Coating method and corresponding coating device

Information

  • Patent Grant
  • 11813630
  • Patent Number
    11,813,630
  • Date Filed
    Monday, November 22, 2021
    2 years ago
  • Date Issued
    Tuesday, November 14, 2023
    5 months ago
Abstract
The disclosure concerns a coating method and a corresponding coating device for coating components with a nozzle applicator with several nozzles, in particular for painting motor vehicle body components. The disclosure provides that the nozzle applicator is flexibly controlled during the coating method.
Description
BACKGROUND

The disclosure concerns a coating method for the coating of components with a nozzle applicator with several nozzles, in particular for painting motor vehicle body components.


For the serial painting of motor vehicle body components, rotary atomizers have usually been used as application devices up to now, but they have the disadvantage of a limited application efficiency, i.e. only a part of the applied paint deposits on the components to be coated, while the rest of the applied paint has to be disposed of as a so-called overspray.


A newer development line, on the other hand, provides for so-called printheads as application device, as known for example from DE 10 2013 002 412 A1, U.S. Pat. No. 9,108,424 B2 and DE 10 2010 019 612 A1. In contrast to the known rotary atomizers, such printheads do not emit a spray of the paint to be applied, but a narrowly confined paint jet, which is almost completely deposited on the component to be painted, so that almost no overspray occurs.


However, such printheads are not yet sufficiently well suited for surface coating, since high area coating performance and accuracy are required for the series coating of motor vehicle body components.


Furthermore, there is the problem that wraps around component edges and complex surface geometries on the outer skin or in the interior of motor vehicle body components cannot be painted satisfactorily.


The technical background of the disclosure can also be found in EP 3 002 128 A2, US 2001/0019340 A1 and EP 2 196 267 A2.


The disclosure is therefore based on the task of creating the possibility of making such nozzle applicators (e.g. printheads) suitable for the series painting of series-produced motor vehicle body components.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A a schematic illustration of the painting of heavily curved component surfaces according to the state of the art,



FIG. 1B a modification according to the disclosure for the painting of strongly curved component surfaces, where a part of the nozzles of the nozzle applicator is deactivated,



FIG. 2A a schematic illustration to illustrate the painting with a small area coating performance, whereby the nozzle applicator is aligned in the longitudinal direction of the movement path,



FIG. 2B a schematic illustration for painting with a large area coating performance, where the nozzle applicator is aligned transversely to the movement path,



FIG. 3A a schematic representation of a nozzle applicator which emits continuous coating agent jets,



FIG. 3B a schematic representation of a nozzle applicator that emits droplet jets,



FIG. 4 a schematic representation of the surface coating along a meandering movement path, partly with a droplet application and partly with a jet application,



FIG. 5 a schematic representation of a painting device according to the disclosure with a camera-based measuring system,



FIG. 6 a modification of FIG. 5 with sensors on the individual painting robots to improve relative positioning, and



FIGS. 7-9 modifications of FIG. 4.





DETAILED DESCRIPTION

The disclosure relates to flexibly controlling a nozzle applicator (e.g. printhead) during a coating method, for example by a flexible fluid-technical or valve-technical control or by a flexible mechanical guidance of the nozzle applicator.


The term “nozzle applicator” used in the disclosure is to be generally understood and initially only serves to distinguish it from conventional atomizers (e.g. rotary atomizers, ultrasonic atomizers, airmix atomizers, airless atomizers, etc.), which do not emit a narrowly limited coating agent jet but a spray of the coating agent to be applied. The term “nozzle applicator” implies that at least one nozzle emits a coating agent jet which is relatively narrowly limited in space. Preferably, however, the nozzle applicator is a printhead as it is known from the state of the art and is described for example in DE 10 2013 002 412 A1, U.S. Pat. No. 9,108,424 B2 and DE 10 2010 019 612 A1.


In one example of the disclosure, the nozzle applicator is designed for the application of a paint (e.g. base coat, clear coat, water-based paint, solvent-based paint, etc.). However, the term “coating agent” used in the disclosure is not limited to paints, but can also include other coating agents, such as adhesives, insulating materials, sealants, primers, etc., to name but a few examples.


The coating method according to the disclosure provides that the nozzle applicator is guided over the surface of the component to be coated, which is preferably done by means of a multi-axis coating robot with serial robot kinematics and at least six or seven movable robot axes.


The nozzle applicator is flexibly controlled according to the disclosure. For example, the nozzle applicator can be flexibly controlled using valves, for example by releasing or blocking the nozzles with control valves in the nozzle applicator in order to control the release of the coating agent. Another option for flexible control is that the amount of coating agent supplied and applied can be flexibly adjusted. It is also possible to flexibly control the nozzle applicator mechanically, for example by rotating, tilting or positioning or aligning the nozzle applicator during the coating method, e.g. by essentially aligning it orthogonal to the coating surface.


In an example of the disclosure, the nozzle applicator is selectively operated with a large area coating performance or with a small area coating performance.


The high area coating performance is then selected to coat large component surfaces, such as the outer surfaces of motor vehicle body components.


The small area coating performance of the nozzle applicator, on the other hand, is selected when details are to be coated, especially in the interior or on edges or design lines of the motor vehicle body components to be painted.


The switching between the large area coating performance and the small area coating performance can be carried out automatically and program-controlled depending on the type of the respective colour impact point.


If, for example, the colour impact point is located on a large surface area of the roof of a motor vehicle body component to be painted, the nozzle applicator should coat the coating agent with a large area coating performance.


