This application claims benefit under 35 U.S.C. § 119(a) of German Patent Application No. 10 2013 104 702.5, filed May 7, 2013, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The invention relates to decorative coating using vacuum coating processes for a lower surface coating of glass ceramic cooktops, especially for gas and/or induction applications. In particular, the invention relates to barrier coatings for decorative coatings.
2. Description of Related Art
Lower surface coatings on glass and glass ceramic substrates are currently produced by screen printing processes, among others, which in particular permit to obtain scattering and matte layers. When using luster colors, metallic looking lower surface coatings can be applied which have a silver-metallic glossy appearance.
Metallic reflective surfaces are commonly found nowadays as door fronts in the kitchen area. However, in the field of cooking surfaces, these colors are rather rare, since they either need to be printed using precious metal colors (e.g. Pt), which is very expensive, or because vacuum coating solutions are not sufficiently thermally stable.
Also known are sputtered dielectric interference layer systems in which the color location of the lower surface coating can be varied quickly and easily by varying the layer thickness of a high refractive index layer, without requiring significant process changes. In order to obtain such interference optical systems sufficiently resistant even under the strong thermal effects when used as a lower surface coating (400° C.-500° C.), these layer systems are subject to certain limitations on the possible combinations of materials. For example, the coloring layer, covering layer, and barrier layer are made from the same base material to make diffusion processes visually inconspicuous. This is achieved, for example, using an SiN—Si—SiN layer system. In this case, diffusion processes of the silicon are only slightly perceived visually, if the covering layer is sufficiently thick and remains optically inactive.
Mixed systems of oxides and nitrides are often disadvantageous due to a diffusion of the oxygen into the covering layer, since this results in oxidation and thus a change in color. However, since due to their high refractive indices, oxide layers are ideally suitable as coloring layers (e.g. TiO2 with refractive index n>2.45; Nb2O5 with refractive index n=2.35; Ta2O5 with refractive index n=2.25), the task is to provide a thermally resistant and stable covering layer which is resistant to oxygen diffusion processes to allow for use of new colors for lower surface coatings.
Similar systems based on manufacturing under vacuum work on intrinsic coloring. Known and often mentioned is TiN, which is used in form of a TiN—Ti or a TiN—Ti—TiN layer system, for example. In this case, diffusion processes of the nitrogen into the intermediate covering layer are visually not perceived since TiN has a specific intrinsic color (golden) and so variations in layer thickness are not or only slightly noticeable. However, there is a demand for additional new colors.
Therefore, an object of the invention is to expand the color palette of decorative lower surface coatings while ensuring high thermal resistance of the coating. Even after prolonged thermal stress as it occurs in operation of a cooktop, the color location of the coating should not alter by more than an extent so that the color change is not immediately obvious. Moreover, the coating should be easy and cost-efficient to manufacture.
Accordingly, the invention provides a coated glass ceramic cooking plate, with one face that defines a utilization side, and an opposite face that defines the lower surface. The lower surface has a multilayer coating thereon. The multilayer coating includes a metallic layer of an alloy including components chromium, iron, nickel, and silicon. The silicon content of the alloy is at least 1.5 atomic percent (at %), or mole percent, respectively, preferably at least 2 at %. The metallic layer is covered by a barrier layer in form of an oxide of an alloy including components chromium, iron, nickel, and silicon, with a silicon content of at least 1.5 atomic percent, preferably at least 2 atomic percent. The molar content of oxygen of the barrier layer is greater by at least a factor of 10 than that of the metallic layer.
In case of a glass ceramic cooktop comprising a glass ceramic cooking plate according to the invention, the utilization side is the upper surface upon which cooking vessels are placed, for example, such as pans and pots, or on which a gas burner assembly is mounted.
The alloys used for the metallic layer and the barrier layer are stainless steels having a comparatively high silicon content for steels. According to one embodiment of the invention, the metallic layer is directly deposited on the glass ceramic. According to this embodiment, therefore, there exists an interface between the glass ceramic and the metallic layer. The metallic layer of the composition according to invention adheres well to the glass ceramic, and in combination with the barrier layer good thermal resistance is achieved.
However, there is a limitation in terms of the color location which is determined by the transmission of light through the glass ceramic and reflection at the metallic layer. In order to produce specific color locations or specific color impressions, the invention further contemplates that the multilayer coating comprises an at least partially transparent single- or multilayered layer as a first layer on the glass ceramic, and that the metallic layer is deposited upon this first, at least partially transparent layer.
The metallic layer, due to metallic reflection, provides for a metallic effect similar to a stainless steel surface. The first, at least semi-transparent optional layer is used as a color adjustment layer or coloring layer in order to compensate for a coloring caused by the glass ceramic, or in order to obtain a new color impression.
