The present disclosure is generally directed to the field of light-emitting diodes (LEDs) and the manufacture of same.
LEDs are widely used in various applications, including indicators, light sensors, traffic lights, broadband data transmission, and illumination applications. Particularly, LEDs attract more interest for illumination applications due to their low power consumption and long lifetime. In illumination applications, LEDs have some limitations, because light emitted from the LEDs is usually distributed in a relatively small angle, which provides a narrow angle of light and is dissimilar to natural illumination or some types of incandescent illuminations.
For example, LEDs are often used in illumination devices provided to replace conventional incandescent light bulbs, such as those used in a typical lamp. These illumination devices require a relatively wide amount of light distribution, similar to that provided by conventional incandescent light bulbs. Therefore, it is desired to provide an LED illumination device that distributes light in a relatively wide angle, similar to that of an incandescent light bulb.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
a and 5b are side and cross-sectional views of an LED illumination device constructed according to some embodiments;
a and 6b are side and cross-sectional views of an LED illumination device constructed according to certain embodiments;
a-9d are side cross-sectional views of different embodiments of a diffuser cap that can be used with the LED illumination devices of
It is understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. The present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
The LED device 102 may include one LED chip as illustrated in
As one example, the LED chip (or chips) in the LED device 102 is further described below. The LED chip can emit spontaneous radiation in ultraviolet, visual, or infrared regions of the electromagnetic spectrum. In various embodiments, the LED emits blue light. The LED chip is formed on a growth substrate, such as a sapphire, silicon carbide, gallium nitride (GaN), or silicon substrate. In various embodiments, the LED chip includes an n-type impurity doped cladding layer and a p-type doped cladding layer formed over the n-type doped cladding layer. In one example, the n-type cladding layer includes n-type gallium nitride (n-GaN), and the p-type cladding layer includes p-type gallium nitride (p-GaN). Alternatively, the cladding layers may include GaAsP, GaPN, AlInGaAs, GaAsPN, or AlGaAs doped with respective types. The LED chip 104 further includes a multi-quantum well (MQW) structure disposed between the n-GaN and p-GaN. The MQW structure includes two alternative semiconductors layers (such as indium gallium nitride/gallium nitride (InGaN/GaN)) and designed to tune the emission spectrum of the LED device. The LED chip 104 further includes electrodes electrically connected to the n-type impurity doped cladding layer and the p-type impurity doped cladding layer, respectively. A transparent conductive layer, such as indium tin oxide (ITO), may be formed on the p-type impurity doped cladding layer. An n-electrode is formed and coupled with the n-type impurity doped cladding layer. Wiring interconnections may be used to couple the electrodes to terminals on a carrier substrate. The LED chip 104 may be attached to the carrier substrate through various conductive materials, such as silver paste, soldering, or metal bonding. In another embodiment, other techniques, such as through silicon via (TSV) and/or metal traces, may be used to couple the light-emitting diode to the carrier substrate.
In some embodiments, the LED device 102 includes phosphor to convert the emitted light to a different wavelength of light. The scope of embodiments is not limited to any particular type of LED, nor is it limited to any particular color scheme. In the depicted embodiment, one or more types of phosphors are disposed around the light-emitting diode for shifting and changing the wavelength of the emitted light, such as from ultra-violet (UV) to blue or from blue to yellow. The phosphor is usually in powder and is carried in other material such as epoxy or silicone (also referred to as phosphor gel). The phosphor gel is applied or molded to the LED device 102 with suitable technique and can be further shaped with proper shape and dimensions.
Various embodiments may employ any type of LED(s) appropriate for the application. For instance, conventional LEDs may be used, such as semiconductor based LEDs, Organic LEDs (OLEDs), Polymer LEDs (PLEDs), and the like.
The circuit board 112 is coupled to and provides electrical power and control to the LED device 102. The circuit board 112 may be a portion of the carrier substrate 114. If more than one LED chip is used, those LED chips may share one circuit board. In the present embodiment, the circuit board 112 is a heat-spreading circuit board to effectively spread heat as well for heat dissipation. In one example, a metal core printed circuit board (MCPCB) is utilized. MCPCBs can conform to a multitude of designs. An exemplary MCPCB includes a base metal, such as aluminum, copper, a copper alloy, and/or the like. A thin dielectric layer is disposed upon the base metal layer to electrically isolate the circuitry on the printed circuit board from the base metal layer below and to allow thermal conduction. The LED chip 104 and its related traces can be disposed upon the thermally conductive dielectric material.
In some examples, the metal base is directly in contact with the heat sink, whereas in other examples, an intermediate material between the heat sink and the circuit board 112 is used. Intermediate materials can include, e.g., double-sided thermal tape, thermal glue, thermal grease, and the like. Various embodiments can use other types of MCPCBs, such as MCPCBs that include more than one trace layer. Circuit boards may be made of materials other than MCPCBs. For instance, other embodiments may employ circuit boards made of FR-4, ceramic, and the like.