If, on the other hand, the colour impact point is in the interior or on an edge or a design line of the motor vehicle body component to be painted, the nozzle applicator should preferably be operated with the small area coating performance.


In this context it should be mentioned that the disclosure is not limited to a certain large area coating performance and a certain small area coating performance, i.e. two different area coating performances. Rather, it is also possible within the scope of the disclosure that the area coating performance is continuously adapted.


In one example of the disclosure, the nozzles in the nozzle applicator are arranged next to each other in a nozzle row, whereby several parallel nozzle rows with several nozzles each are also possible. The nozzle applicator is moved along a preset, programmed (“teached”) movement path over the surface of the component to be coated (e.g. motor vehicle body component), which—as already briefly mentioned above—can be done by means of a multi-axis coating robot with serial robot kinematics and at least six or seven movable robot axes.


If the nozzle applicator is now to be operated with the high area coating performance, the nozzle applicator is rotated around the jet axis of the coating agent jets in such a way that the nozzle row is aligned transversely (e.g. at right angles) to the movement path. The nozzle applicator thus covers a relatively large component area per time unit. The formulation used in the disclosure of an alignment of the nozzle row transverse to the movement path means preferably that the angle between the nozzle row and the movement path is greater than 50°, 60°, 75°, 80° or 85°.


If, on the other hand, the nozzle applicator is to be operated with the small area coating performance, the nozzle applicator is rotated around the jet axis in a preferred variant so that the nozzle row is aligned longitudinally (e.g. parallel) to the movement path. The nozzle applicator then covers a relatively small component area per time unit. The formulation used in the context of the disclosure of an alignment of the nozzle row along the movement path means preferably that the angle between the nozzle row and the movement path is smaller than 60°, 50°, 40°, 30°, 25°, 20°, 15°, 10° or 5°.


It should also be mentioned that the nozzle applicator can be rotated during movement, i.e. within a coating path. This can be distinguished from a rotation of the nozzle applicator only at the beginning or end of a movement path or at the turning points of a meandering movement path.


It has already been mentioned briefly above that the nozzle applicator can have several parallel nozzle rows in which several nozzles are arranged next to each other. Here it is possible that one or more nozzle rows of the nozzle applicator are activated or deactivated depending on the desired area coating performance.


If the nozzle applicator is to be operated with a small area coating performance, it is preferable that not all nozzle rows of the nozzle applicator are activated, in particular only a single nozzle row or individual nozzles of a nozzle row. This is helpful, for example, to keep the coating distance within an ideal tolerance window or to allow the coating agent to impinge almost orthogonally on the component surface.


If, on the other hand, the nozzle applicator is to be operated with a large area coating performance, more than one nozzle row of the nozzle applicator is preferably activated, in particular all nozzle rows.


It should be mentioned here that the number of activated or deactivated nozzle rows of the nozzle applicator does not have to be switched between a maximum value and a minimum value. Within the scope of the disclosure, there is also the possibility that the nozzle rows can be individually switched on or off in order to increase or decrease the area coating performance accordingly and thus enable a quasi continuous adjustment of the area coating performance.


In an example of the disclosure, the flexible adjustment of the control of the nozzle applicator is carried out by switching the nozzle applicator between a jet mode and a drop mode.


In the jet mode, the nozzle applicator emits a coating agent jet which is connected in the longitudinal direction of the coating agent jet, in contrast to a droplet jet which consists of droplets which are separated from each other in the longitudinal direction of the droplet jet. For this purpose, the painting distance should be chosen so that the coating agent jet is not subject to natural decay.


In the drop mode, however, the nozzle applicator emits a droplet jet consisting of droplets which are separated from each other in the longitudinal direction of the droplet jet, in contrast to the coating agent jet which is connected in the longitudinal direction of the coating agent jet.


The jet mode may be selected program-controlled when a surface coating with a high area coating performance is required, for example for painting large outer surfaces of a motor vehicle body component.


The drop mode, on the other hand, is preferably used under program control if coating is to take place in the overlapping area of coating agent paths or at the beginning or end of the path.


In addition, the drop mode can be used advantageously if detailed painting is to be carried out or if graphics are to be applied to the component surface.


In general, it is also possible that when coating a component surface, the inner surfaces of the component surface are coated with the jet mode, while the edges of the component surface are coated with the drop mode.


It should also be mentioned here that the droplet jet and the continuous coating agent jet can be emitted simultaneously with the same nozzle applicator. This means that a droplet jet is emitted from at least one nozzle while at the same time a continuous coating agent jet is emitted from at least one other nozzle of the same nozzle applicator.


Alternatively it is possible that the droplet jet and the continuous coating agent jet are alternately discharged with the same nozzle applicator. This means that the nozzle applicator is switched over between the drop mode and the jet mode and then works either only in the drop mode or in the jet mode.


Alternatively, in an applicator with several nozzle plates, one nozzle plate can be operated in the jet mode and another in the drop mode.


Alternatively, it is also possible to use several nozzle applicators, whereby a first nozzle applicator operates in the drop mode while a second nozzle applicator operates in the jet mode.


