This application generally relates to rechargeable lithium batteries.
Rechargeable lithium batteries are widely used as an energy source for both small and large electronic devices. Lithium batteries may use cathode materials containing nickel. However, nickel-based cathode materials can contribute to low volumetric energy density, high-percent capacity irreversibility in the first cycle, capacity degradation as a function of cycle number, and low rate capabilities.
The disclosed embodiments provide cathode active materials that comprise a base particle having the following formula: LiαNixMyCozO2, wherein 0.95≤α≤1.5, 0.6≤x≤1.0, 0≤y≤0.5, 0≤z≤0.5; x+y+z=1; and M is one of Mn and Al. The cathode active materials further comprise coating particles coated on the base particle, the coating particles having the following formula: LiaNibMncCodO2, wherein 0.95≤a≤1.5, 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0 and b+c+d=1.
In some embodiments, the base particle has a particle diameter ranging from 8 μm to 25 μm and the coating particles have a particle diameter ranging from 0.1 μm to 5 μm.
In some embodiments, the coating particles are >0.0 wt. % and ≤30 wt. % of the cathode active material.
In some embodiments, one or both the base particle and the coating particles are doped with one or more of B, Mg, Al, Ca, Ti, V, Si, F, Cr, Cu, Zn, Zr, Mo and Ru.
In some embodiments, the cathode active material is coated with a metal oxide, a metal fluoride or a metal phosphate.
In some embodiments, the cathode active material has a pellet density of ≥3.4 g/cc.
In some embodiments, in the formula of the base particle, 0.8≤x≤1.0.
In some embodiments, in the formula of the coating particles, b=0.
In some embodiments, the base particle has one of the following compositions: Li1.02Ni0.8Mn0.1Co0.1O2, Li1.02Ni0.82Mn0.11Co0.07O2 and Li1.02Ni0.94Mn0.03Co0.03O2 and the coating particles have one of the following compositions: LiaNi1/3Mn1/3Co1/3O2, LiaMn0.07Ni0.07Co0.86O2, LiaCo0.96Mn0.04O2, and Li2MnO3.
In some embodiments, the base particle has the one of the following composition: LiaNi0.8Co0.15Al0.05O2 and Li1.02Ni0.89Co0.1Al0.01O2, and the coating particles have one of the following compositions: LiaNi1/3Mn1/3Co1/3O2, LiaMn0.07Ni0.07Co0.86O2, LiaCo0.96Mn0.04O2, and Li2MnO3.
An aspect of the disclosed embodiments includes a battery cell having an anode comprising an anode current collector and an anode active material disposed over the anode current collector. The battery cell further comprises a cathode comprising a cathode current collector and a cathode active material disposed over the cathode current collector. The cathode active material comprises a base particle having the following formula: LiαNixMyCozO2, wherein 0.95≤α≤1.5, 0.6≤x≤1.0, 0≤y≤0.5, 0≤z≤0.5; x+y+z=1; and M is one of Mn and Al; and coating particles coating the base particle, the coating particles having the following formula: LiaNibMncCodO2, wherein 0.95≤a≤1.5, 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0 and b+c+d=1.
Other aspects of the disclosed embodiments include methods of preparing the cathode active material. One method disclosed herein comprises forming a cathode precursor by coating a base precursor with a coating precursor, the base precursor being one of an oxide, hydroxide, carbonate or oxalate of NixMyCoz, wherein 0.6≤x≤1.0, 0≤y≤0.5, 0≤z≤0.5; x+y+z=1; and M is one of Mn and Al. The coating precursor is one of an oxide, hydroxide, carbonate or oxalate of NibMncCod, wherein 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0 and b+c+d=1. The cathode precursor is lithiated to produce cathode active materials with coating particles having the following formula: LiaNibMncCodO2, wherein 0.95≤a≤1.5, 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0 and b+c+d=1, and base particles having the following formula: LiαNixMyCozO2, wherein 0.95≤α≤1.5, 0.6≤x≤1.0, 0≤y≤0.5, 0≤z≤0.5; x+y+z=1; and M is one of Mn and Al.
