Our invention relates to a coating device and a coating method.
A rod coat method is a conventional method of uniformly applying coating fluid to the surface of web such as thermoplastic resin film conveyed. In this method, a coating bar extending in a width direction of the web is pushed onto the lower face of the moving web to scrape off (measure) coating fluid excessively supplied to the web with the coating bar. The coating bar is pushed onto the web and rotated with frictional force generated on the web or driving force given with a motor or the like. The coating bar tends to bend with its own weight or reactive force received from the web because it is generally shaped like a rod having a diameter of tens mm and a length of hundreds mm to thousands mm. To prevent such a bending, Patent document 1 discloses a method in which a coating bar is supported from below with a support which has a V-shaped cross section and extends in a width direction of the coating bar. This method, however, might have a streak of fault from a defective rotation caused by friction between the coating bar and the support having V-shaped cross section. Further, in this method, a coating fluid applying bar and a measurement bar both rotating might abrade the support having V-shaped cross section to make abrasion powder to be applied to the web together with the coating fluid to cause faults of foreign matters.
Patent document 2 discloses a coating device having a roller rotatable as a supporting means. A plurality of such supporting means are disposed intermittently in a longitudinal direction of the coating bar, each of the supporting means having pairs of rollers rotatably provided at the upstream side and downstream side in a conveying direction of the web. Such pairs of rotatable rollers support the coating bar circumscribed thereby, so that the frictional resistance between the coating bar and the supporting means are reduced to suppress abrasion and deformation of the supporting means. However, even such a coating device might have faults of application missing caused by air bubbles which are entrained at a contact section between the rotatable support and the coating bar leaving thin coating fluid on the surface so that the air bubbles are applied together with the coating fluid to the web and then burst.
To prevent such faults, Patent documents 3 and 4 disclose devices in which a container to house a rotatable support for a coating bar is filled with coating fluid. The coating fluid supplied in the container flows out of gap between the coating bar surface and the upstream/downstream cover tip of the upper part of the container. The coating bar is provided near the coating fluid level in the container and is rotated to perform a coating with the coating fluid dipped from the container. These devices don't tend to entrain air bubbles because the contact section between the rotatable support and the coating bar is located in the coating fluid.
However, as disclosed in Patent documents 3 and 4, these devices might entrain air bubbles when the fluid level is heaved by accompanying flow generated by the rotated support in the container. Thus generated air bubbles and the coating fluid might flow in the container to be dipped with the coating bar and applied to the web to cause the same faults of application missing as Patent document 2.
To solve the above-described problem, Patent documents 3 and 4 disclose technologies for suppressing the heaved fluid level caused by the accompanying flow. Patent document 3 discloses an elastic blade provided close to the fluid level. The accompanying flow generated by the rotating support is dammed with the elastic blade before arriving at the fluid surface to suppress the fluctuation of fluid level. Patent document 4 discloses a weir provided close to the coating bar above the rotating support. The weir can dam the accompanying flow to suppress the fluctuation of fluid level.
However, even with the elastic blade disclosed in Patent document 3, the faults of application missing might be generated when the coating fluid supplied in the container entrains air bubbles. This problem will be explained with reference to
Even with the weir disclosed in Patent document 4, the faults of application missing might be generated like the technology of Patent document 3 when the coating fluid supplied in the container entrains air bubbles. This problem will be explained with reference to
Accordingly, the present invention provides a coating device and a coating method capable of preventing air bubbles from being entrained or accompanied at the coating section to suppress causing the application faults derived from the air bubbles.
To achieve the above-described object, our coating device has a configuration as follows.
