Coating for a stent and a method of forming the same

Information

  • Patent Grant
  • 8110243
  • Patent Number
    8,110,243
  • Date Filed
    Thursday, May 15, 2008
    16 years ago
  • Date Issued
    Tuesday, February 7, 2012
    12 years ago
Abstract
A coating for a stent and methods for coating a stent are provided. The coating may be used for the sustained delivery of an active ingredient or a combination of active ingredients.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to endoluminal prostheses and, more particularly, to methods of coating stents.


2. Description of the State of the Art


Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced percutaneously into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially press against the atherosclerotic plaque of the lesion for remodeling of the vessel wall. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.


Problems associated with the above procedure include formation of intimal flaps or torn arterial linings, which can collapse and occlude the conduit after the balloon is deflated. Vasospasms and recoil of the vessel wall also threaten vessel closure. Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may necessitate another angioplasty procedure or a surgical by-pass operation. To reduce the partial or total occlusion of the artery by the collapse of arterial lining and to reduce the chance of the development of thrombosis and restenosis, an expandable, intraluminal prosthesis, one example of which is a stent, is implanted in the lumen to maintain the vascular patency.


Stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically stents are capable of being compressed, so that they can be inserted through small cavities via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in the patent literature disclosing stents that have been applied in PTCA procedures include U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor. Mechanical intervention via stents has reduced the rate of restenosis as compared to balloon angioplasty. Yet, restenosis is still a significant clinical problem with rates ranging from 20% to 40%. When restenosis does occur in the stented segment, its treatment can be challenging, as clinical options are more limited as compared to lesions that were treated solely with a balloon.


Stents are used not only for mechanical intervention but also as vehicles for providing biological therapy. Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or even toxic side effects for the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results. This invention provides for a stent coating capable of sustained local delivery of therapeutic substances and methods of forming the coating.


SUMMARY OF THE INVENTION

Briefly and in general terms, the present invention is directed to a method of coating a stent and a stent coating produced in accordance with the method. In aspects of the present invention, the method comprises forming discontinuous segments of a first polymer composition in a coating layer covering a stent substrate. The method also comprises loading a second polymer composition in the coating layer, the second polymer composition disposed between and in contact with the discontinuous segments of the first polymer composition, the second polymer composition including a solvent incapable of removing one or more of the discontinuous segments of the first polymer composition from the coating layer.


In further aspects of the present invention, the method further comprises forming a sacrificial film on the stent substrate, and forming vias in the sacrificial film. Forming the discontinuous segments of the first polymer composition includes filling the vias with the first polymer composition followed by removing a portion or all of the sacrificial film using a second solvent capable of removing the sacrificial film but not the first polymer composition so that removal of the sacrificial film results in the discontinuous segments of the first polymer composition separated by gaps.


In other further aspects, forming the discontinuous segments of the first polymer composition includes forming a first film over the stent substrate, the first film made of the first polymer composition. Forming the discontinuous segments of the first polymer composition also includes forming a protective film over the first film, forming vias in the protective film to expose portions of the first film, and removing the exposed portions of the first film using a second solvent capable of removing the first polymer composition but not the protective film so that removal of the exposed portions results in the discontinuous segments of the first polymer composition, there being gaps disposed between the discontinuous segments.


In other aspects of the invention, some of the solvent remains in the coating layer of the stent coating produced in accordance with the method. In other aspects, none of the solvent remains in the coating layer of the stent coating produced in accordance with the method.


In further aspects, the discontinuous segments of the first polymer composition are covered by the second polymer composition of the stent coating produced in accordance with the method. In detailed aspects, the discontinuous segments of the first polymer composition are separated by discontinuous segments of the second polymer composition of the stent coating produced in accordance with the method.


The features and advantages of the invention will be more readily understood from the following detailed description which should be read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a stent.



FIGS. 2A-2G illustrate a method of coating a stent in accordance with several embodiments of the invention.



FIGS. 3A-3F illustrate a method of coating a stent in accordance with several other embodiments of the invention.



FIGS. 4A-4F illustrate a method of coating a stent in accordance with several other embodiments of the invention.



FIGS. 5A-5H illustrate a method of coating a stent in accordance with several other embodiments of the invention.