The disclosure also allows two nozzle applicators to be guided by a coating robot over the component surface of the component to be coated and then coat the component surface together. A prerequisite for such a cooperation between two coating robots and the nozzle applicators guided by these two coating robots, however, is a very precise relative positioning of the two nozzle applicators. This is particularly relevant when the two nozzle applicators apply coating agent paths that abut against each other, since mispositions are then easily visible. An undesired overlapping of the coating agent then leads to an overcoating, i.e. to an excessive thickness of the coating in the overlapping area. If, on the other hand, the distance between the nozzle applicators is too large, gaps can occur between the adjacent coating agent paths, which can also be disruptive. The two nozzle applicators are therefore guided over the component surface of the component to be coated by the two coating robots with a high relative positioning accuracy with a very small positioning tolerance. This relative positioning tolerance is preferably smaller than 2 mm, 1 mm, 500 μm, 200 μm, 100 μm or even 50 μm.


This smaller positioning tolerance cannot, however, be easily achieved in painting systems for the painting of motor vehicle body components. In addition, the usual multi-axis painting robots have a certain positioning tolerance depending on the design. On the other hand, the motor vehicle body components to be painted are also conveyed by a conveyor through the painting system, whereby the conveyor also has a relatively large positioning tolerance.


The disclosure therefore preferably provides for an optical measurement system to determine the spatial position of the coating object and/or the two nozzle applicators. Thus, within the scope of the disclosure, it is possible to adjust tolerance-related positioning errors so that the desired high relative positioning accuracy is achieved.


For example, such an optical measurement system can be camera-based and optically detects markers on the coating robots and/or on the nozzle applicators.


Alternatively, it is also possible for the coating robots to have sensors, for example on the robot hand axes or on the nozzle applicators themselves, in order to detect the relative positioning of the two nozzle applicators, which in turn enables appropriate readjustment to achieve the desired high positioning accuracy.


Another problem is the coating of heavily curved component surfaces, such as motor vehicle body components. This is because the application distance between the nozzles of the nozzle applicator and the component surface changes continuously. Furthermore, the application distance between the nozzles within the nozzle applicator is not uniform, so that a uniform control of the nozzle applicator can lead to problems due to the different application distance of the individual nozzles.


In another example of the disclosure, it is therefore planned that when coating strongly curved component surfaces, only a first part of the nozzles is activated, preferably a relatively small, connected part of the nozzles, so that within the activated part of the nozzles there is as uniform an application distance as possible with as orthogonal an orientation of the coating agent jets as possible.


When coating less curved component surfaces and in particular when coating flat component surfaces, a larger second part of the nozzles is preferably activated in order to achieve the greatest possible area coating performance.


In addition to the coating method according to the disclosure described above, the disclosure also includes a corresponding coating device (e.g. paint shop), whereby the structure and function of this coating device are already apparent from the above description, so that reference is made to the above description in order to avoid repetitions.


In the following, the drawing according to FIG. 1A is described, which illustrates the conventional painting of a curved component surface 1 of a motor vehicle body component using a nozzle applicator 2.


The nozzle applicator has numerous nozzles, each of which emits a coating agent jet, whereby the nozzle applicator 2 has an active part 4, within which all nozzles of the nozzle applicator 2 are active and emit the coating agent jets 3. The active part 4 of the nozzle applicator 2 conventionally includes all nozzles of the nozzle applicator 2, i.e. all nozzles of the nozzle applicator 2 emit a coating agent jet 3, which also applies to the coating of strongly curved component surfaces. As a result, however, the application distance d indicated by the double arrows is very non-uniform within the nozzle applicator 2. For example, the application distance d is very small for the nozzle on the left of the nozzle applicator 2 in the drawing, while the application distance d is very large for the nozzle on the right in the drawing. This non-uniformity of the application distance d within the nozzle applicator 2 can, however, lead to a corresponding inhomogeneity of the coating on the component surface 1.


This problem is solved by the solution according to the disclosure shown in FIG. 1B. For example, the drawing here shows a state when painting a strongly curved area of the component surface 1. The active part 4 of the nozzle applicator 2 then comprises only a part of the nozzles, while the nozzles in an inactive part 5 of the nozzle applicator 2 are deactivated. Within the active part 4 of the nozzle applicator 2, however, the application distance d is relatively uniform, as indicated by the double arrows, which have a relatively uniform length within the active part 4 of the nozzle applicator 2. This avoids inhomogeneities of the coating on the component surface 1, which are caused by a strong component curvature, as is the case with the state of the art.



FIGS. 2A and 2B show a modification that is partially consistent with the above example, so that reference is made to the above description to avoid repetition, using the same reference signs for corresponding details.


It should first be mentioned that the nozzle applicator 2 is guided along a programmed (“taught”) movement path 6 over the component surface by a multi-axis painting robot with a serial robot kinematics, where the drawing shows only a small section of the movement path 6 to illustrate the principle of the disclosure.


It should also be mentioned that the nozzle applicator has several parallel nozzle rows, each with several nozzles 7, which can be switched either inactive or active. The active nozzles are shown as filled circles, while the inactive nozzles are shown as circular rings.


It should also be mentioned that the nozzles 7 are arranged next to each other in one of three nozzle rows 8.


The multi-axis painting robot now rotates the nozzle applicator 2 during the movement along the movement path 6 depending on the desired area coating performance.



FIG. 2A shows the rotation of nozzle applicator 2 for painting with a small area coating performance. In this operating mode, the nozzle applicator 2 with the nozzle row 8 is aligned parallel to movement path 6, with only one of the three nozzle rows being active and emitting coating agent jets. The nozzle applicator 2 then works with a relatively small area coating performance, but with sharp edges and largely without steps.