A coating device comprising: a container having a coating fluid inlet; an upstream upper end and a downstream upper end provided at a top of the container forming an opening of which longitudinal direction corresponds to a longitudinal direction of the container; a rotatable coating bar which is provided in the opening between a tip of the upstream upper end and a tip of the downstream upper end and is provided with a rotational axis parallel to the longitudinal direction of the opening; a plurality of pairs of rotatable supports which are disposed intermittently along a longitudinal direction of the coating bar and which support the coating bar from below in the container; and a weir provided close to an outer periphery of at least one of the supports, characterized in that a line L2 does not intersect the coating bar, wherein the line L2 passes through a midpoint between points A and B, and is perpendicular to a line L1 and an axis of the support, the line L1 is tangent to the weir as extending from a shaft center of the support, the point A is closest to the shaft center of the support among tangent points of the line L1 and the weir, the point B is an intersection of the line L1 and the outer periphery of the support, and the line L1 is a line to contact the weir when the line extending from the shaft center of the support upward in a vertical direction is gradually inclined as fixing a pivot point of the shaft center.
The “upstream” of the coating device means an upstream side from which the web is conveyed in a conveyor line of the coating device. The “downstream” of the coating device means a downstream side to which the web is conveyed in a conveyor line of the coating device.
To achieve the above-described object, our coating method has a configuration as follows.
A coating method using the above-described coating device, comprising: supplying the coating fluid to the container from the coating fluid inlet; immersing the coating bar in the coating fluid; pushing the coating bar onto the web conveyed at a predetermined velocity from an upstream side to the downstream side; and applying the coating fluid dipped with the coating bar to the web.
To achieve the above-described object, our method for producing a resin film having a coating film has a configuration as follows. A method for producing a resin film having a coating film, comprising: extruding a polymer with an extruder; forming a sheet of the resin film from the extruded polymer; and applying the coating fluid to the resin film to form the coating film by the above-described coating method.
Another embodiment of our method for producing a resin film having a coating film has a configuration as follows. A method for producing a resin film having a coating film, comprising: unwinding the resin film with an unwinder; applying the coating fluid to the unwound resin film to form the coating film by the above-described coating method; and rolling up the resin film having the coating film with a take-up machine.
Our coating device and coating method can suppress causing application faults derived from air bubbles by discharging air bubbles together with coating fluid leaking out of the coating device as preventing the air bubbles from being taken by the coating bar even when the air bubbles are entrained by the coating fluid filling the coating device.
Further, our desirable coating device and coating method can effectively prevent the fluid level from pulsating so that air bubbles are prevented from being entrained at the coating section to suppress causing the application faults derived from the air bubbles.
Hereinafter, examples of our invention will be explained with reference to the figures.
[Coating Device, Coating Method]
First the device configuration of an example will be explained.
As shown in
Coating bar 1 is supported rotatably at both ends by bearings or the like (not shown). As shown in
Next, the flow of coating fluid will be explained. As shown in
It is preferable that the coating fluid supply means is a metering pump having low pulsation, such as gear pump, diaphragm pump and Mohno pump. It is possible that the coating fluid discharged from the pump is supplied to the container with a filter or a defoaming means. The coating fluid may be supplied through some inlets of the container.
It is preferable that first gap 35 and second gap 36 (both shown in
[Weir]
As shown in
It is preferable that a gap between weir 37 and outer periphery of support 2b has a width of 2 mm or less, at least in a part at downstream side in the conveyance direction of web 8 relative to vertical line 50 (shown in
Weir 37 may be provided close to any one of a plurality of supports 2b disposed along the web width direction. End portions in the width direction of web may not be used to make final products and therefore faults of application missing could be harmless in such portions. In such a case, it is possible that weirs 37 are only provided close to supports 2b to be used for final products. It is preferable that weirs 37 are provided close to all supports 2b. With such a configuration, the faults of application missing caused by air entrainment can be prevented all over the full width of film.
Weir 37 may be provided on the side face of container 31 as shown in
It is possible that weir 37 is integrated with container 31 or downstream upper end 34 of the coating device, or is removably fixed with bolts. Such an integrated weir 37 may be attached to container 31 by welding or the like, or may be formed together with container 37 by cutting a single material. It is possible that a gap between weir 37 and the support is formed as adjustable.
