Embodiments of the invention are directed to narrow band green and coated narrow band green phosphors with general composition based on MA2S4:Eu, wherein: M comprises at least one of Mg, Ca, Sr and Ba, A comprises at least one of Ga, Al, In, La and Y, and the coating is one or more oxides chosen from the group of materials including aluminum oxide, silicon oxide, titanium oxide, zinc oxide, magnesium oxide, zirconium oxide and chromium oxide, and light emitting devices including the same.
MGa2S4:Eu materials, where M comprises at least one of Mg, Ca, Sr and Ba, show green color emission around 535 nm, and provide high lumen efficacy of LED lighting. However, the narrow band green phosphors with general composition MGa2S4:Eu are hygroscopic, and exhibit rapid deterioration of photoluminescence due to exposure to moisture (water vapor), oxygen and/or heat. There is a need for narrow band green phosphors with general composition MGa2S4:Eu, with coatings which are effective at protecting the phosphor particles from moisture and oxygen and enable a commercially useful phosphor.
Furthermore, there is a need for new compositions of narrow band green phosphors based on the phosphor with general composition MA2S4:Eu, wherein: M comprises at least one of Mg, Ca, Sr and Ba, A comprises at least one of Ga, Al, In, La and Y, providing improved lumen maintenance and stable chromaticity over the lifetime of a light emitting device.
Embodiments of the invention concern narrow band green phosphors with general composition based on MA2S4:Eu, wherein: M comprises at least one of Mg, Ca, Sr and Ba, A comprises at least one of Ga, Al, In, La and Y, having a dense impermeable (i.e. pinhole-free) coating of an oxide material encapsulating individual ones of phosphor particles.
According to a first aspect of the present invention, there is provided a coated phosphor comprises phosphor particles comprised of a phosphor material with composition (M)(A)2S4:Eu, wherein: M is at least one of Mg, Ca, Sr and Ba; and A is at least one of Ga, Al, In, Y; and a dense impermeable coating of an oxide material encapsulating individual ones of said phosphor particles; and wherein said coated phosphor is configured to satisfy at least one of the conditions: (1) under excitation by blue light, the reduction in photoluminescent intensity at the peak emission wavelength after 1,000 hours of aging at about 85° C. and about 85% relative humidity is no greater than about 30%; (2) the change in chromaticity coordinates CIE(y), ΔCIE y, after 1,000 hours of aging at about 85° C. and about 85% relative humidity is less than about 5×10−3; (3) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least two hours at 85° C.; (4) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least one day at 20° C.; and (5) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least 5 days at 20° C.
The coated phosphor may be configured such that the change in chromaticity coordinates CIE(y), ΔCIE y, after 1,000 hours of aging at about 85° C. and about 85% relative humidity is less than or equal to about 3×10−3.
The oxide may be one or more materials chosen from the group comprising aluminum oxide, silicon oxide, titanium oxide, zinc oxide, magnesium oxide, zirconium oxide and chromium oxide.
In some embodiments, the oxide material may be alumina.
The coating may have a thickness in the range of 100 nm to 5 μm or in the range of 800 nm to 1.2 μm.
The phosphor particles may have a size distribution having a D50 value within the range of 5 μm to 15 μm.
In some embodiments, M may be Sr.
In some embodiments, A may be Ga.
In some embodiments, A may be Ga, M may be Sr and said oxide material may be alumina.
The coated phosphor may have a peak photoluminescence between 535 nm and 537 nm and a FWHM of between 48 nm and 50 nm, when excited by blue light with a peak emission of about 450 nm.