DETAILED DESCRIPTION OF THE INVENTION

“Polymer,” “poly,” and “polymeric” are defined as compounds that are the product of a polymerization reaction and are inclusive of homopolymers, copolymers, terpolymers etc., including random, alternating, block, and graft variations thereof. Representative examples of polymers that can be used with the embodiments of the present invention include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), polyhydroxy alkanoates such as poly(hydroxyvalerate), poly(hydroxybutyrate), and poly(hydroxybutyrate-co-valerate); poly(L-lactic acid); polycaprolactone; poly(lactide-co-glycolide); polydioxanone; polyorthoester; polyanhydride; poly(glycolic acid); poly(D,L-lactic acid); poly(glycolic acid-co-trimethylene carbonate); polyphosphoester; polyphosphoester urethane; poly(amino acids); cyanoacrylates; poly(trimethylene carbonate); poly(iminocarbonate); copoly(ether-esters) (e.g., PEO/PLA); polyalkylene oxalates; polyphosphazenes and biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid; polyurethanes; silicones; polyesters; polyolefins; polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers; vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile; polyvinyl ketones; polyvinyl aromatics, such as polystyrene; polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers; polyamides, such as Nylon 66 and polycaprolactam; alkyd resins; polycarbonates; polyoxymethylenes; polyimides; polyethers; epoxy resins; polyurethanes; rayon; rayon-triacetate; cellulose; cellulose acetate; cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; and carboxymethyl cellulose.


“Solvent” is defined as a liquid substance or composition which is compatible with the polymer and is capable of dissolving the polymer at the concentration desired in the composition. Examples of solvents include, but are not limited to, dimethylsulfoxide (DMSO), chloroform, acetone, water (buffered saline), xylene, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, isopropanol admixed with water, N-methylpyrrolidinone, toluene, and combinations thereof.


The figures have not been drawn to scale, and the dimensions such as depth and thickness of the various regions and layers have been over or under emphasized for illustrative purposes. Referring to FIG. 1, a stent 10 is illustrated, which is broadly defined to include any inter- or intraluminal device used for the release of an active ingredient, for upholding the luminal patency, and/or for the incorporation of radiopaque or radioactive materials. Examples of stents include self-expandable stents, balloon-expandable stents, and stent-grafts. Stent 10 can be made of a metallic material or an alloy such as, but not limited to, stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Stents made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.



FIGS. 2A-2G illustrate a method for coating stent 10 in accordance with several embodiments of the invention. FIG. 2A illustrates a segment of the body or substrate 12 of stent 10, wherein reference number 14 denotes the outer surface or the tissue contacting surface of stent 10. The illustrations have been simplified for ease of understanding and describing the embodiments of the present invention. FIG. 2B illustrates a first layer 16 formed on substrate 12. First layer 16 can be of any suitable thickness. The thickness of first layer 16 can be from about 0.1 micron to about 20 microns, more narrowly from about 2 microns to about 10 microns. By way of example, first layer 16 can have a thickness of about 3 microns. First layer 16 can be made from a polymeric material. Polymers having a high coefficient of extinction, which allows the material to burn quickly and easily, can be used. The coefficient of extinction k is defined by the equation k={Ln(Io/If)}/h, where k=coefficient of extinction (cm−1), Io=initial intensity, If=final intensity, and h=distance at final intensity (cm).


A suitably high coefficient of extinction k can be greater than or equal to 1×104 cm−1 Examples of polymers having such a coefficient of extinction include polyimide, segmented polyurethane, and polycarbonate. Such polymers may be particularly suitable for preventing melting defects when the patterning of first layer 16 is accomplished using a laser discharge as described below.


First layer 16 can be deposited by any conventional method such as immersing substrate 12 in or spraying substrate 12 with a first composition containing a dissolved mixture of a first solvent with a first polymer and allowing the first solvent to evaporate from first layer 16. The polymer-solvent combination should be capable of forming first layer 16 as a uniform film, rather than in a powdered form, on substrate 12.