As shown in
It is possible that weir 37 is provided close to support 2a. The accompanying flow to cause pulsation of fluid level 41 may be often generated by support 2b at the downstream side in the film conveyance direction, and therefore weir 37 provided close to support 2b would be effective. To minimize the pulsation of fluid level 41, weir 37 can be provided even close to support 2a positioned at the upstream side in the film conveyance direction. Further, weir 37 may be provided close to support 2a like the case in which it is provided close to support 2b.
[Coating Bar]
Coating bar 1 may be a rod, a wire bar having grooves formed by winding a wire on the outer periphery of the rod, a thread-rolling rod having grooves formed on the rod outer periphery by a thread-rolling process, or the like. It is preferable that coating bar 1 is made of stainless steel such as SUS304 and SUS316 in particular. It is possible that a surface treatment such as hard chrome plating is performed on the surface of coating bar 1. It is preferable that coating bar 1 has a diameter of 10 to 20 mm since a streak of application fault called “rib streak” in the conveyance direction might be caused above the preferable range while coating bar might have a greater bend below the preferable range. In this example, coating bar 1 is pushed onto web 8 to be driven by frictional force on web 8 to rotate in a manner of so-called “driven rotation”. It is possible that coating bar 1 is driven to rotate by a driving device such as motor. When it is rotated by a driving device, it is preferable that the coating bar rotates at the practically-same speed as the web conveyance speed, in order to prevent the web from having a scratch. Said “practically-same speed” is defined as having a speed difference within +10% between the circumferential speed of coating bar and conveyance speed of web. When scratches on the web are not so harmful for the use of products, the coating bar may be rotated at a speed different from the web conveyance speed or may be rotated reversely to the web conveyance direction. It is preferable that winding angle α is 2 to 10°, since band-shaped variational application faults might be caused by fluttering or vibrating web below the preferable range while coating bar 1 might bend greatly or support 2 might be abraded because of increased load to coating bar 1 or support 2 above the preferable range.
[Support]
Support 2 may be roller, ball or the like, which supports the coating bar as rotating. To reduce abrasion of coating bar 1, it is preferable that a surface layer of support 2 is made of a material having a hardness lower than coating bar 1. It is preferable that the surface layer is made of synthetic rubber or elastomer. The elastomer is a rubber-like elastic resin capable of being melt-molded by a molding method such as injection molding method, extrusion method, cast molding method, blow molding method, inflation molding method or the like. It is preferable that the elastomer is urethane elastomer, polyester elastomer or polyamide elastomer, preferably thermoplastic polyurethane elastomer excellent in abrasion resistance and mechanical strength. It is preferable that the elastomer constituting the surface layer of support 2 has a thickness of 0.5 to 6 mm. It is preferable that the elastomer has a hardness of 60 to 98A determined according to JIS K6253:1996.
To stably support coating bar 1, it is preferable that supports 2 are provided at both upstream and downstream sides of coating bar 1 in the conveyance direction of web 8. It is possible that supports 2 are slightly displaced in the longitudinal direction of coating bar 1 to prevent supports 2 facing to each other from interfering to each other. It is preferable that angles β1 and β2 are 10° or more, wherein angle β1 (shown in
It is preferable that support 2 is configured to have a bearing for a smooth rotation in case that vibration or unevenness of rotation of support 2 might be transmitted to coating bar 1 to cause application faults. It is preferable that support 2 to be immersed in the coating fluid is made of a material which is corrosion-resistant to the coating fluid and preferably waterproof. It is preferable that support 2 has a diameter of 8 mm or more so that commercially-available bearings can be used. It is preferable that support 2 has a length of 3 to 25 mm in axial direction so that accompanying flow is less generated and general bearings can be used.
