The present invention relates to pelletizing dies, and more particularly relates to coated pelletizing ring extrusion dies.
Conventional pelletizing processes generally use a plate or ring with many holes of various shapes that are used to form a pellet from a material that is forced into the holes. The material travels through the holes and exits at the other end, where it is cut to size by knives. Such extrusion of the material generally requires a large amount of force as the material drags on the entrance face and then the sides of the holes, producing some level of heating due to this work. The pelletizing process relies on some level of friction between the raw material and the die surfaces in order to compress the raw material to a higher density as it is extruded. However, excessive friction results in excessive heat, which can cause burning or oxidation of the material resulting in scrap.
One type of pelletizing operation uses a rotary extruder to mix and transport the materials to a die plate containing shaped holes that form the pellets. Another type of pelletizing operation uses a ring die that has mating rolls that force the material radially through the pelletizing holes from the inside to the outside of the ring die. As the extruded material exits the die, the strands may be cut by a knife, or set of knives, passing along the surface of the die face immediately upon exiting the die. These types of dies are typically cylindrical in shape with diameters ranging, for example, from about 16 to 72 inches. The body of the die includes hundreds to thousands of holes throughout to facilitate the extrusion process. The diameters of the holes can range, for example, from about 1 mm to about 25 mm. These ring extrusion dies may be used in a number of applications, such as pelletizing pet and animal feed, and wood pelletizing for bio-fuel applications.
A critical problem with these types of dies, however, is the loss of pellet quality with increasing cycles and premature mechanical failure of the die by cracking through the wall thickness in a radial orientation. While such failures could possibly be explained as the result of wear of the inner surface of the ring and the hole, failure analysis of the dies has revealed that, while wear of the inner surface of the die ring and the holes may occur, this is not the reason for the loss of pellet quality or the failure of the die by cracking. It has been found that the unanticipated reason for these failures is related to friction, as more fully described below.
During operation of conventional pelletizing ring extrusion dies, friction causes the temperature to increase, which causes volatile constituents in the slurry to vaporize or evaporate more quickly. This causes viscosity variations in the slurry, which in turn causes inconsistent flow and finally results in poor pellet quality. This inconsistent slurry flow causes the material to build up inside the die and increases the stress needed to extrude the slurry through the passageways. The increase in temperature and stress accelerate the fatigue crack growth in the die. The root cause of the loss of pellet quality and premature cracking of the dies is therefore mainly due to the friction at the entrance chamfer to the pelletizing holes. A decrease in the friction on the lead-in chamfer section would minimize the problems associated with the increased temperature and increase the die life and the pellet quality.
There are several approaches to control the friction of various types of surfaces. These include self-lubricating surfaces, where a liquid or solid lubricant is entrapped in the surface pores or features. Various low friction ceramic or cement coatings may be deposited by various coating/cladding technologies. However, modifying or enhancing the surface in a manner that will not degrade the substrate properties while maintaining the low friction characteristics needed in this application is a challenge. A major problem with applying self lubricating surfaces in ring dies is that either the soft lubricating material will be consumed quickly by the extruding slurry, or the pores on the steel surface needed to retain the lubricant decrease the mechanical strength of the steel and can cause premature failure of the die.
While there are several coating/cladding techniques available to deposit low friction coatings, these technologies have their own problems including degradation of the substrate properties and poor dimensional control. For example, techniques such as thermal spray and plasma transfer arc do not work because the high heat input distorts the parts which then must be corrected, resulting in a high priced solution. Chemical vapor deposition (CVD) and physical vapor deposition (PVD) techniques are not considered because of the limited thickness of the state of the art technology and dimensional distortion caused by the high deposition temperatures. Traditional CVD technologies are limited to deposition temperatures greater than 800° C. Other technologies such as cladding or dip coating have also been unsuccessful as they plug the holes and/or distort the parts due to the high heat input during the process.