First layer 16, as illustrated in FIG. 2C, is patterned by removing or etching portions of first layer 16 to form vias 18 to expose surface 14 of substrate 12 not covered by first layer 16. Vias 18 can be formed by, for example, exposing first layer 16 to a laser discharge such as that produced by an excimer laser. The width of vias 18 is dependent on a variety of factors, such as the size of stent struts and the coating pattern that is desired. By way of example, vias 18 can be from about 5 microns to about 500 microns, for example about 100 microns wide.


Referring to FIG. 2D, a second layer 20, containing a first substance, is deposited on substrate 12 to cover the remaining portions of first layer 16 and vias 18. Second layer 20 can be made of any suitable polymeric material and can be of any suitable thickness. The thickness of second layer 20 can be from about 0.1 micron to about 15 microns, more narrowly from about 1 micron to about 10 microns. By way of example, second layer 20 can have a thickness of about 5 microns. The polymeric material for second layer 20 should possess good adhesive qualities to surface 14 of stent 10. If a radially expandable stent 10 is used, the polymeric material should be capable of expanding with stent 10 without significant detachment or fragmenting of the material from surface 14 of stent 10. The polymeric material should be a biocompatible polymer, either bio-stable or bio-absorbable in nature. One example of such a polymer is ethylene vinyl alcohol co-polymer.


Second layer 20 can be deposited by immersing substrate 12 in or spraying substrate 12 with a second composition containing a second solvent, a second polymer, and the first substance and allowing the second solvent to evaporate. The polymer-solvent combination selected should be capable of forming second layer 20 as a uniform film, rather than in a powdered form, on substrate 12. The second solvent should be capable of placing the polymer of the second layer 20 into solution but should not be capable of removing the remaining portions of first layer 16. In other words, the second solvent should not dissolve first layer 16 during the application of the second composition.


Following the application of second layer 20, the remaining portions of first layer 16 can be removed, as illustrated in FIG. 2E, to pattern second layer 20. The remaining portions of first layer 16 can be removed by the application of a solvent, such as the first solvent used to form first layer 16. The solvent should be capable of removing or dissolving the remaining portions of first layer 16. The polymeric material from which second layer 20 is made should not be capable of being dissolved during the application of the solvent. Removal of the remaining portions of first layer 16 also causes the portions of second layer 20 that are disposed over first layer 16 to be physically removed or broken-off. Portions of second layer 20 that are in contact with surface 14 remain attached to substrate 12.


Referring to FIG. 2F, a third layer 22, containing a second substance, can be deposited on substrate 12 to cover the patterned second layer 20 and the exposed portions of surface 14. The second substance can be the same as or different than the first substance. Third layer 22 can be deposited by applying a composition containing a third solvent, the second substance, and a polymeric material to stent 10. The polymer-solvent combination selected should be capable of forming third layer 22 as a uniform film, rather than in a powdered form. The third solvent should not remove second layer 20 or adversely affect the first substance contained in the second layer 20. As an optional step, as illustrated in FIG. 2G, the profile of third layer 22 can be reduced so as to create an alternating pattern of second layer 20 and third layer 22. The resulting stent 10 includes a low profile coating defined by discontinuous second layer 20 interrupted by third layer 22. The discontinuous second layer 20 and third layer 22 can carry a first and a second substance, respectively, for release of the substances at different rates in situ.


The first and second substances can be any active ingredient capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. Examples of such active ingredients include antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, and antioxidant substances as well as combinations thereof.


A suitable example of an antiproliferative substance is actinomycin D, or derivatives and analogs thereof. Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. Examples of suitable antineoplastics include paclitaxel and docetaxel. Examples of suitable antiplatelets, anticoagulants, antifibrins, and antithrombins include sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor (available from Biogen), and 7E-3B® (an antiplatelet drug from Centocore). Examples of suitable antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, and mitamycin. Examples of suitable cytostatic or antiproliferative agents include angiopeptin (a somatostatin analog from Ibsen), angiotensin converting enzyme inhibitors such as CAPTOPRIL (available from Squibb), CILAZAPRIL (available from Hoffman-LaRoche), or LISINOPRIL (available from Merck), calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonist, LOVASTATIN (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck), monoclonal antibodies (such as PDGF receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available form Glazo), Surmin (a PDGF antagonist), serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, and dexamethasone. Exposure of the composition to the active ingredient is not permitted to adversely alter the active ingredient's composition or characteristic. Accordingly, the particular active ingredient is selected for compatibility with the blended polymer-solvent.


