(s) in the insulating coating layer scheme can also vary depending upon the specific application. The method to apply the coating may also vary depending upon the application wherein the method may include physical vapor deposition, chemical vapor deposition, and various variations or modifications or combinations thereof known to those of ordinary skill in the art. Another preferred insulating coating layer scheme comprises a layer of titanium carbonitride deposited on the surface of the underlayer coating arrangement and with a layer of alumina deposited on the surface of the layer titanium carbonitride. Another preferred insulating coating layer scheme comprises a layer of aluminum titanium nitride that contains aluminum and titanium and wherein the aluminum content is greater than the titanium content.
A top colored coating layer 86 is on the surface 84 of the insulating coating layer scheme 82. Top colored coating layer 86 has a top surface 88. Top colored coating layer 86 is the result of the full or complete anodization of the top anodizable coating layer, which is like either top colored coating layer 48 of
Typically, the top colored coating layer 86 is an oxide wherein this oxide is the reaction product of the full (or complete) anodization of the anodizable layer. The voltage of the anodization process has a significant impact upon the thickness of the top layer. The top colored coating layer 86 is an interference color type of film (e.g., an oxide interference film that visually appears to be colored when viewed under white lighting) so that the thickness of the top colored coating layer 86 determines the specific color exhibited by the film. In the case where the top colored coating layer 86 is titanium oxide, the color of the layer is dependent upon its thickness and it can comprise (without limitation) any one of the primary colors and any combination thereof. Other colors could also be available depending upon possible variations (or additions) in the composition of the titanium oxide.
It should be appreciated that a cutting tool along the lines of the cutting tool 70 of
As shown in
As discussed above in conjunction with the cutting tools illustrated in
A comparison between the cutting tool from the full anodization (see
It should be appreciated that cutting tools exhibiting different colors can be made from the same pre-anodizable cutting tool. The difference in colorization can be controlled by the degree of anodization of the anodizable top coating layer.
The overall coating scheme (bracket 121) includes an underlayer coating arrangement designated by bracket 126 that is deposited on the surface 124 of the substrate 122. The underlayer coating arrangement 126 has a top surface 128. The nature of the underlayer coating arrangement 126, as well as the method to apply the coating arrangement, can be the same as the underlayer coating arrangement 40 described above in conjunction with the embodimentof
An anodized top colored coating layer 130 is on the top surface 128 of the underlayer coating arrangement 126. Top colored coating layer 130 has a thickness “G”. As described above in connection with top colored coating layer 48, the preferred material for this layer 130 is titanium oxide (i.e., an oxide interference film that visually appears to be colored when viewed under white lighting). The color that layer 130 exhibits may be dependent upon the thickness of layer 130. It should be appreciated that while layer 130 is fully anodized, the anodizable coating layer may be only partially anodized as will be shown in
A comparison between the cutting tool 120 from the full anodization (see
It should be appreciated that the anodization process can either be a separate step or a part of a continuous process. When it is a separate step, the top anodizable coating layer is deposited and not followed immediately by the anodization step. When it is a part of a continuous process, the anodization step immediately follows the deposition of the top anodizable coating layer.
In reference to specific examples, the Inventive Examples Nos. 1 through 7 of cutting tools (as shown in
For the anodization process for each one of the inventive cutting tools, the titanium layer was anodized per the anodization parameters set forth in Table 1 below. During the anodization process, the current was allowed to float. The anodized cutting tools were dipped in deionized water to remove the majority of the phosphoric acid, and then rinsed with flowing deionized water. The remaining water was blown off using compressed air.
As mentioned above, Table 1 below sets forth the anodization parameters (i.e., voltage in volts d.c. and duration in seconds) for Inventive Examples Nos. 1 through 7.
It is apparent that the present invention provides a colored coated cutting tool. By providing a colored coating cutting tool, one has the potential to increase the brand identification. Further, by providing a colored cutting tool, one can delineate different applications, sizes and/or geometries of cutting tools and/or wear parts. Colored coated cutting tools can also facilitate better inventory control since it would be easier to quickly identify the nature of the article. Also, by using a colored coated cutting tool, one can ascertain when the useful life of the cutting tool has been reached or will soon be reached. be
The patents and other documents identified herein are hereby incorporated by reference herein. Other embodiments of the invention will be apparent to those skilled in the art from a consideration of the specification or a practice of the invention disclosed herein. It is intended that the specification and examples are illustrative only and are not intended to be limiting on the scope of the invention. The true scope and spirit of the invention is indicated by the following claims.