It has been found that the comparatively high silicon content obviously provides for a particularly high temperature resistance. Especially excellent resistance in terms of color location is achieved with such a coating, even after prolonged thermal stress. Further it has surprisingly been found that, on the other side, in particular an oxide of such a stainless steel alloy forms a very effective barrier protecting the metallic layer against diffusion, oxidation, and reactions with acids or bases.
Since the barrier coating is of the same or a similar, oxidized material as the metallic layer, this ensures an excellent solid physical connection between these two layers.
The stainless steel alloys used according to the invention can easily be deposited by sputtering. Accordingly, the invention also relates to a method for producing a glass ceramic cooking plate, comprising the steps of: providing a glass ceramic plate; sputter-depositing a metallic layer of an alloy including components chromium, iron, nickel, and silicon, wherein the silicon content of the alloy is at least 2 atomic percent; producing a barrier layer that covers the metallic layer in form of an oxide of an alloy including components chromium, iron, nickel, and silicon, with a silicon content of at least 2 atomic percent, wherein a molar content of oxygen of the barrier layer is greater by at least a factor of 10 than that of the metallic layer.
According to a preferred embodiment, the above mentioned first, at least partially transparent, single- or multilayered layer is deposited on the glass ceramic prior to the deposition of the metallic layer. This first layer serves for color adjustment or color compensation.
The barrier layer may easily be deposited by reactive sputtering from a composite target, in particular a stainless steel target, in an oxygen containing atmosphere. According to a further, alternative or additional embodiment, the barrier layer may be produced by oxidation of the surface of the metallic layer.
Further it is convenient to deposit the first layer by sputtering, too. In this manner, the first layer, the metallic layer, and the barrier layer may optionally be deposited in a single vacuum deposition process without intermediate venting.
It is possible to use different alloys for the metallic layer and for the barrier layer, with both layers having the high silicon content mentioned above. However, it is particularly advantageous, if the barrier layer is formed of an oxide of the alloy of the metallic layer. In this way, both layers may be deposited using the same alloy material, for example by sputtering from a stainless steel target, which greatly simplifies the manufacturing process.
According to a modification of the invention, the barrier layer may be formed as a gradient layer having a varying oxygen content, with the oxygen content in the barrier layer decreasing continuously in a direction perpendicular to the layer and to the metallic layer. In this way, the barrier layer will merge into the metallic layer without any sharp interface. This is advantageous to improve adhesion of the oxide to the metal alloy of the metallic layer.
According to one embodiment of the invention, the first layer comprises a TiO2 layer. Titanium oxide in an appropriate thickness, preferably of less than 100 nanometers, is ideal for color adjustment, since due to its high refractive index and therefore a still significant refractive index difference as compared to the glass ceramic, an effective interference optical color change may be achieved. Besides TiO2, other oxides having a high refractive index are as well possible as layer constituents, in particular those having a refractive index greater than two. Therefore, according to a modification of the invention, it is contemplated that the first layer comprises at least one of materials Nb2O5, Ta2O5, Si3N4, ZrO2, TiO2.
According to yet another embodiment of the invention, the first layer comprises or consists of a layer of an oxide of the alloy of the metallic layer. It has been found that the oxide of the stainless steel alloy is useful as a color adjustment layer. Here again, as with the inventive barrier layer of the oxide of the stainless steel alloy, an advantage is ease of manufacturing, since the same sputtering target can be used, and a very solid mechanical bond between the first and the metallic layer. Optionally, such a stainless steel oxide layer may be combined with a layer of another material, such as the titanium oxide mentioned above. Typically, in case of a stainless steel oxide a greater layer thickness will be employed for the first layer, due to the lower refractive index as compared to that of titanium oxide. Generally, however, the first layer preferably has a thickness of less than 400 nanometers. This embodiment is advantageous for its ease of manufacturing, since the first layer, the metallic layer and the barrier layer may be produced using a single target. In addition, the layer component chromium oxide of the oxidized stainless steel layer is an excellent adhesion promoter to the glass ceramic.
As with the barrier layer, the first layer may likewise be formed as a gradient layer. Here again, the oxygen content continuously decreases in a direction perpendicular to the layer and to the metallic layer. In this manner, good adhesion to the glass ceramic's lower surface is achieved due to the high oxygen content at the interface with the oxidic glass ceramic, and good adhesion to the metallic layer is achieved due the low oxygen content. Here, again, a sharp interface between the first layer and the metallic layer is avoided in this way.
For manufacturing, the first layer or the barrier layer may be deposited by sputtering from the same sputtering target which is used for depositing the metallic layer, and during sputtering the oxygen content of the process gas is varied in a manner so that a gradient layer is formed having an oxygen content that decreases towards the metallic layer.