Another method of preparing the cathode active material comprises lithiating a base precursor, the base precursor being one of an oxide, hydroxide, carbonate or oxalate of NixMyCoz, wherein 0.6≤x≤1.0, 0≤y≤0.5, 0≤z≤0.5, x+y+z=1, and M is one of Mn and Al, forming a base particle. The base particle has the following formula: LiαNixMyCozO2, wherein 0.95≤α≤1.5, 0.6≤x≤1.0, 0≤y≤0.5, 0≤z≤0.5; x+y+z=1; and M is one of Mn and Al. The base particle is coated with a coating precursor, the coating precursor being one of an oxide, hydroxide, carbonate or oxalate of NibMncCod, wherein 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0 and b+c+d=1. The coating precursor is lithiated, producing coating particles having the following formula: LiaNibMncCodO2, wherein 0.95≤a≤1.5, 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0; b+c+d=1.
Another method of preparing the cathode active material comprises lithiating a coating precursor to produce coating particles having the following formula: LiaNibMncCodO2, wherein 0.95≤a≤1.5, 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0 and b+c+d=1. A base precursor is lithiated to produce base particles having the following formula: LiαNixMyCozO2, wherein 0.95≤α≤1.5, 0.6≤x≤1.0, 0≤y≤0.5, 0≤z≤0.5; x+y+z=1; and M is one of Mn and Al. The cathode active material is produced by coating the base particles with the coating particles.
In some embodiments, the method further comprises coating the cathode active material with a metal oxide, a metal fluoride or a metal phosphate.
In some embodiments, the method further comprises doping one or both the base particles and the coating particles with one or more of B, Mg, Al, Ca, Ti, V, Si, F, Cr, Cu, Zn, Zr, Mo and Ru.
Nickel-based oxides are a promising class of cathode materials for lithium-ion batteries. Nickel-rich oxides have high discharge capacities (200-220 mAh/g) and thus high gravimetric energy density, greater than the discharge capacities of conventional lithium-ion cathode materials, such as LiCoO2 (140 mAh/g), LiNi1/3Co1/3Mn1/3O2 (160 mAh/g), and LiMn2O4 (120 mAh/g). Nickel as a raw material is also lower in cost than cobalt. However, nickel-rich cathode materials can experience significant capacity fade upon cycling, detrimental side reactions with electrolytes, and poor thermal stability. Nickel-rich materials can also suffer from oxygen evolution from its oxide lattice in the temperature range of 150° C.-300° C. when delithiated. The exothermic decomposition temperature gradually decreases as the nickel content increases.
For example, a cathode using the nickel-based material LiNi1/3Co1/3Mn1/3O2 exhibits high capacity retention and thermal stability among LiNi1-2xCoxMnxO2 samples, where x<⅓. By contrast, the cathode using LiNi1/3Co1/3Mn1/3O2 has a limited discharge capacity due to the lower amount of nickel. A cathode using nickel-rich material LiNi1-2xCoxMnxO2, where x=0.2, experiences severe capacity fading. The mechanism for the capacity fade can be due to the surface structural degradation as the nickel-rich material transforms to a rock salt structure.
Coatings have been introduced, attempting to improve the cycle retention, rate capability, and thermal stability of nickel-rich cathode materials. The coating materials introduced include carbon, metal oxides, metal carbonates, metal aluminates, metal phosphates, metal fluorides, metal oxyfluorides, and metal hydroxides. Surface coating nickel-rich material with these coating materials can protect the cathode surface from undesired chemical reactions with the organic electrolyte and suppress solid-electrolyte interphase (SEI) layer formation, scavenge trace amounts of hydrofluoric acid present in the electrolyte, and provide structural support to impede the transition to the rock salt phase.