The phosphor material composition in accordance with embodiments described herein may further comprise Praseodymium (Pr). The Pr may act as a co-activator and the inventors have discovered that this can improve the quantum efficiency of the phosphor and increase emission intensity by 5-8%. The co-activation of a narrow band green phosphor of composition (M)(A)2S4 with Eu and Pr is believed to be inventive in its own right. Thus, according to some embodiments, a coated phosphor may comprise phosphor particles comprised of a phosphor material with composition (M)(A)2S4:Eu; Pr, wherein: M is at least one of Mg, Ca, Sr and Ba; and A is at least one of Ga, Al, In, Y; a dense impermeable coating of an oxide material encapsulating individual ones of said phosphor particles. In some embodiments, the coated phosphor may comprise particles phosphor particles comprised of a phosphor material with composition SrGa2S4:Eu; Pr having a dense impermeable coating of alumina encapsulating individual ones of said phosphor particles.
In another aspect, the present invention encompasses a method of forming a coated phosphor, comprising: providing phosphor particles comprised of a phosphor material with composition (M)(A)2S4:Eu wherein: M is at least one of Mg, Ca, Sr and Ba; and A is at least one of Ga, Al, In, Y; and depositing a dense impermeable coating of an oxide material encapsulating individual ones of said phosphor particles by a gas phase process in a fluidized bed reactor; wherein said coated phosphor is configured to satisfy at least one of the conditions: (1) under excitation by blue light, the reduction in photoluminescent intensity at the peak emission wavelength after 1,000 hours of aging at about 85° C. and about 85% relative humidity is no greater than about 30%; (2) the change in chromaticity coordinates CIE(y), ΔCIE y, after 1,000 hours of aging at about 85° C. and about 85% relative humidity is less than about 5×10−3; (3) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least two hours at 85° C.; (4) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least one day at 20° C.; and (5) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least 5 days at 20° C. Of course, it will be understood that the method encompasses forming a coated phosphor which may comprise phosphor particles comprised of a phosphor material with composition (M)(A)2S4:Eu; Pr in the same manner as that described above.
It will be appreciated that the method of forming a coated phosphor encompasses forming the various coated phosphors described herein.
In a further aspect, the present invention envisages a white light emitting device comprising: an excitation source with a dominant emission wavelength within a range from 200 nm to 480 nm; a coated phosphor as described herein, with a first phosphor peak emission wavelength; and a second phosphor with a second phosphor peak emission wavelength different to said first phosphor peak wavelength.
In some embodiments, the coated phosphor may absorb radiation at a wavelength of 450 nm and emits light with a photoluminescence peak emission wavelength between about 530 nm and about 545 nm; and said second phosphor emits light with a photoluminescence peak emission wavelength between about 600 nm and about 650 nm. Such white light emitting devices may find applications for display backlighting applications and general lighting.
For backlighting applications, the excitation source may have a dominant emission wavelength within a range from 440 nm to 480 nm; and the white light emitting device may have an emission spectrum with clearly separated blue, green and red peaks, and a color gamut after LCD RGB color filters of at least 85% of NTSC.
In yet another aspect of the present invention, there is provided a white light emitting device for backlighting, comprising: an excitation source with a dominant emission wavelength within a range from 440 nm to 480 nm; a coated phosphor as described herein with a first phosphor peak emission wavelength between about 530 nm and about 545 nm; and a second phosphor with a second phosphor peak emission wavelength different to said first phosphor peak wavelength, said second phosphor peak emission wavelength being between about 600 nm and about 650 nm; wherein said white light emission device has an emission spectrum with clearly separated blue, green and red peaks, and a color gamut after LCD RGB color filters of at least 85% of NTSC.
It various white light emitting devices, it may be that at least one of the coated phosphor and second phosphor is located in a remote phosphor component. For example, in some embodiments, the coated phosphor may be located in the remote phosphor component and the second phosphor may be located in a package housing the excitation source. It may be that, for example, the remote phosphor component comprises a film such as “on-film” that is applied to the rear surface of the display.
In yet further embodiments, the narrow band green phosphor can further comprise elements M′ and A′; where M′ comprises for example Li, Na and K; and A′ comprises for example Si, Ge and Ti.