Furthermore, according to one embodiment of the invention it is also possible to form both the first layer and the barrier layer as a gradient layer. Accordingly, it is contemplated that both the first layer and the barrier layer are provided as a gradient layer of varying oxygen content, with the first layer and the barrier layer merging into the metallic layer without an interface, or in other words, continuously.
A composition particularly preferred for the alloy of the metallic layer includes the following components:
Silicon: 2-5 at %;
Chromium: 22.0-28.0 at %;
Nickel: 15.0-21.0 at %; and
Iron: 48-56.0 at %.
Further, preferably, the carbon content of the metallic layer is less than 0.3 at %.
Moreover, a stainless steel with an austenite crystal structure is preferred for the metallic layer. These steels have found to be particularly stable in terms of temperature induced color changes.
According to yet another embodiment of the invention, the alloy may contain aluminum, with a content of up to 3 at % being preferably. Small amounts of aluminum may also improve the temperature resistance of the deposited layer.
Further, it has proven to be advantageous if the barrier layer is annealed after deposition. This heat treatment has found to be particularly effective in terms of posterior densification of the layer in case the heating is only superficial so that a large temperature gradient results in a direction perpendicular to the multilayer coating. Accordingly, in one embodiment of the method according to the invention, the multilayer coating including the barrier layer is treated by surface heating in a manner so that a temperature gradient of at least 200 K occurs within the uppermost 100 nanometers of the coating. Such high temperature gradients may be achieved by irradiation using a radiation source whose radiation is directly absorbed in the surface. For this purpose, lasers, halogen lamps, and UV lamps are primarily considered.
The invention will now be described in more detail by way of exemplary embodiments and with reference to the accompanying drawings. In the drawings, the same reference numerals designate the same or similar elements. In the drawings:
The coated glass ceramic cooking plate 1 shown in
The opposite face 5 of glass ceramic cooking plate 1 defines the lower surface which in its installed state covers the substructure of the cooktop. In order to visually hide such a substructure, for example electrical equipment and/or gas conduits, lower surface 5 is provided with an opaque multilayer coating 7. This multilayer coating 7 on the glass ceramic 2 of glass ceramic cooking plate 1 comprises a first, at least partially transparent layer 9 which may be formed by a single or a plurality of layers. According to one embodiment of the invention, the first layer 9 comprises a layer of titanium oxide (TiO2).
On this first, at least partially transparent layer, an opaque metallic layer 11 is deposited from an alloy including the components chromium, iron, nickel, and silicon. The layer has a composition as mentioned above. Accordingly, the silicon content of the alloy of this layer 11 is at least 2 atomic percent, the chromium content is from 22.0 to 28.0 at %, the content of nickel is from 15.0 to 21.0 at %, and the iron content is from 48 to 56.0 at %.
On this second, metallic layer 11, a barrier layer 13 is deposited in form of an oxide of an alloy including components chromium, iron, nickel, and silicon, again with a silicon content of at least 2 atomic percent, so as to cover the metallic layer 11. Barrier layer 13 is an oxide layer of the alloy, and the molar content of oxygen of barrier layer 13 is greater by at least a factor of 10 than the molar content of oxygen of metallic layer 11. Preferably, for ease of manufacturing, the same alloy as for the metallic layer is used. Accordingly, in this case, barrier layer 13 comprises an oxide of the alloy of metallic layer 11.
According to one embodiment of the invention, it is also possible for metallic layer 11 and barrier layer 13 to continuously merge into one another, so that there is no sharp interface between the two layers 11, 13. To this end, barrier layer 13 is deposited as a gradient layer with an oxygen content decreasing towards the metallic layer. During deposition, in turn, this means of course that the oxygen content of the layer is increased continuously or virtually continuously.
Optionally, a barrier layer may also be formed of multiple layers, and in that case only the barrier layer adjacent to the metallic layer 11 has to be a stainless steel oxide layer. This layer may then be covered by another barrier layer of a different material, e.g. silicon oxide. Generally therefore, without limitation to the specific exemplary embodiments illustrated in the figures, according to yet another embodiment of the invention a further barrier layer is provided of a material different from that of barrier layer 13 adjacent to metallic layer 11. This embodiment is advantageous to obtain better chemical stability and an improved barrier effect against different substances. For example, two different barrier layer materials permit to increase both acid resistance and alkali resistance. Another advantage is that the barrier layer 13 of stainless steel oxide may at the same time serve as an adhesion promoter for the further barrier layer and the metallic layer.
Coating 7 comprises, as a first, transparent layer 9 used for color adjustment, a titanium oxide layer. Deposited upon the titanium oxide layer is a stainless steel layer as a metallic layer 11 of a composition according to the invention. The deposited layer has then been oxidized superficially to form an oxide layer of the stainless steel alloy as a barrier layer 13. Therefore, without being limited to the specific exemplary embodiment illustrated in
On this barrier layer 13, a further barrier layer 14 is deposited in form of a SiO2 layer. The TiO2 layer, the stainless steel layer, and the SiO2 layer each have a thickness of 100 nanometers.