The dosage or concentration of the active ingredient required to produce a favorable therapeutic effect should be less than the level at which the active ingredient produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the active ingredient required can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the treatment site; and if other bioactive substances are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.


In accordance with another embodiment, the first and/or second substances can be radiopaque elements or radioactive isotopes. Examples of radiopaque elements include, but are not limited to, gold, tantalum, and platinum. An example of a radioactive isotope is P32. Sufficient amounts of such substances may be dispersed in the composition. By dispersed it is meant that the substances are not present in the composition as agglomerates or flocs. Certain substances will disperse with ordinary mixing, such as by stirring with a stir bar, vortexing, and similar perturbation techniques. Otherwise, the substances can be dispersed by high shear processes such as ball mill, disc mill, sand mill, attritor, rotor stator mixer, or ultrasonication—all such high shear dispersion techniques being well known to one of ordinary skill in the art. Agents in the form of surfactants, emulsifiers, or stabilizers may also be added to the composition to assist in dispersion.


Referring to FIGS. 3A-3F, an optional primer layer 24, free from any substances, can be formed on surface 14 of substrate 12 prior to the formation of first layer 16. The presence of a substance in second layer 20 can interfere with the ability of second layer 20 to adhere effectively to surface 14 of substrate 12. High drug loadings of 10% to 40% by weight in the matrix may significantly hinder the retention of second layer 20 on surface 14 of substrate 12. The primer layer 24 serves as a functionally useful intermediary layer between surface 14 of substrate 12 and the substance-containing second layer 20. The primer layer 24 provides for an adhesive tie which, in effect, would also allow for the quantity of the substance in the second layer 20 to be increased without compromising the ability of second layer 20 to be effectively contained on substrate 12 during delivery and, if applicable, expansion of stent 10.


With the use of thermoplastic polymers such as, but not limited to, ethylene vinyl alcohol copolymer, polycaprolactone, poly(lactide-co-glycolide), and poly(hydroxybutyrate), the deposited primer composition should be exposed to a heat treatment at a temperature range greater than about the glass transition temperature (Tg) and less than about the melting temperature (Tm) of the selected polymer. Unexpected results have been discovered with treatment of the composition under this temperature range, specifically strong adhesion or bonding of the coating to the metallic surface of a stent 10. The prosthesis should be exposed to the heat treatment for any suitable duration of time that will allow for the formation of primer layer 24 on surface 14 of substrate 12 and for the evaporation of the solvent employed.



FIGS. 3A-3F correspond to the above-described FIGS. 2B-2G, respectively, but for the initial formation of primer layer 24 directly onto surface 14 of substrate 12. Briefly, FIG. 3A illustrates the formation of first layer 16 on primer layer 24. First layer 16 is patterned to form vias 18, as depicted in FIG. 3B. The underlying primer layer 24 should remain essentially undisturbed on surface 14 of substrate 12. In FIG. 3C, second layer 20, containing a first substance, is deposited on the substrate 12 to cover the remaining portions of first layer 16 and vias 18. The polymeric material selected for second layer 20 should possess good adhesive qualities to primer layer 24. Following the application of second layer 20, the remaining portions of first layer 16 are removed, as illustrated in FIG. 3D, to pattern second layer 20. Referring to FIG. 3E, a third layer 22, containing a second substance, can be deposited on second layer 20. The second substance can be the same as or different than the first substance. As an optional step, as illustrated in FIG. 3F, the profile of third layer 22 can be reduced so as to create an alternating pattern of second layer 20 and third layer 22, being adhesively tied to stent 10 via primer layer 24, and containing a combination of first and second substances that are capable of being released at different rates in situ.