In some such embodiments, the present invention contemplates a coated phosphor comprising phosphor particles comprised of a phosphor material with composition (M,M′)(A,A′)2S4:Eu, wherein: M is at least one of Mg, Ca, Sr and Ba; M′ is at least one of Li, Na and K; A is at least one of Ga, Al, In, La and Y; A′ is at least one of Si, Ge and Ti; and a dense impermeable coating of an oxide material encapsulating individual ones of said phosphor particles; and wherein said coated phosphor is configured to satisfy at least one of the conditions: (1) under excitation by blue light, the reduction in photoluminescent intensity at the peak emission wavelength after 1,000 hours of aging at about 85° C. and about 85% relative humidity is no greater than about 30%; (2) the change in chromaticity coordinates CIE(y), ΔCIE y, after 1,000 hours of aging at about 85° C. and about 85% relative humidity is less than about 5×10−3; (3) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least two hours at 85° C.; (4) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least one day at 20° C.; and (5) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least 5 days at 20° C. In such phosphor materials, it is believed that M′ substitutes for M, and A′ substitutes for A in the MA2S4 crystalline lattice.
In another aspect, the present invention envisages a coated phosphor comprising phosphor particles comprised of a phosphor material with composition (M)(A)2S4:Eu, M′, A′ wherein: M is at least one of Mg, Ca, Sr and Ba; M′ is at least one of Li, Na and K; A is at least one of Ga, Al, and In; and A′ is at least one of Si, Ge, La, Y and Ti; and a dense impermeable coating of an oxide material encapsulating individual ones of said phosphor particles; and wherein said coated phosphor is configured to satisfy at least one of the conditions: (1) under excitation by blue light, the reduction in photoluminescent intensity at the peak emission wavelength after 1,000 hours of aging at about 85° C. and about 85% relative humidity is no greater than about 30%; (2) the change in chromaticity coordinates CIE(y), ΔCIE y, after 1,000 hours of aging at about 85° C. and about 85% relative humidity is less than about 5×10−3; (3) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least two hours at 85° C.; (4) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least one day at 20° C.; and (5) said coated phosphor does not turn black when suspended in a 1 mol/L silver nitrate solution for at least 5 days at 20° C.
The coated phosphor may be configured such that the change in chromaticity coordinates CIE(y), ΔCIE y, after 1,000 hours of aging at about 85° C. and about 85% relative humidity is less than or equal to about 3×10−3.
The oxide may be one or more materials chosen from the group comprising aluminum oxide, silicon oxide, titanium oxide, zinc oxide, magnesium oxide, zirconium oxide and chromium oxide.
In some embodiments, the oxide material may be alumina.
The coating may have a thickness in the range of 100 nm to 5 μm or in the range of 800 nm to 1.2 μm.
The phosphor particles may have a size distribution having a D50 value within the range of 5 μm to 15 μm.
In some embodiments, M may be Sr.
In some embodiments, A may be Ga.
In some embodiments, A may be Ga, M may be Sr and said oxide material may be alumina.
The coated phosphor may have a peak photoluminescence between 535 nm and 537 nm and a FWHM of between 48 nm and 50 nm, when excited by blue light with a peak emission of about 450 nm.
In a further aspect of the present invention, there is provided a phosphor comprising phosphor particles comprised of a phosphor material with composition—(M1-xLix)(A1-x/2Six/2)2S4:Eu, wherein: M is at least one of Mg, Ca, Sr and Ba; and A is at least one of Ga, Al, In, La and Y; wherein 0<x<0.1. The phosphor may further comprise a dense impermeable coating of an oxide material encapsulating individual ones of said phosphor particles. The phosphor may have a coating have a thickness in the range of 100 nm to 5 μm or in the range of 800 nm to 1.2 μm. The phosphor particles may be characterized by a size distribution having a D50 value within the range of 5 μm to 15 μm. The oxide material may be one or more materials chosen from the group comprising aluminum oxide, silicon oxide, titanium oxide, zinc oxide, magnesium oxide, zirconium oxide and chromium oxide. The oxide material may be alumina. In some embodiments, M may be Sr and A may be Ga. The phosphor phosphor may have a peak photoluminescence between 535 nm and 537 nm and a FWHM of between 48 nm and 50 nm, when excited by a blue light source with a dominant emission wavelength of about 450 nm.