Barrier layer 13 is clearly recognizable in the SIMS profile by an elevation of the intensity of components NiO (curve illustrated with upright triangles as measured values), CrO (curve illustrated with squares as measured values), and FeO (curve illustrated with circles as measured values). For all these components, the elevation when compared to the layer volume of metallic layer 11 is more than one order of magnitude. Accordingly, the oxygen content in barrier layer 13 is greater by at least a factor of 10 than that of the metallic layer. Here, barrier layer 13 is not only used as a barrier but also as an adhesion promoter for further barrier layer 14. The combination of the stainless steel oxide with a silicon oxide layer is moreover advantageous in terms of chemical resistance of the coating 7. That is, the different chemical resistances of the two barrier layers 13, 14 may cooperate to protect the metallic layer from chemical attack. Silicon oxide, for example, exhibits a high resistance to acids but is attacked by alkaline substances. By contrast, the stainless steel oxide of barrier layer 13 is highly resistant to alkalis.
The barrier layer 13 deposited on metallic layer 11 also consists of an oxide of the material of the metallic layer 11, like transparent first layer 9. Barrier layer 13 has a thickness of 100 nanometers.
In contrast to the preceding example of
As with the embodiment of
Now, an exemplary embodiment will be described, in which the first layer 9 and the barrier layer 13 are also formed from an oxide of the alloy of metallic layer 11. As a modification to the embodiment of
It has been found, surprisingly, that the oxide of the stainless steel alloy provides a substantially better barrier effect than a nitride of the alloy. For comparison with
In each of the exemplary embodiments described so far with reference to the figures, a first layer is provided in form of an at least partially transparent layer 9 which contacts the glass ceramic and upon which the metallic layer 11 is deposited. However, as mentioned before, it is also possible for the metallic layer 11 to be directly deposited upon the glass ceramic, preferably by sputtering. Although this eliminates the possibility to change or correct the color impression occurring when looking at the utilization side of glass ceramic cooking plate 1, this is not absolutely necessary if the desired color is already achieved by the combination of glass ceramic and stainless steel layer deposited thereon.
The silicon-rich stainless steel alloy when used according to the invention and directly sputter-deposited onto the glass ceramic has likewise proven to be highly temperature resistant, despite the great difference in thermal expansion coefficients of the coating and the glass ceramic. For this,
The excellent heat resistance of the lower surface coating of metallic appearance as proposed by the invention in form of a combination of an optional but preferred coloring transparent layer, a metallic layer of a silicon containing stainless steel alloy, and an oxide of a silicon containing stainless steel alloy, is additionally evidenced when compared to a chromium layer as a lower surface coating. A comparable layer system in which the metallic layer was a chromium layer, was heated to a temperature of 500° C. Thereafter, a color change ΔE of 4.7 in the xyY color space was detected relative to the color value prior to heating. The haze value was 35. By contrast, when heating a multilayer coating according to the invention to 500° C., the detected color change ΔE in the xyY color space was only 0.35. The haze value was 4. Generally, a color change with a difference ΔE of less than 2 in the xyY color space is assumed to be not perceptible. Thus, an inventive layer system is far from this limit, while with a chromium layer the color change is visible.
It will be apparent to those skilled in the art that the figures are merely illustrative examples. In particular, the exemplary embodiments may be combined. For example, the barrier layer formed as a gradient layer according to
Number | Date | Country | Kind |
---|---|---|---|
10 2013 104 702 | May 2013 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4615658 | Kagohara | Oct 1986 | A |
5718777 | Hashimoto | Feb 1998 | A |
20060046006 | Bastion | Mar 2006 | A1 |
20060193742 | Miura | Aug 2006 | A1 |
20120103477 | Branagan | May 2012 | A1 |
20120121923 | Palumbo et al. | May 2012 | A1 |
20120125314 | Alonso Esteban | May 2012 | A1 |
20140017482 | Tuffile | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
102004053963 | May 2006 | DE |
0183052 | Jun 1986 | EP |
0226993 | Jul 1987 | EP |
2559672 | Feb 2013 | EP |
2009179511 | Aug 2009 | JP |
2012131511 | Oct 2012 | WO |
Entry |
---|
European Search Report dated Oct. 9, 2014 corresponding to European Patent Application No. EP 14163646, 8 pages. |
German Office Action dated Dec. 17, 2013 corresponding to German Patent Application No. 10 2013 104 702.5, with English translation. |
Number | Date | Country | |
---|---|---|---|
20140335349 A1 | Nov 2014 | US |