Coating a perforated surface

Information

  • Patent Grant
  • 8460760
  • Patent Number
    8,460,760
  • Date Filed
    Tuesday, November 30, 2010
    13 years ago
  • Date Issued
    Tuesday, June 11, 2013
    11 years ago
Abstract
An example method of coating a surface includes rotating a sprayer about an axis and directing spray away from the axis using the sprayer. The method coats a surface with the spray. The method moves a fluid through apertures established in the surface to limit movement of spray into apertures. The apertures are configured to direct the fluid toward the axis.
Description
BACKGROUND

This disclosure relates generally to applying a coating and, more particularly, to applying a coating to a perforated surface.


As known, gas turbine engines, and other turbomachines, include multiple sections, such as a fan section, a compressor section, a combustor section, a turbine section, and an exhaust section. Air moves into the engine through the fan section. Airfoil arrays in the compressor section rotate to compress the air, which is then mixed with fuel and combusted in the combustor section. The products of combustion are expanded to rotatably drive airfoil arrays in the turbine section. Rotating the airfoil arrays in the turbine section drives rotation of the fan and compressor sections. The hot gas is then exhausted through the exhaust section.


Some turbomachines include perforated, cylindrical liners. An augmentor liner within the exhaust section is one type of perforated, cylindrical liner. The augmentor liner establishes a passage between an inner cylinder and an outer cylinder. Cooling air, obtained from the compressor or fan, flows through the passage and through perforations within the inner cylinder. The air moving through the passage and through the cylinders facilitates removing thermal energy from this area of the gas turbine engine.


During assembly of the augmentor liner, the surfaces of the inner cylinder that will be exposed to the hot air are typically coated with a thermal barrier coating. The inner cylinder is then laser drilled to create perforations. If the thermal barrier coating extends into the perforations, the thermal barrier coating can block air movement through the perforations.


SUMMARY

An example method of coating a surface includes rotating a sprayer about an axis and directing spray away from the axis using the sprayer. The method coats a surface with the spray. The method moves a fluid through apertures established in the surface to limit movement of spray into apertures. The apertures are configured to direct the fluid toward the axis.


Another example method of coating an inner surface of an annular component includes inserting a sprayer within a bore established by an annular component and coating an inwardly directed surface of the annular component using a spray from the sprayer. The method moves a fluid through perforations established in the inwardly directed surface during the spraying.


An example component having a thermal barrier coating includes an annular component including an inwardly facing surface establishes perforations. A coating is secured to at least a portion of the inwardly facing surface. The inwardly facing surface is configured to direct a fluid through perforations to limit movement of the coating into perforations when spraying the coating against the inwardly facing surface.


These and other features of the disclosed examples can be best understood from the following specification and drawings, the following of which is a brief description.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows an example gas turbine engine.



FIG. 2 shows a perspective view of a radially inner cylinder of an augmentor liner in the FIG. 1 engine.



FIG. 3 shows a schematic end view of the augmentor liner of the FIG. 1 engine.



FIG. 4 shows a close-up view of a portion of the FIG. 3 augmentor liner.



FIG. 5 shows a top view of another example perforation that can be established within the FIG. 3 augmentor liner.



FIG. 6 shows a top view of yet another example perforation that can be established within the FIG. 3 augmentor liner.



FIG. 7 shows a section view at line 7-7 in FIG. 6.



FIG. 8 shows an example of negative flow through perforations in the FIG. 3 augmentor liner.



FIG. 9 shows a close-up view of a portion of the FIG. 3 augmentor liner receiving an angled nozzle.



FIG. 10 shows a top view of an example perforation surrounded by a coating applied with the FIG. 9 nozzle.





DETAILED DESCRIPTION

Referring to FIG. 1, an example gas turbine engine 10 includes (in serial flow communication) a fan section 12, a compressor section 14, a combustor section 16, a turbine section 18, and an exhaust section 20. The gas turbine engine 10 is circumferentially disposed about an engine axis X. The gas turbine engine 10 is an example type of turbomachine.


During operation, air is pulled into the gas turbine engine 10 by the fan section 12. Some of the air is pressurized by the compressor section 14, mixed with fuel, and burned in the combustor section 16. The turbine section 18 extracts energy from the hot combustion gases flowing from the combustor section 16.