In another example, the circuit board 112 may further include a power conversion module. Electrical power is typically provided to indoor lighting as alternating current (ac), such as 120V/60 Hz in the United States, and over 200V and 50 Hz in much of Europe and Asia, and incandescent lamps apply the ac power directly to the filament in the bulb. The LED device 102 needs the power conversion module to change power from the typical indoor voltages/frequencies (high voltage AC) to power that is compatible with the LED device 102 (low voltage direct current(DC)). In other examples, the power conversion module is provided separately from the circuit board 112.
The substrate 114 is a mechanical base to provide mechanical support to the LED device 102. According to various embodiments, the substrate 114 includes a metal, such as aluminum, copper, or other suitable metal. The substrate 114 can be formed by a suitable technique, such as extrusion molding or die casting. The substrate 114 or at least a portion of the substrate can be the heat sink discussed above with reference to the substrate 112. In one embodiment, the heat sink 114 is designed to have a top portion 114a with a first dimension to avoid shielding the backward light emitted from the LED device 102 and a bottom portion 114b with a second dimension greater than the first dimension, to provide effective heat dissipation. The first and second portions are connected with desired thermal conduction or formed as one piece. The first portion 114a of the heat sink 114 is designed to secure the LED device 104 and the circuit board 112.
Referring to
Referring now to
b/a<1.0.
Example sizes for a and b are about 50-70 mm and about 35-48 mm, respectively.
There is a midpoint 134 along the sidewalls of the cap 132. The overall height of the midpoint 134 is represented by the variable c. The location of the midpoint can be selected to provide optimal peak intensity of the light coming from the illumination device 130. An example size of c is about 10-15 mm. An inner surface 140a of the cap 132 above the midpoint 134 is coated with a material; an inner surface 140b of the cap below the midpoint is not. The coating material is discussed below with reference to
In operation, light is emitted from the LED device 102 upwards through the coated, inner surface 140a of the cap 132 (above the midpoint 134), as shown by arrows 144. Light is also reflected off of the inner surface 140a, downward through the uncoated, inner surface 140b of the cap 132 (below the midpoint 134), as shown by arrows 146. Light 146 is sometimes referred to as “backward light.” As a result, there is a relatively even diffusion of light across a wide angle (>180°) of illumination of the illumination device 130.
Referring now to
b/a<1.0.
Example sizes for a and b are about 50-70 mm and about 35-48 mm, respectively.
Unlike the cap 132 of
Also unlike the embodiment of
There is a midpoint 214 along the sidewalls of the lens 210. For the sake of example, the dimensions of the lens 210 can be similar in shape (although smaller in size) as the cap 232 of
In operation, light is emitted from the LED device 102 upwards through the coated, inner surface 216a of the lens 210 (above the midpoint 214). The light then passes through the cap 202 as shown by arrows 218. Light is also reflected off of the inner surface 216a, downward through the uncoated, inner surface 216b of the lens 210 (below the midpoint 214). The light then passes through the cap 202, as shown by arrows 220. As a result, there is a relatively even diffusion of light across a wide angle (>180°) of illumination.
Referring now to
b/a<1.0.
Example sizes for a and b are about 50-70 mm and about 40-50 mm, respectively.
Similar to the cap 202 of
In operation, light is emitted from the LED device 102 through the lens 210, as discussed above with reference to
Referring now to
b/a>1.0.
Example sizes for a and b are about 40-60 mm and about 60-90 mm, respectively. In some embodiments, due to the relatively tall (dimension b) height of the cap 302, a height d of the heat sink 114 may be relatively short, as compared to the height b and the heights of the heat sinks in other embodiments to maintain an acceptable overall size of the device 300. Example sizes of d are about 40-60 mm.
Similar to the cap 202 of
In operation, light is emitted from the LED device 102 through the cap 302. Due to the shape and coated inner surface 304 of the cap 302, there is a relatively even diffusion of light across a wide angle (>180°) of illumination.
There are several different embodiments for constructing and applying a coating material to any of the above-identified caps and/or lenses. Referring to
Referring to
Referring now to
Referring now to
Referring now to
The present disclosure describes several different illumination devices and methods of making the same. In one embodiment, an illumination device includes a LED device on a substrate. A heat sink is thermally connected to the LED device. A cap is secured over the substrate and covers the LED device. The cap includes a coating material that comprises both diffusion and reflection characteristics.
In some embodiments, the cap includes a diffusion lens including PC and/or poly PMMA. The coating material includes TiO2 to provide the reflection characteristics mixed with a resin.
In some embodiment, the cap has a midpoint, such that the coating material is provided above the midpoint (farther from the heat sink), and is not provided below the midpoint (closer to the heat sink).
In another embodiment, an illumination device includes a LED device on a substrate and a cap secured over the substrate and covering the LED device. The cap has a spherical top with a relatively narrow neck portion extending to the LED device. The cap has a width that is less than its height. The cap includes a diffusion lens and a coating material applied to an inner surface of the lens. The diffusion lens comprises at least one material selected from the group consisting of PC and PMMA. The coating material includes a resin mixed with TiO2.
In another embodiment, a method of masking an illumination device includes providing a diffusion lens comprising PC and/or PMMA. An interior surface of the diffusion lens is coated with a coating material comprising a mixture of resin and reflective material. The coated interior surface of the diffusion lens is cured to form a cap, and the cap is placed over a LED device.
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description that follows. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.