However, the nozzle applicator need not necessarily be parallel to the movement path. Rather, it may be turned in a preferred variation at any angle α especially α<60°, α<45° or α<20° to the movement path.



FIG. 2B however shows turning of the nozzle applicator 2 to achieve a large area coating performance. The multi-axis painting robot then rotates the nozzle applicator 2 with the nozzle rows 8 at an angle α>60°, α>75° or at right angles (α=90°) to the movement path 6. As a result, the nozzle applicator 2 covers a relatively large component surface per time unit. In this operating mode, all nozzle rows 8 of nozzle applicator 2 are also active, i.e. all nozzles 7 in all three nozzle rows 8 emit a coating agent jet each to achieve sufficient coating thickness and a high area coating performance. This operating mode can be selected, for example, to paint large external surfaces of motor vehicle body components.



FIG. 3A shows a further modification which again partly corresponds to the examples described above so that reference is made to the above description to avoid repetitions, using the same reference signs for the corresponding details.


Here the nozzle applicator 2 emits continuous coating agent jets 3a which are connected in the longitudinal direction of the coating agent jet 3a. This mode of operation may be useful, for example, for painting large external surfaces with a high area coating performance.



FIG. 3B, on the other hand, shows another possible operating mode in which the individual nozzles of the nozzle applicator 2 each emit a droplet jet 3b consisting of numerous droplets spaced apart from one another in the longitudinal direction of the droplet jet 3d. This operating mode can be useful, for example, in the overlapping area of adjacent coating paths or at the beginning or end of a coating path, or for detailed painting, to name just a few examples.


It should be mentioned that the nozzle applicator 2 can be switched between the operating mode shown in FIG. 3A (continuous coating agent jet 3a) and the operating mode shown in FIG. 3B (droplet jet 3b).



FIG. 4 shows a schematic representation of a meandering movement path 9, where the nozzle applicator is guided along the meandering movement path 9 over the component surface by a multi-axis painting robot program.


Here it can be useful if the nozzle applicator 2 applies the droplet jets 3b in the area of the turning points, whereas the nozzle applicator 2 applies the continuous coating agent jets 3a between the turning points.


The drawing speed of the nozzle applicator 2 for the application of the droplet jets 3b may differ from the drawing speed for the application of the continuous coating agent jets 3a, in particular it may be lower.



FIG. 5 shows a schematic, highly simplified representation of a painting system according to the disclosure for painting motor vehicle body components 10, which are conveyed by a conveyor 11 along a painting line at right angles to the drawing plane.


The painting is done by two painting robots 12, 13 with a serial robot kinematics and more than six movable robot hand axes, whereby the painting robots 12, 13 are shown here only schematically.


The painting robots 12, 13 each guide a nozzle applicator 14, 15, whereby the nozzle applicators 14, 15 interact during painting, which requires a very high relative positioning accuracy when positioning the nozzle applicators 14, 15. However, the required relative positioning accuracy cannot be easily achieved since both the painting robots 12, 13 and the conveyor 11 each have relatively coarse positioning tolerances.


In this example, a camera-based measuring system is provided to measure the actual relative positioning of the nozzle applicators 14, 15 and/or the motor vehicle body component 10 and thus to be able to adjust the positioning so that the required positioning tolerances of less than 200 μm are maintained.


The camera-based measuring system has a camera 16, which takes an image of the nozzle applicators 14, 15 and the component surface and forwards it to an image evaluation unit 17.


The image evaluation unit 17 then determines the relative positioning of the two nozzle applicators 14, 15 by means of an image evaluation and, if necessary, controls a control device 18 in such a way that the painting robots 12, 13 are controlled subsequently, since the desired relative positioning of the nozzle applicators 14, 15 is achieved with the required high positioning accuracy. The absolute position of the motor vehicle body components 10 can also be determined here.



FIG. 6 shows a modification of FIG. 5, so that the above description is referred to avoid repetitions, whereby the same reference signs are used for the corresponding details.


A feature of this example is that, in contrast to the example in FIG. 5, no camera-based optical measurement system is provided. Rather, sensors 19, 20 are attached to the robot hand axes of the two painting robots 12, 13, which detect the relative positioning of the two nozzle applicators 14, 15 and forward them to the image evaluation unit 17.



FIGS. 7-9 show a modification of FIG. 4, so that to avoid repetitions, reference is made to the above description of FIG. 4, using the same reference signs for corresponding details.


A feature of the example according to FIG. 4 is that the coating agent jets 3b are briefly switched off outside of the component surface to be coated at turning points 21, i.e. not on the component surface to be coated.


Within the component surface to be coated, coating is applied with the continuous coating agent jets 3a, whereas coating is applied with the droplet jet 3a at the edges of the component surface to be coated.


The example shown in FIG. 8 differs from this by the fact that coating is applied throughout with the continuous coating agent jet 3a.


In the example shown in FIG. 9, on the other hand, the spray is applied continuously with the droplet jet 3a.


The disclosure is not limited to the examples described above. Rather, a large number of variants and modifications are possible, which also make use of the disclosure's idea and therefore fall within the scope of protection.