These and other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures, wherein:
Embodiments of the present invention will now be described in detail with reference to the drawings, which are provided as illustrative examples of the invention so as to enable those skilled in the art to practice the invention. Notably, the figures and examples below are not meant to limit the scope of the present invention to a single embodiment, but other embodiments are possible by way of interchange of some or all of the described or illustrated elements. Moreover, where certain elements of the present invention can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present invention will be described, and detailed descriptions of other portions of such known components will be omitted so as not to obscure the invention. In the present specification, an embodiment showing a singular component should not be considered limiting; rather, the invention is intended to encompass other embodiments including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present invention encompasses present and future known equivalents to the known components referred to herein by way of illustration.
Embodiments of the present invention are directed generally to narrow band green and coated narrow band green phosphors with general composition based on MA2S4:Eu, wherein: M is at least one of Mg, Ca, Sr and Ba, A is at least one of Ga, Al, In, La and Y, and the coating is one or more oxides chosen from the group of materials comprising aluminum oxide, silicon oxide, titanium oxide, zinc oxide, magnesium oxide, zirconium oxide and chromium oxide. For example, a narrow band green phosphor may have a composition (M)(A)2S4:Eu, M′, A′ wherein: M is at least one of Mg, Ca, Sr and Ba; M′ is at least one of Li, Na and K; A is at least one of Ga, Al, and In; and A′ is at least one of Si, Ge, La, Y and Ti. In the latter formula the dopants Eu, M′and A′ may be present in substitutional sites, although other options for incorporation are envisaged, such as interstitial sites. Furthermore, a narrow band green phosphor may have a composition (M,M′)(A,A′)2S4:Eu, wherein: M is at least one of Mg, Ca, Sr and Ba; M′ is at least one of Li, Na and K; A is at least one of Ga, Al, In, La and Y; and A′ is at least one of Si, Ge and Ti; wherein M′ substitutes for M, and A′ substitutes for A in the MA2S4 crystalline lattice. In the latter formula the specific substitution sites are identified, although it is envisaged that alternative substitutional sites may exist; for example, the inventors envisage that for doping with Li and Si the following structure may provide an alternative substitutional site for the Li: Sr(Ga1-2xSixLi2x)2S4:Eu, wherein: M is at least one of Mg, Ca, Sr and Ba; and A is at least one of Ga, Al, In, La and Y; wherein 0<x<0.1
Phosphor Synthesis
Synthesis of a doped SrGa2S4:Eu phosphor was by one of the following processes.
In a first process, Ga2S3 material was synthesized by exposing a Ga2O3 precursor to CS2 in a N2 atmosphere, at 900° C. for 6 hours. In order to synthesize Li and Si doped Eu0.05Sr0.95Ga2S4 phosphor, EuCl3, SrCO3, Ga2S3, SiO2 and Li2CO3 powders were weighed with molar ratio of 0.05, 0.95, 1.0, 0.1 and 0.1. The powders were mixed using a mortar and pestle, and placed in an alumina crucible and calcined in a box-type furnace at 850° C. for 4 hours followed by a further 2 hours at 900° C. exposed to a N2 gas stream carrying CS2. The resulting sintered phosphor cake was removed from the furnace and mortared, washed, and sieved prior to evaluation. This first process was used to synthesize the uncoated phosphors described in Tables 1-16.