It would be highly desirable to provide an improved pelletizing die that demonstrates improved properties, such as lower friction on the chamfer region, with adequate wear resistance to maintain the chamfer profile and a method of manufacturing thereof
The present invention provides coated pelletizing ring extrusion dies with improved life. Low-friction coatings are provided on the inner surface of the die and at the entrance and at part of the surface of the extrusion holes. The coatings limit the increase in surface temperature during use of the die.
An aspect of the present invention provides a pelletizing ring extrusion die comprising a die body having a plurality of extrusion holes, wherein each hole comprises a surface with a low-friction coating deposited thereon.
Another aspect of the present invention is to provide a method of coating a pelletizing ring extrusion die, comprising of applying a low-friction coating to a portion of the pelletizing ring extrusion die at a temperature less than 520° C., wherein the pelletizing die comprises a plurality of extrusion holes and the low-friction coating is applied to at least a portion of a surface of each hole.
These and other aspects of the present invention will be more apparent from the following description.
The present invention provides pelletizing dies having a low-friction coating on at least a portion thereof. The pelletizing die may be made of any suitable material. For example, the pelletizing die may be made of stainless steel, carbon steel, or superalloys. In some embodiments, the die may be made of CA6NM, a 300 or 400 series of stainless steel, 4140, 4340 or similar alloy, Inconel or Hastealloy, or a similar nickel-based alloy. The pelletizing die typically has a hardness of 45-55 RC, A strength of 1.3-2.1 GPa, toughness of greater than 27 N-m, and an endurance limit of at least 680 MPa. The pelletizing die may be made by any process as appreciated by one skilled in the art, such as casting, welding, machining from wrought material or powder metallurgical methods.
As illustrated in
According to the invention, an inner surface 36 of the small holes 20 have a low-friction coating 40 on at least a portion thereon. The low-friction coating 40 may be at least along the tapered portion 30 of the inner surface 36 of the hole 20. In other embodiments, the low-friction coating 40 may extend beyond the tapered portion 30 on the inner surface 36 of the small holes 20. In yet other embodiments, the low-friction coating 40 may be on the entire inner surface 36 of the holes 20. The low-friction coating 40 may also cover the entire inner face 22 of the die 10.
The low-friction coating 40 may comprise any material that exhibits low friction while having sufficient wear and corrosion and erosion properties. In some embodiments, the low-friction coating 40 may include tungsten carbide materials. In other examples, the low-friction coating may be an ultralow friction diamond-like carbon (DLC), molybdenum disulphide, Ti—Si—Cr—C—N-based coatings, or WC/W based coatings.
The low-friction coating 40 may be at least 20 microns thick on the inner surface 36 of the holes 20. For example, the coating thickness may be at least 25 microns, at least 50 microns, at least 100 microns, or at least 200 microns thick. In aspects of the invention, the low-friction coating thickness may be 25 to 75 microns, or 35 to 55 microns. The as-applied coating may have toughness properties that allow it to demonstrate no visible spalling on elastically deformed substrate areas during operation. The wear resistance properties of the coated part according to ASTM G65 testing can be greater than 30 or 40 times that of an uncoated substrate.
In aspects of the invention, the low-friction coating 40 may be comprised of a single layer or multiple layers. In an embodiment of multiple layers, each layer may be one of a metal, ceramic, or composite. Examples of metal layers includes Ti, Cr, Zr or Hf. Examples of ceramic layers may include TiN, TiCN, TiAlN, TiAlSiCN or WC. Examples of composite layers include WC—W, TiSiCN nanocomposite structures, SiCN, WC—Co, WC—Ni, Ni-diamond and the like.
The low-friction coating 40 may be applied to the inner surface of the small holes 20 by metallurgically bonding the coating to a substrate by processes appreciated by those skilled in the art. Deposition from vapor phase, chemical deposition or deposition from liquid media like slurry or chemical solutions may be used.
In aspects of the invention, the coating may be applied by a PVD technique by rotating a cathode inside the ring during the deposition. Examples of PVD techniques include magnetron sputtering, arc deposition or plasma enhanced PVD-CVD hybrids, such as plasma enhanced magnetron sputtering and the like.