Claims
  • 1. A coating device for coating components with a coating agent, comprising: a) a nozzle applicator having a plurality of nozzles for applying the coating agent to the components to be coated, the nozzles in the nozzle applicator arranged next to one another in a nozzle row,b) a multi-axis coating robot which guides the nozzle applicator along a predetermined movement path over a surface of the components to be coated, andc) a control device which controls the nozzle applicator and the multi-axis coating robot,d) wherein the control device is configured to: i. flexibly control the nozzle applicator during the movement over the surface;ii. selectively operate the nozzle applicator with a large area coating performance or with a small area coating performance;iii. control the coating robot in such a way that the nozzle applicator is rotated along the predetermined movement path during the movement;iv. control the coating robot to rotate the nozzle applicator in such a way that the nozzle row is aligned transversely relative to the predetermined movement path when coating with the large area coating performance; andv. control the coating robot to rotate the nozzle applicator in such a way that the nozzle row is aligned longitudinally relative to the predetermined movement path when coating with the small area coating performance.
  • 2. The coating device according to claim 1, wherein a) the nozzle applicator has a plurality of parallel nozzle rows in each of which a plurality of nozzles are arranged next to one another,b) the control device controls the nozzle applicator in such a way that, during the coating with the small area coating performance, not all nozzle rows of the nozzle applicator are activated, andc) the control device controls the nozzle applicator in such a way that more than one nozzle row of the nozzle applicator is activated during the coating with the large area coating performance.
  • 3. The coating device according to claim 1, wherein a) the control device is configured to selectively operate the nozzle applicator in a jet mode or in a drop mode,b) in the jet mode, the nozzles of the nozzle applicator emit a coating agent jet which is connected in the longitudinal direction of the coating agent jet, in contrast to a droplet jet which consists of droplets which are separated from one another in the longitudinal direction of the droplet jet, andc) in the drop mode, the nozzles of the nozzle applicator emit a droplet jet which consists of droplets which are separated from one another in the longitudinal direction of the droplet jet, in contrast to the coating agent jet which is connected in the longitudinal direction of the coating agent jet.
  • 4. The coating device according to claim 1, wherein a) a first nozzle applicator is guided by a first coating robot over the surface,b) a second nozzle applicator is guided by a second coating robot over the surface, andc) the two nozzle applicators are positioned above the surface by the coating robots with a large relative positioning accuracy with a positioning tolerance of less than 2 mm.
  • 5. The coating device according to claim 4, wherein the spatial position of the two nozzle applicators is measured by means of an optical measurement system in order to achieve the large relative positioning accuracy.
  • 6. The coating device according to claim 4, wherein the coating robots have sensors in order to detect their relative position and thereby enable the large relative positioning accuracy.
  • 7. The coating device according to claim 1, wherein a) the nozzle applicator is a printhead, andb) the nozzle applicator emits a narrowly limited coating agent jet in contrast to a spray mist, andc) the nozzle applicator has an application efficiency of at least 80% so that substantially all of the applied coating agent is completely deposited on the component without overspray.
  • 8. The coating device according to claim 7, wherein a) the nozzle applicator has an area coating performance of at least 0.5 m2/min, andb) the volume flow of the applied coating agent and thus the exit velocity of the coating agent is set in such a way that the coating agent does not bounce off the component after it hits the component, andc) the exit velocity of the coating agent from the printhead is at least 5 m/s; andd) the exit velocity of the coating agent from the printhead is not more than 30 m/s; ande) the application distance between a nozzle of the plurality of nozzles and the surface is at least 4 mm, andf) the application distance between the nozzle of the plurality of nozzles and the surface is at most 200 mm, andg) the coating agent is a paint, andh) the nozzle applicator has at least one electrically controllable actuator in order to eject drops of the coating agent from the nozzle applicator.
  • 9. A coating device for coating components with a coating agent, comprising: a) a nozzle applicator having a plurality of nozzles for applying the coating agent to the components to be coated,b) a multi-axis coating robot which guides the nozzle applicator along a predetermined movement path over a surface of the components to be coated,c) a control device which controls at least one of the nozzle applicator and the multi-axis coating robot,d) wherein the control device flexibly controls the nozzle applicator during the movement over the surface, ande) wherein the control device is configured to selectively operate the nozzle applicator: i. in a jet mode in which the nozzles of the nozzle applicator emit a coating agent jet which is connected in the longitudinal direction of the coating agent jet, in contrast to a droplet jet which consists of droplets which are separated from one another in the longitudinal direction of the droplet jet; orii. in a drop mode in which the nozzles of the nozzle applicator emit a droplet jet which consists of droplets which are separated from one another in the longitudinal direction of the droplet jet, in contrast to the coating agent jet which is connected in the longitudinal direction of the coating agent jet.
  • 10. The coating device according to claim 9, wherein a) the control device is configured to operate the nozzle applicator in the jet mode for coating with a high area coating performance, andb) the control device is configured to operate the nozzle applicator in the drop mode for coating with a small area coating performance.
  • 11. The coating device in accordance with claim 9, wherein the control device is configured to operate the nozzle applicator at the path beginning and at the path end and at turning points of the predetermined movement path in the drop mode and otherwise in the jet mode.
  • 12. The coating device according to claim 9, wherein the control device is configured to operate the nozzle applicator in the overlapping region of overlapping coating paths in the drop mode and otherwise in the jet mode.
Priority Claims (1)
Number Date Country Kind
10 2016 014 944.2 Dec 2016 DE national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority to, U.S. patent application Ser. No. 16/468,690, filed on Jun. 12, 2019, which application is a national stage of, and claims priority to, Patent Cooperation Treaty Application No. PCT/EP2017/081114, filed on Dec. 1, 2017, which application claims priority to German Application No. DE 10 2016 014 944.2, filed on Dec. 14, 2016, which applications are hereby incorporated herein by reference in their entireties.