However, these coating materials, including carbon, metal oxides, metal carbonates, metal aluminates, metal phosphates, metal fluorides, metal oxyfluorides, and metal hydroxides, are not able to participate in the electrochemical reaction, resulting in a decrease in initial capacity of lithium-ion batteries. These coating materials are also insulating with respect to lithium ions, slowing down, and even blocking, the de-intercalation of lithium ions.
The cathode active materials having a low nickel-based lithium-containing coating on a nickel-rich base as disclosed herein optimize the composition and microstructure of nickel-rich LiNi1-2xCoxMnxO2, particularly on the surface, to attain a cathode active material with high capacity and thermal stability. The disclosed low nickel-based lithium-containing coating on a nickel-rich base does not block the de-intercalation and re-intercalation of lithium. The low nickel-based lithium-containing coating participates in the charging/discharging electrochemical reaction, and is thus able to deliver capacity. The low nickel-based lithium-containing coating provides cycle stability (i.e., continual lithium-ion extraction and insertion), and results in better thermal stability of the resulting cathode active material. The low nickel-based lithium-containing coating particles have the same crystal structure as the nickel-rich lithium-containing base particle, but with different transition metals or different amounts of the same transition metals. This coherent crystal structure of the base and the coating provides increased mobility of lithium ions across the interface, resulting in better diffusion pathways. The improved contact between the base and coating particles due to the coherent structure reduces degradation of the material as a function of cycle number. As with conventional coatings, the low nickel-based coating also protects the surface of the nickel-rich base particle from undesired chemical reactions with the organic electrolyte and suppresses solid-electrolyte interphase (SEI) layer formation, scavenges trace amounts of hydrofluoric acid present in the electrolyte, and provides structural support to impede the transition to the rock salt phase
The lithiated nickel-rich base particle 102 has the following formula: LiαNixMyCozO2, wherein 0.95≤α≤1.5, 0.6≤x≤1.0, 0≤y≤0.5, 0≤z≤0.5, in mol percent; x+y+z=1; and M is one of Mn and Al. In some embodiments, 0.8≤x≤1.0, and in other embodiments, 0.9≤x≤1.0. Non-limiting examples of base particle compositions include Li1.02Ni0.8Mn0.1Co0.1O2, Li1.02Ni0.82Mn0.11Co0.07O2, Li1.02Ni0.94Mn0.03Co0.03O2, LiaNi0.8Co0.15Al0.05O2 and Li1.02Ni0.89Co0.01Al0.01O2.
The cathode active material further comprises lithiated low nickel-based coating particles 104 coating the base particle 102. The coating particles 104 have the following formula: LiaNibMncCodO2, wherein 0.95≤α≤1.5, 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0 and b+c+d=1. As used herein, “low nickel-based” coating particles 104 include coating particle compositions with no nickel. Non-limiting examples of coating particle compositions include LiaNi1/3Mn1/3Co1/3O2, LiaMn0.07Ni0.07Co0.86O2, LiaCo0.96Mn0.04O2, and Li2MnO3.
A non-limiting example of a cathode active material 100 includes base particles 102 of Li1.02Ni0.8Mn0.1Co0.1O2 coated with coating particles 104 of LiaNi1/3Mn1/3Co1/3O2. Another non-limiting example of a cathode active material 100 includes base particles 102 of LiNi0.8Co0.15Al0.05O2 coated with coating particles 104 of LiNi0.07Mn0.07Co0.86O2. Any combinations of base particles 102 having the following formula: LiαNixMyCozO2, wherein 0.95≤α≤1.5, 0.6≤x≤1.0, 0≤y≤0.5, 0≤z≤0.5; x+y+z=1; and M is one of Mn and Al and coating particles 104 have the following formula: LiaNibMncCodO2, wherein 0.95≤a≤1.5, 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0 and b+c+d=1 are contemplated.