FIGS. 4A-4F illustrate a method of coating stent 10 in accordance with several other embodiments of the present invention. FIG. 4A illustrates first layer 16 formed on substrate 12. First layer 16 may be made from any suitable material and can be of any suitable thickness. The thickness of first layer 16 can be from about 0.5 micron to about 10 microns, more narrowly from about 2 microns to about 8 microns. By way of example, first layer 16 can have a thickness of about 3 microns. First layer 16 can be made from a polymeric material. Polymers having a high coefficient of extinction, as discussed above, are suitable. First layer 16 can be deposited by any conventional method such as immersing substrate 12 in or spraying substrate 12 with a first composition containing a dissolved mixture of a first solvent with the polymer and allowing the first solvent to evaporate from first layer 16.


First layer 16, as illustrated in FIG. 4B, is patterned by removing or etching portions of first layer 16 to form vias 18. Additionally, portions of substrate 12 underlying the removed portions of first layer 16 are removed or etched to form depots 26. Depots 26 can be formed by, for example, exposing first layer 16 and the underlying substrate 12 to a laser discharge such as that produced by an excimer laser.


Referring to FIG. 4C, a second layer 20, containing a first substance, is deposited on the substrate 12 to fill depots 26 and vias 18 and to cover the remaining portions of first layer 16. Second layer 20 can be made of a polymeric material having good adhesive qualities to substrate 12. One example of such a polymer is ethylene vinyl alcohol co-polymer.


Following the application of second layer 20, the remaining portions of first layer 16 are removed, as illustrated in FIG. 4D, to pattern second layer 20. The remaining portions of first layer 16 can be removed by the application of a solvent, such as the first solvent used to form first layer 16. The polymeric material from which second layer 20 is made should not be capable of being removed or dissolved during the application of the solvent. Removal of the remaining portions of first layer 16 also causes the portions of second layer 20 that are disposed over first layer 16 to be physically removed or broken-off. Portions of second layer 20 that are within depots 26 remain attached to substrate 12. As illustrated in FIG. 4E, the profile of second layer 20 can be reduced so as to remove the portions of second layer 20 extending above surface 14.


Referring to FIG. 4F, in accordance with another embodiment, a third layer 22 containing a second substance, can be deposited on substrate 12 to cover second layer 20 within depots 26 as well as surface 14. The second substance can be the same as or different than the first substance. Third layer 22 can be made of any suitable polymeric material and can be of any suitable thickness. The thickness of third layer 22 can be from about 0.2 microns to about 10 microns, more narrowly from about 2 microns to about 8 microns. By way of example, third layer 22 can have a thickness of about 5 microns. The resulting stent 10 includes a first substance within depots 26 and a second substance in third layer 22, each of which is capable of being released at a different rate in situ.



FIGS. 5A-5H illustrate a method of coating stent 10 in accordance with other embodiments of the present invention. FIG. 5A illustrates a first layer 28, containing a first substance. The thickness of first layer 28 can be from about 0.2 micron to about 10 microns, more narrowly from about 2 microns to about 8 microns. By way of example, first layer 28 can have a thickness of about 5 microns. FIG. 5B illustrates a second layer 30 formed on substrate 12 to cover first layer 28. The thickness of second layer 30 can be from about 1 micron to about 10 microns, more narrowly from about 2 microns to about 8 microns. By way of example, second layer 30 can have a thickness of about 4 microns. Second layer 30 can be made from a polymeric material such as, but not limited to, polyurethanes or parylene.


Second layer 30, as illustrated in FIG. 5C, is patterned by removing portions of second layer 30 to form vias 18, to expose portions of first layer 28 not covered by second layer 30. Vias 18 can be formed by, for example, exposing second layer 30 to a laser discharge. First layer 28 is patterned by removing portions of first layer 28 not covered by the remaining portions of second layer 30, as illustrated in FIG. 5D. First layer 28 can be patterned by exposing the uncovered portions of first layer 28 to a solvent so as to remove or dissolve the selected portions of first layer 28.


The remaining portions of second layer 30 can be removed, as illustrated in FIG. 5E by, for example, exposing second layer 30 to a laser discharge. Alternatively, the remaining portions of second layer 30 can be removed by the application of a solvent. The solvent should be capable of removing or dissolving the remaining portions of second layer 20, but should not remove the polymeric material from which first layer 28 is made or adversely affect the first substance.