In a second process, which is particularly suitable for larger scale synthesis of SrGa2S4:Eu, Pr phosphor for coating in a fluidized bed chemical vapor deposition reactor, a Ga2O3—SrSO4—Eu2O3—Pr2O3 precursor is prepared as follows. 40 g of gallium metal was dissolved in 250 ml of concentrated nitric acid (70% HNO3) in a 1 liter flask (approximately 4 days at room temperature) to form Ga(NO3)3 solution. Then 1.4 g Eu2O3 and 0.007 g Pr6O11 were dissolved in the acidic Ga(NO3)3 solution, and the Ga(NO3)3—Eu(NO3)3—Pr(NO3)3 solution was transferred into a 3 liter glass beaker. 30 g of powder (5-15 micron particle size) of SrSO4 or SrCO3 was dispersed in the nitrate solution while stirring, and the solution was stirred for 1 hour at room temperature. The pH of the solution was slowly adjusted to pH 7.0 by adding NH4OH (5.0 wt %), resulting in precipitation of phosphor particles. After the precipitates settled, the phosphor particles were filtered out and dried. Note that the above process may also be used to form the NBG phosphor with only one activator—Eu—if desired; furthermore, if Pr co-activator is used it will typically be incorporated in amounts in the range of 0<Pr<0.15 molar percent of Eu. This second process was used to synthesize the phosphors which were then coated in a fluidized bed chemical vapor deposition reactor as described below; data for these phosphors is provided in Tables 17-21.
The first and second processes were also used to make NBG phosphors (SrGa2S4:Eu and related materials, as described herein) including various dopants and/or substituted elements, as will be clear from Tables 1-6 below.
Phosphor Characterization
The NBG and doped NBG phosphor particles (powder) were tested using an Ocean Optics USB4000 spectrometer for photoluminescence intensity (PL) and chromaticity (CIE coordinates x and y). The results are summarized in Table 7 for a range of different lithium and silicon dopant concentrations. In the Table, PE is the wavelength at the peak of the photoluminescence curve, PL is the relative intensity of the photoluminescence peak, and FWHM is the full width at half maximum for the photoluminescence peaks. The powder test method involves placing the phosphor powder on a stage, illuminating the phosphor powder with blue light and measuring the emitted light; software is used to remove the blue light from the measurement to provide a measure of the photoluminescence.
The NBG control sample and one of the Li/Si doped NBG samples were tested using a cavity test, and brightness, CIE x and CIE y were measured and quantum efficiency (QE) was calculated—results are provided in Table 8. The cavity test is similar to the powder test described above, except the phosphor powder is mixed with an uncurable encapsulant and placed in a cavity for testing, instead of the powder being placed on a stage, total emission is measured in an integrating sphere, and the brightness includes blue light.
Table 9 provides powder test data for NBG phosphor and lithium, 10 percent silicon co-doped NBG phosphor, according to some embodiments of the invention.
Tables 10, 11 & 12 provide powder test data and cavity test data for NBG phosphor doped with varying amounts of one or more of Ca, Ba, Li, In, and Si. The data shows the emission characteristics can be varied by using these dopants. Furthermore, the Li/Si doped NBG phosphor showed an improvement over the un-doped NBG of the thermal properties of the phosphor as measured by the PL (Photoluminance) at 100° C. as a percentage of PL at room temperature, and the best thermal properties when compared with the other doped samples.
Tables 13-16 provide powder test data for NBG phosphor doped with varying amounts of one or more of Ca, Al, Li, In, Si, Na, La and Y; the amount of Eu activator was also varied.
Phosphor Coating
The NBG particles are coated by a CVD process in a fluidized bed reactor.