In some embodiments, the base particles 102 have a particle diameter Db ranging from 8 μm to 25 μm and the coating particles 104 have a particle diameter Dc ranging from 0.1 μm to 5 μm. The coating particles 104 can form a uniform or non-uniform coating on part of or on an entire surface of the base particle 102. In some embodiments, the coating particles 104 are greater than 0.0 wt. % and less than or equal to 30 wt. % of the cathode active material 100. In some embodiments, the coating particles 104 are greater than 0.0 wt. % and less than or equal to 10.0 wt. % of the cathode active material 100. In some embodiments, the coating particles 104 are greater than 0.0 wt. % and less than or equal to 6.0 wt. % of the cathode active material 100.
The cathode active material 100 disclosed herein has a pellet density of ≥3.4 g/cc, which is typically higher than cathode materials made of nickel-rich material of the base particles alone.
In some embodiments, one or both the base particles 102 and the coating particles 104 are doped with a dopant to further enhance electrochemical performance, such as cycle life and thermal stability. The dopant can be one or more of B, Mg, Al, Ca, Ti, V, Si, F, Cr, Cu, Zn, Zr, Mo and Ru. In some embodiments, only the base particles 102 are doped. In some embodiments, only the coating particles 104 are doped. In some embodiments, both the base particles 102 and the coating particles 104 are doped. In such embodiments, the base particles 102 and the coating particles 104 can be doped with different elements or the same elements.
In some embodiments disclosed herein, the cathode active material 100 is coated with a metal oxide, a metal fluoride or a metal phosphate to further improve thermal stability and reduce gassing and swelling. The metal oxide, metal fluoride or metal phosphate can be zinc-based, boron-based, zirconium-based, aluminum-based, such as Al2O3, AlF3, AlPO4, and ZrO2, as non-limiting examples. The thickness of the metal oxide, metal fluoride or metal phosphate coating may vary, while maintaining uniform protection of the surface of the material.
An aspect of the disclosed embodiments is a battery cell 200, the layers of which are shown in cross-section in
Other aspects of the disclosed embodiments include methods of preparing the cathode active material 100.
The coating precursor is one of an oxide, hydroxide, carbonate or oxalate of NibMncCod, wherein 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0 and b+c+d=1. Non-limiting examples of the coating precursor 104p include Ni1/3Mn1/3Co1/3O2, Mn0.07Ni0.07Co0.86O2, Ni1/3Mn1/3Co1/3(OH)2, and Mn0.07Ni0.07Co0.86(OH)2.
The cathode precursor 100p is lithiated in step 302 to produce the cathode active material 100 with coating particles 104 having the following formula: LiaNibMncCodO2, wherein 0.95≤a≤1.5, 0≤b≤0.35, 0≤c≤1.0, 0≤d≤1.0 and b+c+d=1, and the base particles 102 having the following formula: LiαNixMyCozO2, wherein 0.95≤α≤1.5, 0.6≤x≤1.0, 0≤y≤0.5, 0≤z≤0.5; x+y+z=1; and M is one of Mn and Al.
In some embodiments, the method further comprises coating the cathode active material 100 with the metal oxide, the metal fluoride or the metal phosphate, as shown in optional step 304 in
In some embodiments, the method further comprises doping one or both the base particles 102 and the coating particles 104 with the dopants discussed herein. In some embodiments, only the base particles 102 are doped. In some embodiments, only the coating particles 104 are doped. In some embodiments, both the base particles 102 and the coating particles 104 are doped. The doping can occur to the base precursor 102p and/or the coating precursor 104p prior to lithiation. The doping can alternatively occur during lithiation of the base precursor 102p and/or the coating precursor 104p.
In some embodiments, the method further comprises coating the cathode active material 100 with the metal oxide, the metal fluoride or the metal phosphate, as shown in optional step 406 in
In some embodiments, the method further comprises doping one or both the base particles 102 and the coating particles 104 with the dopants discussed herein. In some embodiments, only the base particles 102 are doped. In some embodiments, only the coating particles 104 are doped. In some embodiments, both the base particles 102 and the coating particles 104 are doped.