Referring to FIG. 5F, a third layer 32, containing a second substance, is deposited on substrate 12 to cover the remaining portion of first layer 28 and vias 18. Third layer 32 can be made of any suitable polymeric material and can be of any suitable thickness. The solvent used to form third layer 32 should be capable of placing the polymer of the third layer 32 into solution, but should not be capable of removing the remaining portions of first layer 28. In other words, the solvent should not dissolve first layer 28 during the application of the third solution.


Following the application of third layer 32, the profile of third layer 32 can optionally be reduced so as to create an alternating pattern of first layer 28 and third layer 32 having essentially the same thickness, as depicted in FIG. 5G. As another optional step, a fourth layer 34 can be deposited on the alternating pattern of first layer 28 and third layer 32, as illustrated in FIG. 5H. In some embodiments, fourth layer 34 functions as a diffusion barrier for the first and second substances in first layer 28 and third layer 32, respectively. Fourth layer 34 can also contain a third substance. The third substance can be the same as or different than the first and second substances. The resulting stent 10 includes a low profile coating having a combination of first, second and third substances that are capable of being released at different rates in situ. In yet another embodiment, a primer layer (not shown) can also be employed.


In the above-described embodiments, high temperature heating in a furnace (e.g., 700° C. to 800° C.) may be employed to incinerate all polymers on substrate 12. This polymer removal technique is particularly suitable when gold or platinum has been deposited as the first substance.


In accordance with the above-described methods, one or more active ingredient can be applied to a device, e.g., a stent, retained on the stent during delivery and expansion of the stent, and released at a desired control rate and for a predetermined duration of time at the site of implantation. A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, or restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.


Briefly, an angiogram is first performed to determine the appropriate positioning for stent therapy. Angiography is typically accomplished by injecting a radiopaque contrast agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims
  • 1. A method of coating a stent, comprising: forming discontinuous segments of a first polymer composition in a coating layer covering a stent substrate; andloading a second polymer composition in the coating layer, the second polymer composition disposed between and in contact with the discontinuous segments of the first polymer composition, the second polymer composition including a solvent incapable of removing one or more of the discontinuous segments of the first polymer composition from the coating layer.
  • 2. A method of coating a stent, comprising: forming discontinuous segments of a first polymer composition in a coating layer covering a stent substrate; andloading a second polymer composition in the coating layer, the second polymer composition disposed between and in contact with the discontinuous segments of the first polymer composition, the second polymer composition including a solvent incapable of removing one or more of the discontinuous segments of the first polymer composition from the coating layer;forming a sacrificial film on the stent substrate; andforming vias in the sacrificial film,wherein forming the discontinuous segments of the first polymer composition includes filling the vias with the first polymer composition followed by removing a portion or all of the sacrificial film using a second solvent capable of removing the sacrificial film but not the first polymer composition so that removal of the sacrificial film results in the discontinuous segments of the first polymer composition separated by gaps.
  • 3. The method of claim 2, wherein loading the second polymer composition in the coating layer includes filling the gaps with the second polymer composition.
  • 4. The method of claim 3, wherein after filling the gaps with the second composition, overlying segments of the second polymer composition are disposed over some or all of the discontinuous segments of the first polymer composition.
  • 5. The method of claim 4, further comprising removing the overlying segments.
  • 6. The method of claim 1, wherein forming the discontinuous segments of the first polymer composition includes: forming a first film over the stent substrate, the first film made of the first polymer composition;forming a protective film over the first film;forming vias in the protective film to expose portions of the first film; andremoving the exposed portions of the first film using a second solvent capable of removing the first polymer composition but not the protective film so that removal of the exposed portions results in the discontinuous segments of the first polymer composition, there being gaps disposed between the discontinuous segments.
  • 7. The method of claim 6, wherein loading the second polymer composition in the coating layer includes filling the gaps with the second composition.
  • 8. The method of claim 7, wherein after filling the gaps with the second composition, overlying segments of the second polymer composition are disposed over some or all of the discontinuous segments of the first polymer composition.
  • 9. The method of claim 8, further comprising removing the overlying segments.
  • 10. The method of claim 1, further comprising forming a primer layer in contact with the stent substrate, the primer layer disposed between the stent substrate and the coating layer, the primer layer increasing the ability of the coating layer to remain attached to the stent substrate as compared to the coating layer being in contact with the stent substrate.
  • 11. The method of claim 1, further comprising removing all of the solvent from the coating layer or allowing all of the solvent to evaporate out of the coating layer.
Parent Case Info

This application is a divisional of prior application Ser. No. 10/682,278, filed Oct. 8, 2003, (now abandoned) which is a divisional of prior application Ser. No. 09/841,798, filed Apr. 24, 2001, now U.S. Pat. No. 6,712,845. The entire contents of the prior applications are hereby incorporated by reference herein.