In a typical coating process, the phosphor powder sample was loaded into the reactor and heated to 100-250° C., preferably 200° C., under N2 gas flow. A metal oxide precursor such as TrimethylAluminum (TMA), Titanium tetra-chloride (TiCl4), Silicon tetra-chloride (SiCl4), or DimethylZinc was introduced in to the reactor with a N2 carrier gas through a bubbler. H2O vapor was also introduced into the reactor to react with the metal oxide precursor to form oxide coating layers on phosphor particles. Complete fluidization of the particles being coated (from gas flow optimization, etc.) without any dead space is important to ensure homogeneous coating of all phosphor particles. In a typical coating conducted at 200° C., for a 250 g phosphor particle loading of the reactor, the coating was produced with a metal oxide precursor feeding rate of 1 to 10 g/hour for 4 hours, while feeding H2O at a rate of 2 to 7 g/hour. It is shown below that these conditions can produce dense and substantially pinhole-free coatings of uniform thickness, with a theorized percentage solid space (percentage bulk density) of greater than 95% and in embodiments greater than 97% and in embodiments greater than 99%. In this patent specification, percentage solid space=(bulk density of the coating/density of the material within a single particle)×100. It will be understood that the percentage solid space (% solid space) provides a measure of the porosity of the coating resulting from pinholes. It is believed by the present inventors that outside of: the specified feeding rate range for oxide precursor, the specified feeding rate range for H2O, and/or the specified 100-250° C. temperature range, the coated phosphors may not exhibit the reliability documented herein.
In the case of alumina coatings the inventors expect the coatings to be a dense amorphous oxide coating layer on the NBG phosphor particle surface without pinholes (pinhole-free) that is, a dense water impermeable coating.
Characterization of Coated Phosphor
The stability and reliability of the coated NBG phosphor particles of the present invention may be established using a silver test, as follows. Silver ions (Ag+) can attack sulfur in NBG phosphors to form a black Ag2S compound if the NBG surface is not well protected (for example, if pinholes are present in the coating then black Ag2S spots would form). The silver test is based on this mechanism and involves soaking the coated NBG materials in AgNO3 solution to evaluate how well the coating layer is able to protect the NBG phosphor particle against Ag+ attack. The longer the time the NBG phosphor can survive in the Ag test, the better the surface protection (coating/reliability) the phosphor has.
In a Ag test, NBG powder was soaked in 1 mole/liter AgNO3 solution, and the stability of the sample was evaluated by monitoring how long the powder can survive without turning black at room temperature, 50° C. and 85° C. For comparison, it is noted that uncoated NBG samples turn black in less than one minute. Test results show that a coated sample, prepared as described herein, can survive without blackening for more than: 24 hours at room temperature; 24 hours at 50° C.; and 3 hours at 85° C.
The stability and reliability of the coated NBG phosphor particles of the present invention may also be established using an electrical conductivity test. In this test uncoated and coated NBG particles are dispersed in de-ionized water and the electrical conductivity is monitored over time—increases in conductivity being attributed to release of ions into solution from the particles. An Oakton waterproof CON 150 meter was used for these tests. Samples were 0.1 g of phosphor particles dispersed in 10 ml of distilled water. Results for alumina coated NBG and uncoated NBG are shown in Table 17. The alumina coated phosphor clearly performs much better in this test, indicating the alumina coating is providing good protection of the phosphor from attack by water and dissolution.
The coated phosphor samples are also tested in packaged form, referred to herein as package test. The coated NBG phosphor is mixed with other phosphors in an optical encapsulant, such as Phenylsiloxane resin OE6630 available from Dow Corning. The mixture of phosphors and encapsulant are loaded in an LED package, such as SMD 7020 LED module. The encapsulant is cured and optical measurements are made, as described below. Furthermore, the packaged phosphors are subjected to accelerated testing conditions, known as “wet high temperature operating life” testing and referred to herein as WHTOL—the testing requires exposure to 85° C./85% RH (relative humidity) while operating at 120 mA.
Packaged White Light Emitting Device, for Display Backlight and General Lighting Device
As shown in Tables 18 & 19, the alumina coated NBG phosphor samples of the present invention exhibit higher NTSC and brightness compared to β-SiAlON:Eu phosphor.
In addition to its applications in general LED lighting applications, due to its narrow band green and suitable wavelength, NBG phosphors can also be used in display backlighting.