In some embodiments, the method further comprises coating the cathode active material 100 with the metal oxide, the metal fluoride or the metal phosphate, as shown in optional step 506 in
In some embodiments, the method further comprises doping one or both of the base particles 102 and the coating particles 104 with the dopants discussed herein. In some embodiments, only the base particles 102 are doped. In some embodiments, only the coating particles 104 are doped. In some embodiments, both the base particles 102 and the coating particles 104 are doped.
A cathode was prepared with 90 wt. % active material, 5 wt. % binder and 5 wt. % carbon. The anode was prepared with graphite from ATL Gen 4 (Zichen G1). The ratio of anode to cathode material (N:P)=1.05-1.11, and the electrolyte was 1.2 M LiPF6 in ethylenecarbonate (EC) and ethylmethylcarbonate (EMC), EC:EMC (3:7 by wt.)+1 wt. % vinylene carbonate+2 wt. % 1.3-propane sultone.
For the following examples, the charge capacity was measured by charging the cell to 4.3 V using a rate of 0.1 C followed by a CVC step to C/40. The discharge capacity and average voltage were measured by discharging the cell to 2.5 V at a rate of 0.1 C. The first coulombic efficiency is the ratio of the discharge and charge capacities. The gravimetric energy density is the discharge capacity multiplied by the average discharge voltage and the volumetric energy density is the gravimetric energy density multiplied by the pellet density.
A representative cathode active material was produced with a base particle of Li1.02Ni0.8Co0.1Mn0.1O2 having a D50 particle diameter of 15 μm and a coating material of Li1.01Co0.96Mn0.04O2 having a D50 particle diameter of 0.17 μm. The coating material was 4 wt. % of the cathode active material. The elemental analysis of the cathode active material was Li1.02Ni0.76Co0.14Mn0.1O2. The cathode active material was coated with 1000 ppm Al2O3.
As shown in Table 1, the pellet density of the cathode active material is 3.49 g/cc, greater than the pellet density of the base particle alone. The volumetric energy density is 2651 Wh/L, also greater than the volumetric energy density realized with the base particle material without the low-nickel lithium-containing coating. The first coulombic efficiency is greater for the cathode active material than for the base particle material alone, indicating an increase in the reversible capacity when cathode active material is used. The discharge capacity of the cathode active material is unaffected at 197 mAh/g.
There is significant improvement in cycle stability when the cathode active material is used when compared to the base particle material alone and the recalcined base particle material alone. The cycle life (defined as reaching 80% of the beginning of life energy) nearly doubles for the cathode active material, from 180 cycles (200 cycles for the recalcined) to 350 cycles compared to the base particle material alone.
Another representative cathode active material was produced with a base particle doped with 1% Mg with a composition of Li1.02Ni0.94Co0.02Mn0.03Mg0.01O2 having a D50 particle diameter of 18 μm coated with a coating material of Li1.01Co0.96Mn0.04O2 having a D50 particle diameter of 0.17 μm. The coating material was 4 wt. % of the cathode active material. The elemental analysis of the cathode active material was Li1.03Ni0.90Co0.06Mn0.03Mg0.01O2. The cathode active material was coated with 1000 ppm Al2O3.
As shown in Table 3, the pellet density of the cathode active material is 3.41 g/cc, greater than the pellet density of the base particle alone. The first coulombic efficiency is greater for the cathode active material than for the base particle material alone, indicating an increase in the reversible capacity when the cathode active material is used. The discharge capacity of the cathode active material is greater than that for the base particle material alone, 205 mAh/g versus 202 mAh/g. The volumetric energy density is 2688 Wh/L, also greater than the volumetric energy density realized with the base particle material without the coating.