Some of the air pulled into the gas turbine engine 10 by the fan travels along a bypass path 22 rather than entering the compressor section 14. Air flowing along the bypass path 22 follows a path generally parallel to the axis X of the gas turbine engine 10.


In the two-spool engine design shown, a portion of the turbine section 18 utilizes the extracted energy from the hot combustion gases to power a portion of the compressor section 14 through a high speed shaft. Another portion of the turbine section 18 utilizes the extracted energy from the hot combustion gases to power another portion of the compressor section 14 and the fan section 12 through a low speed shaft. The examples described in this disclosure are not limited to the two spool architecture described, however, and may be used in other architectures, such as the single spool axial design, a three spool axial design, and still other architectures. That is, there are various types of gas turbine engines, and other turbomachines, that can benefit from the examples disclosed herein.


Referring now to FIGS. 2-4 with continued reference to FIG. 1, the example exhaust section 20 includes an augmentor liner 23 having a radially inner cylinder 24 and a radially outer cylinder 26. The radially inner cylinder 24 and the radially outer cylinder 26 are made of an austenitic nickel-chromium-based superalloys or Inconelâ„¢ in this example.


A passage 28 is established between the radially inner cylinder 24 and the radially outer cylinder 26. At least some of the air flowing through the bypass path 22 flows through the passage 28.


The inner cylinder 24 establishes a plurality of perforations 30 or apertures. The example perforations 30 are laser drilled. In another example, the perforations 30 are formed with rotating drill bits. Only a few perforations 30 are shown for clarity. The inner cylinder 24 typically includes an order of magnitude of 100,000 individual perforations 30.


Air moving through the passage 28 flows through the perforations 30 toward the axis X of the engine. The air facilitates removing thermal energy from this area of the augmentor liner 23 when the augmentor liner 23 is installed within the engine 10.


The inner cylinder 24 and the outer cylinder 26 are annular or ring shaped. The passage 28 established between the inner cylinder 24 and the outer cylinder 26 is also annular. The perforations 30 may be formed prior to, or after, shaping the inner cylinder 24 into a cylinder.


The inner cylinder 24 establishes a bore 38 and includes a surface 32. The surface 32 is concave and faces inwardly toward an axis X1. Notably, the axis X1 of the augmentor liner 23 is coaxial with the axis X of the engine 10 when the augmentor liner 23 is installed within the engine 10.


As can be appreciated, the surface 32 is exposed to more thermal energy than other areas of the augmentor liner 23. The surface 32 is coated with a thermal barrier coating 34 to protect the surface 32, and other portions of the augmentor liner 23, from thermal energy.


In this example, a sprayer 36 is used to apply the thermal barrier coating 34 to the surface 32. The coating 34 is a ceramic based coating that is plasma sprayed against the surface 32. The coating 34 is about 0.005 inches (0.127 millimeters) after curing, for example. Other examples include much thicker coatings.


The sprayer 36 is inserted within the bore 38 when spraying the coating 34. The sprayer 36 is rotated about the axis X1 while spraying the thermal barrier coating from a nozzle 44. The spray from the sprayer 36 is directed away from the axis X1 toward the surface 32. The spray includes the coating 34, which adheres to the surface 32 to coat the surface 32.


As the sprayer 36 applies the thermal barrier coating, a flow of air 40 (or another type of fluid) is directed through the perforations 30 established in the inner cylinder 24. The perforations 30 are shaped to promote directed flow coating buildup in one example. For example, a perforation 30a (FIG. 5) has an hour-glass shape. Another perforation 30b (FIGS. 6-7) is a heart shaped. Interaction between the thermal barrier coating 34 and the perforation 30a and 30b as the thermal barrier coating 34 is applied cause the contours of the thermal barrier coating 34 around perforations 30a and 30b to vary. A person having skill in this art and the benefit of this disclosure would be able to vary the shape of the perforations 30a and 30b to achieve the desired contours.


The flow of air 40 blocks the thermal barrier coating 34 from entering the perforations 30 as the coating 34 is sprayed and cured. The air 40 is pressurized to 12 psi (0.827 bar) for example. The air 40 is directed through the perforations 30 after applying the thermal barrier coating 34 and before the thermal barrier coating 34 has cured.