US Referenced Citations (184)
Number Name Date Kind
3421694 Muller Jan 1969 A
3717306 Hushon et al. Feb 1973 A
3981320 Wiggins Sep 1976 A
4141231 Kudlich Feb 1979 A
4375865 Springer Mar 1983 A
4383264 Lewis May 1983 A
4423999 Choly Jan 1984 A
4430010 Zrenner et al. Feb 1984 A
4435719 Snaper Mar 1984 A
4478241 Cardenas-Franco Oct 1984 A
4555719 Arway et al. Nov 1985 A
4593360 Cocks Jun 1986 A
4668948 Merkel May 1987 A
4714044 Kikuchi Dec 1987 A
4734711 Piatt et al. Mar 1988 A
4826135 Mielke May 1989 A
4894252 Bongen et al. Jan 1990 A
4941778 Lehmann Jul 1990 A
4974780 Nakamura et al. Dec 1990 A
4985715 Cyphert et al. Jan 1991 A
5050533 Zaber Sep 1991 A
5072881 Taube, III Dec 1991 A
5429682 Harlow, Jr. Jul 1995 A
5435884 Simmons et al. Jul 1995 A
5538221 Joswig Jul 1996 A
5556466 Martin et al. Sep 1996 A
5602575 Pauly Feb 1997 A
5636795 Sedgwick et al. Jun 1997 A
5647542 Diana Jul 1997 A
5659347 Taylor Aug 1997 A
5681619 Ogasawara Oct 1997 A
5740967 Simmons et al. Apr 1998 A
5843515 Crum et al. Dec 1998 A
5951882 Simmons et al. Sep 1999 A
5964407 Sandkleiva Oct 1999 A
5976343 Schlaak Nov 1999 A
6179217 Yoshida et al. Jan 2001 B1
6325302 Guzowski Dec 2001 B1
6540835 Kim et al. Apr 2003 B2
6607145 Boriani et al. Aug 2003 B1
6641667 Ochiai et al. Nov 2003 B2
6712285 Provenaz et al. Mar 2004 B2
6777032 Ogasahara et al. Aug 2004 B2
6811807 Zimmermann et al. Nov 2004 B1
6849684 Poppe et al. Feb 2005 B2
7160105 Edwards Jan 2007 B2
7178742 Nellentine et al. Feb 2007 B2
7182815 Katagami et al. Feb 2007 B2
7244310 Edwards Jul 2007 B2
7270712 Edwards Sep 2007 B2
7357959 Bauer Apr 2008 B2
7387071 Heinke et al. Jun 2008 B2
7449070 Fellingham Nov 2008 B2
7604333 Horsnell Oct 2009 B2
7757632 Edwards Jul 2010 B2
7837071 Achrainer Nov 2010 B2
7901741 Katagami et al. Mar 2011 B2
8028651 Rademacher et al. Oct 2011 B2
8118385 Van De Wynckel et al. Feb 2012 B2
8449087 Kataoka et al. May 2013 B2
8545943 Frankenberger et al. Oct 2013 B2
8652581 Merchant Feb 2014 B2
8678535 Beier et al. Mar 2014 B2
8875655 Pettersson et al. Nov 2014 B2
8882242 Beier et al. Nov 2014 B2
9010899 Harjee et al. Apr 2015 B2
9108424 Wallsten et al. Aug 2015 B2
9140247 Herre et al. Sep 2015 B2
9156054 Ikushima Oct 2015 B2
9266353 Beier et al. Feb 2016 B2
9393787 Ikushima Jul 2016 B2
9464573 Remy et al. Oct 2016 B2
9592524 Fritz et al. Mar 2017 B2
9701143 Ikushima Jul 2017 B2
9707585 Reimert et al. Jul 2017 B2
9844792 Pettersson et al. Dec 2017 B2
9901945 Fehr et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
10016977 Stefani et al. Jul 2018 B2
10105946 Nakamura et al. Oct 2018 B2
10150304 Herre et al. Dec 2018 B2
10252552 Pitz et al. Apr 2019 B2
10272677 Stefani et al. Apr 2019 B2
10464095 Fritz Nov 2019 B2
10532569 Wallsten et al. Jan 2020 B2
10814643 Herre Oct 2020 B2
11504735 Fritz Nov 2022 B2
20010006392 Otsuki Jul 2001 A1
20010017085 Kubo et al. Aug 2001 A1
20010019340 Kubo et al. Sep 2001 A1
20020024544 Codos Feb 2002 A1
20020043280 Ochiai et al. Apr 2002 A1
20020043567 Provenaz et al. Apr 2002 A1
20020105688 Katagami et al. Aug 2002 A1
20020109741 Okabe et al. Aug 2002 A1
20020128371 Poppe et al. Sep 2002 A1
20030020783 Sanada Jan 2003 A1
20030041884 Bahr Mar 2003 A1
20030049383 Ogasahara et al. Mar 2003 A1
20030063154 Goto Apr 2003 A1
20040028830 Bauer Feb 2004 A1
20040089234 Hagglund et al. May 2004 A1
20040107900 Clifford et al. Jun 2004 A1
20040123159 Kerstens Jun 2004 A1
20040173144 Edwards Sep 2004 A1
20040221804 Zimmermann et al. Nov 2004 A1
20040231594 Edwards Nov 2004 A1