Supports 2 should be disposed at a smaller interval along the longitudinal direction of coating bar 1 because too wide interval might cause too much bending of coating bar 1. It is preferable that a bending of coating bar 1 is 10 μm or less. The amount of bending should be determined by an equation of material mechanics from the second moment of area and Young's modulus, wherein support 2 is regarded as a support point while the out-of-plane directional reactive force of web 8 calculated from tension which is applied to web 8 in the moving direction and winding angle α of web 8 is regarded as a uniformly-distributed load applied to coating bar 1.
Support 37 may be made of a metal such as iron, stainless steel, aluminum and copper, a synthetic resin such as nylon, acrylic acid resin, vinyl resin chloride and ethylene tetrafluoride, rubber or the like. It may be shaped like a plate or block.
[Upstream Upper End, Downstream Upper End]
It is preferable that at least a part of upstream upper end 33 is inclined by 10° to 90° downward from the level with increasing distance from the opening side toward the upstream side. It is preferable that at least a part of downstream upper end 34 is inclined by 10° to 90° downward from the level with increasing distance from the opening side toward the downstream side. Such a configuration can prevent the coating fluid from deteriorating on the top face of upstream upper end 33 and downstream upper end 34 where the coating fluid stays after being leaked through first gap 35 and second gap. The configuration can also prevent uneven application from being caused by disturbed bead 39 at upstream side of coating bar.
[Coating Fluid]
It is preferable that the coating fluid has a viscosity of 0.1 Pa-s or less. The viscosity of coating fluid above the preferable range might have a streak of coating fluid to be dipped with the coating bar in the container to cause a streak of ununiform application in the web width direction. The viscosity is determined according to JIS Z8803:1996. As a measuring device, rheometer (RC20 made by Rheotech Corporation) may be used. Although it would be ideal that the temperature of coating fluid as a measurement condition is actually measured at the application section, it is difficult to measure the coating fluid temperature exactly at the application section. Accordingly, the coating fluid temperature can be measured in a coating fluid supply means (not shown) such as liquid feed tank instead. It is preferable that the coating bar rotates at a circumferential speed of 150 m/min or less. The circumferential rotation speed above the preferable range might cause a streak of application.
It is preferable that the coating fluid is applied by 2 to 100 g/m2 in a wet condition right after application, and preferably by 4 to 50 g/m2. The application amount can be adjusted by changing the size of groove formed on the coating bar. The size of groove can be changed by changing diameter of the wire to be wound when the coating bar is a wire bar. The size of groove can be changed by performing a thread-rolling process with a die having different groove depth and/or groove pitch when the coating bar is a thread-rolling rod.
[Manufacturing Method of Resin Film with Coating Film]
The application may be performed either in line to a web forming film or off line to a manufactured web.
The device configuration for manufacturing resin films with in-line application performed to a web being manufactured will be explained with reference to
When the application is performed off line to a manufactured resin film, a taken-up resin film is once unwound with an unwinder and then the application to the resin film is performed as being rolled up again with a take-up machine provided.
Hereinafter, our invention will be explained according to Examples, which don't limit our invention.
A chip of PolyEthylene Terephthalate (may be abbreviated as PET) having a limiting viscosity (may be called intrinsic viscosity) of 0.62 dl/g (determined in o-chlorophenol at 25° C. according to JIS K7367:1996) was vacuum-dried sufficiently at 180° C. The vacuum-dried chip was supplied to extruder 200 in
Coating fluid 32 was a mixed liquid containing: 1 parts by mass of colloidal silica particles having average particle diameter of 0.1 μm; 5 parts by mass of melamine-based cross-linker (imino group-type methylated melamine diluted with mixed solvent of 10 mass % of isopropyl alcohol and 90 mass % of water); and 100 parts by mass of emulsion of polyester copolymer (Components: 90 mol % of terephthalic acid, 10 mol % of 5-sodium sulfoisophthalic acid, 96 mol % of ethylene glycol, 3 mol % of neopentylglycol, 1 mol % of diethylene glycol). Coating fluid 32 had viscosity of 2 mPa·s at 25° C.