In some examples, the air 40 is heated to help prevent adherence. The air 40 could also be cooled. The air 40 also may be cycled with positive and negative flow to create optimal shape of the coating surrounding the perforations 30. An example of negative flow is shown by the flow of air 40a (FIG. 8). The negative flow of air 40a may be utilized to form the thermal barrier coating 34 around the aperture 30 into a desired shape.


In some examples, air is directed radially outboard, rather than radially inboard, through the perforations 30. The negative flow of air 40a is one example of radially outboard directed air. In some of these examples, the air 40a is pressurized on the nozzle side of the inner cylinder 24 to pull and form the thermal barrier coating 34 around the perforations 30. In such examples, the air 40 may result from a periodic controlled internal explosions, such as a shock pulses, that clear the thermal barrier coating 34 from the perforations 30.


In some examples, the thermal barrier coating 34 may have partially cured and covered the perforation 30, and the shock pulse breaks apart the portion covering the perforation 30. The air 40 or 40a is pulsed in some examples to fracture thin coating buildup over perforations 30.


The air 40 may include elements that chemically combine locally with the thermal barrier coating 34. The chemical combination helps prevent the thermal barrier coating 34 from adhering near the perforations 40.


Referring again to FIGS. 2-3, in this example, the perforations 30 are radially aligned such that the perforations 30 direct the air radially toward the engine axis X. Other examples may utilize perforations configured to direct the air in other directions relative to the axis X.


In this example, the sprayer 36 applies the spray to the inner surface 32 prior to installing the augmentor liner 23 within the engine 10. Accordingly, an air supply 42 is used to supply air that is moved through the passage 28 during the spraying. The air supply 42 communicates air through the passage 28, which is the same path that air will travel from the bypass path 22 through the perforations 30 when the augmentor liner 23 is installed within the engine 10.


An example method of thermally protecting the augmentor liner 23 includes spraying the coating 34 against the surface 32 while rotating the sprayer about the axis X and while communicating the flow of air 40 through the perforations 30.


In one example, the augmentor liner 23 has been used within the engine 10 and already includes a used coating (not shown). In such an example, the used coating may be removed, by a chemical process for example, prior to applying the coating 34. The example method thus facilitates recoating used augmentor liners and other components.


Although described as coating the augmentor liner 23, the method could be applied to many other components, such as turbine blades, burner cans, and exhaust cases, for example.


Referring to FIGS. 9 and 10, in some examples, the nozzle 44 is angled axially during the spraying, which results in shaped application of coating around perforations 30 (teardrops or chevrons as shown in FIG. 10, etc.) Further, in some examples, the nozzle 44 is angled off-centerline during the spraying, resulting in the profile or the coating having a circumferential feature, which creates a swirl or opposes a swirl in the engine 10.


Features of the disclosed examples include applying a sprayed coating to a component by rotating a sprayer relative to the concave surface while moving air through perforations in the concave surface to prevent the spray from blocking the perforations. Another feature of the disclosed example is providing the ability to recoat a used component with a thermal barrier coating.


The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. Thus, the scope of legal protection given to this disclosure can only be determined by studying the following claims.