20040238522 Edwards Dec 2004 A1
20040256501 Mellentine et al. Dec 2004 A1
20040261700 Edwards Dec 2004 A1
20050000422 Edwards Jan 2005 A1
20050015050 Mowery et al. Jan 2005 A1
20050016451 Edwards Jan 2005 A1
20050023367 Reighard et al. Feb 2005 A1
20050156963 Song et al. Jul 2005 A1
20050243112 Kobayashi et al. Nov 2005 A1
20060061613 Fienup et al. Mar 2006 A1
20060068109 Frankenberger et al. Mar 2006 A1
20060146379 Katagami et al. Jul 2006 A1
20060238587 Horsnell Oct 2006 A1
20060251796 Fellingham Nov 2006 A1
20070062383 Gazeau Mar 2007 A1
20070292626 Larsson et al. Dec 2007 A1
20080271674 Rademarcher Nov 2008 A1
20080309698 Nakano et al. Dec 2008 A1
20090027433 Van De Wynckel et al. Jan 2009 A1
20090029069 Edwards Jan 2009 A1
20090117283 Herre May 2009 A1
20090181182 Sloan Jul 2009 A1
20090244216 Niimi Oct 2009 A1
20100132612 Achrainer Jun 2010 A1
20100156970 Ikushima Jun 2010 A1
20100170918 Achrainer Jul 2010 A1
20100225685 Kwon et al. Sep 2010 A1
20100279013 Frankenberger et al. Nov 2010 A1
20100282283 Bauer Nov 2010 A1
20100321448 Buestgens et al. Dec 2010 A1
20110014371 Herre et al. Jan 2011 A1
20110084150 Merchant Apr 2011 A1
20110248046 Simion Oct 2011 A1
20110262622 Herre Oct 2011 A1
20120085842 Ciardella Apr 2012 A1
20120105522 Wallsten May 2012 A1
20120114849 Melcher May 2012 A1
20120162331 Kataoka Jun 2012 A1
20120186518 Herre Jul 2012 A1
20120219699 Pettersson et al. Aug 2012 A1
20120249679 Beier et al. Oct 2012 A1
20120282405 Herre Nov 2012 A1
20130201243 Yoshida Aug 2013 A1
20130215203 Chen Aug 2013 A1
20130257984 Beier et al. Oct 2013 A1
20130284833 Fritz et al. Oct 2013 A1
20140076985 Pettersson et al. Mar 2014 A1
20140120457 Choi May 2014 A1
20140242285 Pettersson et al. Aug 2014 A1
20140329001 Rouaud et al. Nov 2014 A1
20150009254 Kaiba et al. Jan 2015 A1
20150042716 Beier et al. Feb 2015 A1
20150086723 Bustgens Mar 2015 A1
20150098028 Ohnishi Apr 2015 A1
20150328654 Scwab Nov 2015 A1
20150375258 Fritz et al. Dec 2015 A1
20150375507 Ikushima Dec 2015 A1
20160001322 Fritz et al. Jan 2016 A1
20160052312 Pitz et al. Feb 2016 A1
20160074822 Han Mar 2016 A1
20160288552 Ikushima Oct 2016 A1
20160306364 Ikushima Oct 2016 A1
20170087837 Stefani et al. Mar 2017 A1
20170106393 Hamspon et al. Apr 2017 A1
20170128962 Kashiyama et al. May 2017 A1
20170136481 Fritz et al. May 2017 A1
20170252765 Medard et al. Sep 2017 A1
20170267002 Pitz et al. Sep 2017 A1
20170299088 Rau Oct 2017 A1
20170361346 Lahidjanian et al. Dec 2017 A1
20180022105 Nakamura et al. Jan 2018 A1
20180056670 Kerr Mar 2018 A1
20180093491 Murayama et al. Apr 2018 A1
20180178505 Stefani et al. Jun 2018 A1
20180222186 Stefani et al. Aug 2018 A1
20180250955 Herre Sep 2018 A1
20190091712 Medard et al. Mar 2019 A1
Foreign Referenced Citations (200)
Number Date Country
2287527 Aug 1998 CN
1331661 Jan 2002 CN
1411914 Apr 2003 CN
1438942 Aug 2003 CN
1512919 Jul 2004 CN
1176815 Nov 2004 CN
1668386 Sep 2005 CN
1761530 Apr 2006 CN
101264698 Sep 2008 CN
101309755 Nov 2008 CN
101657264 Feb 2010 CN
101784348 Jul 2010 CN
102177002 Sep 2011 CN
102198434 Sep 2011 CN
102971080 Mar 2013 CN
103153483 Jun 2013 CN
103909743 Jul 2014 CN
104613205 May 2015 CN
104994966 Oct 2015 CN
105358259 Feb 2016 CN
205042649 Feb 2016 CN
106414081 Feb 2017 CN
1284250 Nov 1968 DE
7710895 Sep 1977 DE
3045401 Jul 1982 DE
3221327 Sep 1983 DE
3225554 Jan 1984 DE
3634747 Aug 1987 DE
3804092 Sep 1988 DE
4013322 Oct 1991 DE
4115111 Nov 1991 DE
4138491 May 1993 DE
9405600 Jun 1994 DE
68924202 Feb 1996 DE