This coating fluid was supplied to container 31 at 17 kg/min with a diaphragm pump (made by TACMINA Corporation). As shown in
Weir 37 was a plate made of SUS304. As shown in
A sample of the resin film which had been stretched after application with a transverse stretching machine to 5,735±70 mm and cut into a piece of 3 m of the conveyance directional length was illuminated with a three band fluorescent lamp and was visually observed in a darkroom for evaluation of fault of application missing. The fault of application missing can be observed as an oval shape of fault (major axis diameter: 1-10 mm, minor axis diameter: 0.3-3 mm) caused by spherical air bubbles which were applied to a resin film with coating fluid to burst, and were transversely stretched. Because this part has a thin coating thickness, it can also be observed as uneven coloring under a three band fluorescent lamp. The number of faults of application missing on the sample was counted to calculate the number per 1 m2. The fault of 5 units/m2 or less is sufficient for products although it should be fewer. Further, downstream upper end 34 was lit with a flashlight during application process to observe the presence of pulsation of fluid level 41 at downstream side in the conveyance direction of resin film.
No pulsation of fluid level 41 at downstream side in the conveyance direction of resin film was observed after application by the coating device. The number of faults of application missing was only 3.8 units/m2 of sufficient quality for products.
The application was performed by the same way as Example 1, except that gap 42 between the weir and support was 2 mm. As a result, no pulsation of fluid level 41 at downstream side in the conveyance direction of resin film was observed. The number of faults of application missing was only 1.7 units/m2 of sufficient quality for products.
The application was performed by the same way as Example 1, except that weir 37 was provided right below support 2b as shown in
The application was performed by the same way as Example 1, except that weirs 37 were installed at the downstream side of film conveyance direction of support 2a instead of support 2b. As a result, although some pulsation of fluid level 41 at downstream side in the conveyance direction of resin film was observed in comparison with Example 1, the number of faults of application missing was only 4.5 units/m2 of sufficient quality for products.
The application was performed by the same way as Example 1, except that weirs on both ends in the film width direction were removed. As a result, some pulsation of fluid level 41 at downstream side in the conveyance direction of resin film was observed at rollers of both ends on which weirs had been removed. As a result of inspecting the sample, although the number of faults of application missing at both ends of 115 mm as a part of the sample having full width of 5,375 mm was up to 18.3 units/m2, the number at the parts except for the both ends of 115 mm was only 4.0 units/m2 of sufficient quality for products.
The application was performed by the same way as Example 1, except that weirs shown in
The application was performed by the same way as Example 1, except that weirs 37 were not installed and elastic blades disclosed in Patent document 3 were installed as shown in
As a result of application using the device, although no pulsation of fluid level 41 at downstream side in the conveyance direction of resin film was observed, the number of faults of application missing on the applied sample was observed by up to 8.0 units/m2 of insufficient quality for products.
The application was performed by the same way as Example 1, except that weirs 37 were not installed and weirs disclosed in Patent document 4 were installed as shown in
As a result of application with the device, although no pulsation of fluid level 41 at downstream side in the conveyance direction of resin film was observed, the number of faults of application missing on the applied sample was observed by up to 8.3 units/m2 of insufficient quality for products.
The application was performed by the same way as Example 1, except that weirs 37 were not installed. As a result of application using the device, pulsation of fluid level 41 at downstream side in the conveyance direction of resin film was observed in comparison with Example 1 while the number of faults of application missing of the applied sample was observed by up to 19.1 units/m2 of insufficient quality for products.
Number | Date | Country | Kind |
---|---|---|---|
2014-067699 | Mar 2014 | JP | national |
This is the U.S. National Phase Application of PCT/JP2014/074715, filed Sep. 18, 2014, and claims priority to Japanese Patent Application No. 2014-067699, filed Mar. 28, 2014, the disclosures of each of these applications being incorporated herein by reference in their entireties for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/074715 | 9/18/2014 | WO | 00 |