Claims
  • 1. A method of coating a surface comprising: rotating a sprayer about an axis;directing spray away from the axis using the sprayer;coating a surface with the spray; andmoving a fluid through a plurality of apertures established in the surface to block at least some movement of spray into the plurality of apertures, the plurality of apertures configured to direct the fluid toward the axis.
  • 2. The method of claim 1, wherein the surface is a radially inner surface of an augmentor liner.
  • 3. The method of claim 1, including directing the fluid though an annular passage established between a radially inner cylinder and a radially outer cylinder before moving the fluid through the plurality of apertures.
  • 4. The method of claim 1, wherein the surface comprises a concave surface.
  • 5. The method of claim 1, wherein the directing is during the rotating.
  • 6. The method of claim 1, wherein the surface comprises an annular surface.
  • 7. The method of claim 1, wherein the plurality of apertures are circumferentially distributed about the sprayer.
  • 8. The method of claim 1, wherein the plurality of apertures extend radially away from the axis.
  • 9. The method of claim 1, including removing a used coating from the surface prior to the coating.
  • 10. A method of coating an inner surface of an annular component comprising: inserting a sprayer within a bore established by an annular component;coating an inwardly directed surface of the annular component using a spray from the sprayer; andmoving a fluid through a plurality of perforations formed in the inwardly directed surface during the spraying.
  • 11. The method of claim 10, wherein the annular component is an augmentor liner.
  • 12. The method of claim 10, including directing the fluid though an annular passage formed between a radially inner wall and a radially outer wall before moving the fluid through the plurality of perforations.
  • 13. The method of claim 10, including rotating the annular component relative to the sprayer during the coating.
  • 14. The method of claim 10, wherein the plurality of perforations are circumferentially distributed about the sprayer.
  • 15. The method of claim 10, wherein a distance between the sprayer and the inwardly directed surface is maintained during the spraying.
  • 16. The method of claim 10, including removing a used coating from the inwardly directed surface prior to coating the inwardly directed surface.
  • 17. The method of claim 10, wherein the coating is a thermal barrier coating.
US Referenced Citations (47)
Number Name Date Kind
764454 Giles Jul 1904 A
1229284 Kempel Jun 1917 A
2032923 Eldridge Mar 1936 A
2241104 Van Der Grinten May 1941 A
2953483 Torok Sep 1960 A
2990533 Hughes et al. Jun 1961 A
3042549 Arnold Jul 1962 A
3042591 Cado Jul 1962 A
3247004 Dosser Apr 1966 A
3294576 Geraghty Dec 1966 A
3450558 Whaley et al. Jun 1969 A
3535157 Steinhoff et al. Oct 1970 A
3635013 Bertsch et al. Jan 1972 A
3697473 Polmanteer et al. Oct 1972 A
3830721 Gruen et al. Aug 1974 A
3892883 Leclercq Jul 1975 A
4050133 Cretella et al. Sep 1977 A
4054939 Ammon Oct 1977 A
4095003 Weatherly et al. Jun 1978 A
4127935 Ammon Dec 1978 A
4175557 Hung Nov 1979 A
4216576 Ammon et al. Aug 1980 A
4248940 Goward et al. Feb 1981 A
4251599 McCormick Feb 1981 A
4321311 Strangman Mar 1982 A
4338360 Cavanagh et al. Jul 1982 A
4402992 Liebert Sep 1983 A
4407712 Henshaw et al. Oct 1983 A
4661099 von Bittera et al. Apr 1987 A
4684538 Klemarczyk Aug 1987 A
4684557 Pennace et al. Aug 1987 A
4690683 Chien et al. Sep 1987 A
4838253 Brassington et al. Jun 1989 A
4865881 Sessa et al. Sep 1989 A
5032430 Abe et al. Jul 1991 A
5110435 Haberland May 1992 A
5262245 Ulion et al. Nov 1993 A
5322729 Heeter et al. Jun 1994 A
5456940 Funderburk Oct 1995 A
5635201 Fabo Jun 1997 A
5667663 Rickerby et al. Sep 1997 A
6004620 Camm Dec 1999 A
6365013 Beele Apr 2002 B1
6408610 Caldwell et al. Jun 2002 B1
7488864 Sigurjonsson et al. Feb 2009 B2
20010001680 Farmer et al. May 2001 A1
20030026952 Fried et al. Feb 2003 A1
Foreign Referenced Citations (15)
Number Date Country
687244 Jan 1940 DE
0251810 Jan 1988 EP
0713957 May 1996 EP
0761386 Mar 1997 EP
0916445 May 1999 EP
1029103 Aug 2000 EP
1 275 749 Jan 2003 EP
1275749 Jan 2003 EP
1761386 Mar 2007 EP
845985 Aug 1960 GB
1440894 Jun 1976 GB
1184987 Jul 1989 JP
8-263148 Oct 1996 JP
8263148 Oct 1996 JP
11084987 Mar 1999 JP
Non-Patent Literature Citations (1)
Entry
European Search Report dated Aug. 22, 2012 for European Application No. 11191338.0.
Related Publications (1)
Number Date Country
20120131922 A1 May 2012 US