Another representative cathode active material was produced with a base particle having a composition of Li1.02Ni0.89Co0.1Al0.01O2 with a D50 particle diameter of 22 μm coated with a coating material of Li1.01Co0.96Mn0.04O2 having a D50 particle diameter of 0.17 μm. The coating material was 4 wt. % of the cathode active material. The elemental analysis of the cathode active material was Li0.99Ni0.85Co0.12Al0.01O2. The cathode active material was coated with 1000 ppm Al2O3.
As shown in Table 4, the pellet density of the cathode active material is 3.48 g/cc, unchanged from the pellet density of the base particle alone. The first coulombic efficiency is greater for the cathode active material than for the base particle material alone, indicating an increase in the reversible capacity when the cathode active material is used.
There is significant improvement to the cycle life (defined as reaching 80% of the beginning of life energy) when the cathode active material is used compared to the base particle material alone and the recalcined base particle material alone, from 190 cycles (325 cycles for the recalcined) to 500 cycles.
Another representative cathode active material was produced with a base particle having a composition of Li1.02Ni0.6Co0.2Mn0.2O2 coated with a coating material of Li1.01Co0.96Mn0.04O2 having a D50 particle diameter of 0.17 μm. The coating material was 4 wt. % of the cathode active material. The elemental analysis of the cathode active material was Li0.97Ni0.58Co0.23Mn0.19O2. The cathode active material was coated with 1000 ppm Al2O3.
As shown in Table 5, the first coulombic efficiency is greater for the cathode active material than for the base particle material alone, indicating an increase in the reversible capacity when cathode active material is used. The discharge capacity increased from 159 mAh/g to 168 mAh/g.
Another representative cathode active material was produced with a base particle having a composition of Li1.02Ni0.82Co0.11Mn0.02O2 with a D50 particle diameter of 19 μm coated with a coating material of Li2MnO3. The coating material was 4 wt. % of the cathode active material. The elemental analysis of the cathode active material was Li1.01Ni0.81Co0.11Mn0.08O2. The cathode active material was coated with 1000 ppm Al2O3.
As shown in Table 6, the pellet density of the cathode active material is 3.60 g/cc, increased from the pellet density of 3.54 g/cc of the base particle alone. The first coulombic efficiency is greater for the cathode active material than for the base particle material alone, indicating an increase in the reversible capacity when the cathode active material is used. The discharge capacity increases from 204 mAh/g for the base particle to 209 mAh/g for the cathode active material and volumetric energy density increased form 2775 Wh/l to 2876 Wh/L.
The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art.
This application claims the benefit of U.S. Provisional Application No. 62/369,884, filed on Aug. 2, 2016, and entitled “Coated Nickel-Based Cathode Materials and Methods of Preparation,” which is incorporated herein in its entirety by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/044394 | 7/28/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/026650 | 2/8/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7727673 | Ooyama et al. | Jun 2010 | B2 |
8911903 | Watanabe et al. | Dec 2014 | B2 |
9118075 | Chang et al. | Aug 2015 | B2 |
20010010807 | Matsubara | Aug 2001 | A1 |
20050069758 | Kitao | Mar 2005 | A1 |
20050158546 | Shizuka | Jul 2005 | A1 |
20070048597 | Ryu | Mar 2007 | A1 |
20080008933 | Lampe-Onnerud | Jan 2008 | A1 |
20100117025 | Takeuchi | May 2010 | A1 |
20120244413 | Shimano | Sep 2012 | A1 |
20130045421 | Kobino | Feb 2013 | A1 |
20140050976 | Nagai | Feb 2014 | A1 |
20150155553 | Cho et al. | Jun 2015 | A1 |
20160006031 | Kaseda | Jan 2016 | A1 |
20160260965 | Wu | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
102201573 | Sep 2011 | CN |
2963708 | Jan 2016 | EP |
2014103211 | Jul 2014 | WO |
2016017079 | Feb 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20180233737 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
62369884 | Aug 2016 | US |