US Referenced Citations (135)
Number Name Date Kind
4329383 Joh May 1982 A
4606931 Olsen et al. Aug 1986 A
4733665 Palmaz Mar 1988 A
4800882 Gianturco Jan 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4941870 Okada et al. Jul 1990 A
4977901 Ofstead Dec 1990 A
5112457 Marchant May 1992 A
5165919 Sasaki et al. Nov 1992 A
5244538 Kumar Sep 1993 A
5272012 Opolski Dec 1993 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5328471 Slepian Jul 1994 A
5330768 Park et al. Jul 1994 A
5380299 Fearnot et al. Jan 1995 A
5412068 Tang et al. May 1995 A
5417981 Endo et al. May 1995 A
5447724 Helmus et al. Sep 1995 A
5455040 Marchant Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5510628 Georger et al. Apr 1996 A
5569463 Helmus et al. Oct 1996 A
5578073 Haimovich et al. Nov 1996 A
5605696 Eury et al. Feb 1997 A
5609629 Fearnot et al. Mar 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5649977 Campbell Jul 1997 A
5658995 Kohn et al. Aug 1997 A
5667767 Greff et al. Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5679400 Tuch Oct 1997 A
5695857 Burrell et al. Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5716981 Hunter et al. Feb 1998 A
5735897 Buirge Apr 1998 A
5746998 Torchilin et al. May 1998 A
5776184 Tuch Jul 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5820917 Tuch Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5851508 Greff et al. Dec 1998 A
5858746 Hubbell et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5869127 Zhong Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876433 Lunn Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5895407 Jayaraman Apr 1999 A
5897911 Loeffler Apr 1999 A
5925720 Kataoka et al. Jul 1999 A
5955509 Webber et al. Sep 1999 A
5971954 Conway et al. Oct 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5997517 Whitbourne Dec 1999 A
6010530 Goicoechea Jan 2000 A
6015541 Greff et al. Jan 2000 A
6033582 Lee et al. Mar 2000 A
6042875 Ding et al. Mar 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6080488 Hostettler et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099562 Ding et al. Aug 2000 A
6106889 Beavers et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6129761 Hubbell Oct 2000 A
6153252 Hossainy et al. Nov 2000 A
6165212 Dereume et al. Dec 2000 A
6203551 Wu Mar 2001 B1
6206915 Fagan et al. Mar 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6254632 Wu et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6395326 Castro et al. May 2002 B1
6419692 Yang et al. Jul 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6494862 Ray et al. Dec 2002 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6572644 Moein Jun 2003 B1
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6605154 Villareal Aug 2003 B1
6641611 Jayaraman Nov 2003 B2
20010014717 Hossainy et al. Aug 2001 A1
20010018469 Chen et al. Aug 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20020077693 Barclay et al. Jun 2002 A1
20020091433 Ding et al. Jul 2002 A1
20030065377 Davila et al. Apr 2003 A1
Foreign Referenced Citations (48)
Number Date Country
0 301 856 Feb 1989 EP
0 514 406 Nov 1992 EP
0 604 022 Jun 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 716 836 Jun 1996 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 273 314 Jan 2003 EP
2001-190687 Jul 2001 JP
WO 9112846 Sep 1991 WO
WO 9510989 Apr 1995 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9817331 Apr 1998 WO
WO 9836784 Aug 1998 WO
WO 9901118 Jan 1999 WO
WO 9938546 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0174414 Oct 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 02056790 Jul 2002 WO
WO 03000308 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
Related Publications (1)
Number Date Country
20080215141 A1 Sep 2008 US
Divisions (2)
Number Date Country
Parent 10682278 Oct 2003 US
Child 12121312 US
Parent 09841798 Apr 2001 US
Child 10682278 US