White LEDs using combined blue LED and YAG:Ce phosphor have been widely used as backlights for personal computer LCD screens, LCD TVs and small-sized LCDs used in devices such as cellular phones and tablet displays. To date, the color gamut of these LEDs can attain approximately 70% of the area of the NTSC standard, and the widest color gamut using a narrow-band β-SiAlON:Eu green phosphor and CaAlSiN3:Eu red phosphor can reach ˜85% of the area of the NTSC standard with the assistance of typical LCD color filters. However, the combination of a coated NBG phosphor, as described herein, with an emission wavelength of about 537 nm, with a narrow band red phosphor, such as KSF, can reach approximately 92% of the area of the NTSC standard with a TV color filter. See
It is expected that some embodiments of the coated NBG phosphors of the present invention, when combined with one of the various possible narrow band red phosphors such as KSF or CSS are able to reach high efficiencies and high levels of color gamut for LED backlight applications, where the phosphors are integrated into “on-chip”, “on-edge” or “on-film” LED backlights. Furthermore, it is expected that the performance of some embodiments of the coated narrow band green phosphors of the present invention in combination with one of the various possible narrow band red phosphors will provide higher efficiencies, better color purity and higher levels of color gamut compared with prior art phosphor combinations.
Remote Phosphor White Light Emitting Device
The device 2600 further comprises a plurality (four in the example illustrated) of blue light emitting LEDs 2612 (blue LEDs) that are mounted in thermal communication with a circular-shaped MCPCB (metal core printed circuit board) 2614. The blue LEDs 2612 can comprise a ceramic packaged array of twelve 0.4 W GaN-based (gallium nitride-based) blue LED chips that are configured as a rectangular array 3 rows by 4 columns. To maximize the emission of light, the device 2600 can further comprise light reflective surfaces 2616 and 2618 that respectively cover the face of the MCPCB 2614 and the inner curved surface of the top 2608.
The device 2600 further comprises a photoluminescent wavelength conversion component 2620 that is located remotely to the LEDs and operable to absorb a proportion of the blue light generated by the LEDs 2612 and convert it to light of a different wavelength by a process of photoluminescence. The emission product of the device 2600 comprises the combined light generated by the LEDs 2612 and the photoluminescent wavelength conversion component 2620. The photoluminescent wavelength conversion component may be formed of a light transmissive material (for example, polycarbonate, acrylic material, silicone material, etc.) and comprises a mixture of a yellow, red and/or green phosphor, including coated NBG phosphor material of the present invention. Furthermore, in embodiments the photoluminescent wavelength conversion component may be formed of a light transmissive material coated with one or more layers of phosphor materials as described above, including coated green phosphor material of the present invention. The wavelength conversion component is positioned remotely to the LEDs 2612 and is spatially separated from the LEDs. In this patent specification “remotely” and “remote” means in a spaced or separated relationship. The wavelength conversion component 2620 is configured to completely cover the housing opening such that all light emitted by the lamp passes through the component 2620. As shown the wavelength conversion component 2620 can be detachably mounted to the top of the wall portion 2606 using the top 2608 enabling the component and emission color of the lamp to be readily changed.
While in the above embodiment the phosphors are located in the photoluminescent wavelength conversion component it is contemplated in other embodiments to locate one of the phosphors in the photoluminescent wavelength conversion component and the other within a package housing the LEDs
Although examples of the present invention have been described primarily with reference to NBG phosphor particles coated with a single material, in certain embodiments, it is envisaged that the coatings comprise multiple layers (two, three or more) with combinations of the coating materials described herein. Furthermore, the combination coatings may be coatings with an abrupt transition between adjacent coating materials, or may be coatings in which there is a gradual transition from one coating material to another coating material thus forming a zone with mixed composition that varies through the thickness of the coating.
Although the present invention has been particularly described with reference to certain embodiments thereof, it should be readily apparent to those of ordinary skill in the art that changes and modifications in the form and details may be made without departing from the spirit and scope of the invention.
Number | Date | Country | |
---|---|---|---|
62496901 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15775318 | May 2018 | US |
Child | 16814110 | US |