Alternatively, the coating may be deposited by a low temperature or plasma enhanced CVD technique. In certain embodiments, the PVD and/or CVD deposition of the coating does not occur at temperatures greater than 600° C., and may occur around 500° C., such as 450-520° C. The as-applied coating on the inner surface of the small holes 20 preferably results in a similar surface finish as the inner surface of the hole without a coating. Preferably, the low-friction coating does not result in any visible defects such as visible flaws, flaking or exposed surfaces and has a consistency of color over the coated portion of the inner surface of the small holes. In embodiments, after applying the coating, the coated portion of the small holes 20 may undergo further processing such as polishing.
A preferred embodiment is a ring die where the substrate is made of stainless steel, coated at a temperature of 450-520° C. with a 20-200 μm thick TiSiCN or WC/W coating, with a friction coefficient in the 0.2 to 0.6 range. Preferably, the deposition temperature is <490° C. and the coating thickness is 30-70 μm. The coating is preferably on the chamfered portion of the hole and extends some length into the passageway and also on the inner surface of the die.
The low-friction coating 40 preferably has a coefficient friction of less than 0.6, typically less than 0.5. For example, the friction coefficient may be from 0.05 to 0.4 or 0.5. In accordance with the present invention, the coating being a low friction material, acts to reduce heat buildup during the pelletizing process. The reduction in the heat buildup in the die can serve to extend the life as the strength of the metal of the die is maintained at a higher level, providing an improved fatigue crack initiation resistance and longer service life from a fatigue related failure.
The low-friction coating provides a means for reducing friction loading and lowering operation temperatures, resulting in improved material flow and metal strength that extends the fatigue life. This lower friction level is accompanied by a corresponding resistance to abrasion and erosion. Otherwise, the coating will be worn away too quickly and fail to provide an adequate means to reach a longer life span. A secondary effect of the coating applied to the entrance portion of the pelletizing holes is that the lower friction may reduce the amount of hole plugging which can lead to reduced life due to the higher stresses experienced as the material is blocked from entering a section or region of the die where plugging has occurred. These higher stresses are caused by a thicker layer of raw material that cannot pass through the plugged holes, causing an increase in the radial pressure on the ring die that leads to higher hoop stresses in the die metal.
Two coatings were tested against a benchmark, which is a uncoated 420C stainless steel. Coating A was a TiSiCN coating—PVD-based (Plasma Enhanced Magnetron Sputtering) PEMS coating as described in publication application US2009/0214787 A1, which is incorporated herein by reference. The coating was greater than 50 microns thick. The coating was deposited at ˜450° C. on ASTM G65 and ASTM G99 test coupons of SS420 steel. Coating B was WC/W—CVD-based coating as described in U.S. Pat. No. 4,427,445, which is incorporated herein by reference. The coating thickness was greater than 50 microns on the substrate. The coating was deposited at ˜500° C. on ASTM G65 and ASTM G99 test coupons of SS420 steel in a low temperature CVD furnace.
The samples were tested for resistance to acids by immersing them in HCl, H2SO4 and HF. The friction coefficient was tested using a alumina ball with a ˜1 GPa stress using the ASTM G99 test method. The wear resistance was determined using the ASTM G65 test method. The results are given in Table 1 below. As seen in the table, Coatings A and B showed a good combination of low temperature deposition, low friction and good wear resistance.
The ring pelletizing die of the invention may be used for a number of different applications and provides a number of advantages. For example, such applications include pelletizing operations of food/feed for human and animal consumption as well as for recycling products such as plastic pellets and wood pellets. The coated ring die also provides excellent abrasion and erosion resistance thereby increasing wear resistance of the die. The invention also eliminates and/or minimizes further finishing of the die.
It is to be understood that this disclosure is not limited to the particular methodologies and materials described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope. For example, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. For example, while reference is made herein to “a” die, “a” coating, “a” roll, and the like, one or more of these or any other components can be used. In addition, the word “comprising” as used herein is intended to mean “including but not limited to”. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art.
Whereas particular embodiments of this invention have been described above for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details of the present invention may be made without departing from the invention as defined in the appended claims.