19606716 Aug 1997 DE
19630290 Jan 1998 DE
19731829 Jan 1999 DE
19743804 Apr 1999 DE
9422327 Mar 2000 DE
19852079 May 2000 DE
19936790 Feb 2001 DE
20017629 Mar 2001 DE
10048749 Apr 2002 DE
69429354 May 2002 DE
69622407 Mar 2003 DE
10307719 Sep 2003 DE
60001898 Feb 2004 DE
102004021223 Dec 2004 DE
10331206 Jan 2005 DE
102004034270 Feb 2006 DE
102004044655 Mar 2006 DE
102004049471 Apr 2006 DE
60212523 Feb 2007 DE
69836128 Aug 2007 DE
60125369 Oct 2007 DE
102006021623 Nov 2007 DE
102006056051 May 2008 DE
102007018877 Oct 2008 DE
60132100 Dec 2008 DE
102007037663 Feb 2009 DE
10 2008 018 881 Sep 2009 DE
102008053178 May 2010 DE
102009029946 Dec 2010 DE
102009038462 Mar 2011 DE
102010004496 Jul 2011 DE
102010019612 Nov 2011 DE
102012006371 Jul 2012 DE
102012005087 Oct 2012 DE
102012005650 Sep 2013 DE
102012212469 Jan 2014 DE
102012109123 Mar 2014 DE
202013101134 Jun 2014 DE
102013002412 Aug 2014 DE
102013011107 Aug 2014 DE
102013205171 Sep 2014 DE
102014006991 Dec 2014 DE
102014007523 Nov 2015 DE
102014008183 Dec 2015 DE
10 2014 217 892 Mar 2016 DE
102014012705 Mar 2016 DE
102014013158 Mar 2016 DE
10 2016 014 952 Jun 2018 DE
0138322 Apr 1985 EP
0297309 Jan 1989 EP
0665106 Aug 1995 EP
1120258 Aug 2001 EP
1270086 Jan 2003 EP
1764226 Mar 2007 EP
1852733 Nov 2007 EP
1884365 Feb 2008 EP
1946846 Jul 2008 EP
2002898 Dec 2008 EP
2133154 Dec 2009 EP
2151282 Feb 2010 EP
2196267 Jun 2010 EP
2380744 Oct 2011 EP
2433716 Mar 2012 EP
2468512 Jun 2012 EP
2641661 Sep 2013 EP
2644392 Oct 2013 EP
2777938 Sep 2014 EP
2799150 Nov 2014 EP
2842753 Mar 2015 EP
3002128 Apr 2016 EP
3156138 Apr 2017 EP
3213823 Sep 2017 EP
3257590 Dec 2017 EP
3272669 Jan 2018 EP
3068626 Oct 2019 EP
3010918 Mar 2015 FR
2200433 Aug 1988 GB
2367771 Apr 2002 GB
2507069 Apr 2014 GB
S5722070 Feb 1982 JP
S62116442 May 1987 JP
H04-106669 Sep 1992 JP
H0798171 Oct 1995 JP
H09192583 Jul 1997 JP
2011206958 Jun 2000 JP
2000317354 Nov 2000 JP
2001129456 May 2001 JP
2001157863 Jun 2001 JP
2001239652 Sep 2001 JP
2001300404 Oct 2001 JP
2005501745 Jan 2002 JP
2002361863 Dec 2002 JP
2003506210 Feb 2003 JP
2003136030 May 2003 JP
2003164780 Jun 2003 JP
2004528956 Sep 2004 JP
2004337710 Dec 2004 JP
2000158670 Sep 2005 JP
2005526234 Sep 2005 JP
2007021760 Feb 2007 JP
2007152666 Jun 2007 JP
2007520340 Jul 2007 JP
2007245633 Sep 2007 JP
2007289848 Nov 2007 JP
2008110332 May 2008 JP
2009006324 Jan 2009 JP
2010528852 Aug 2010 JP
2010531213 Sep 2010 JP
2010531729 Sep 2010 JP
2010241003 Oct 2010 JP
2012011310 Jan 2012 JP
2012506305 Mar 2012 JP
2012135925 Jul 2012 JP
2012206116 Oct 2012 JP
2012228643 Nov 2012 JP
2012228660 Nov 2012 JP
2013067179 Apr 2013 JP
2013530816 Aug 2013 JP
2013188706 Sep 2013 JP
2014019140 Feb 2014 JP
2014050832 Mar 2014 JP
2014111307 Jun 2014 JP
2015-009222 Jan 2015 JP
2015027636 Feb 2015 JP
2015096322 May 2015 JP
2015520011 Jul 2015 JP
2015193129 Nov 2015 JP
2015535735 Dec 2015 JP
2016507372 Mar 2016 JP
2016526910 Sep 2016 JP
2016175077 Oct 2016 JP
2016175662 Oct 2016 JP
2018012065 Jan 2018 JP
2020513311 May 2020 JP
2020513314 May 2020 JP
8601775 Mar 1986 WO
9856585 Dec 1998 WO
02098576 Dec 2002 WO
2003021519 Mar 2003 WO
2003062129 Jul 2003 WO
2004142382 May 2004 WO
2004048112 Jun 2004 WO
2004085738 Oct 2004 WO
2005016556 Feb 2005 WO
2005075170 Aug 2005 WO
2006022217 Mar 2006 WO
2007121905 Nov 2007 WO
2009019036 Feb 2009 WO
2010046064 Apr 2010 WO
2010146473 Dec 2010 WO
2011044491 Apr 2011 WO
2011128439 Oct 2011 WO
2011138048 Nov 2011 WO
2013121565 Aug 2013 WO
2014121916 Aug 2014 WO
2014121927 Aug 2014 WO
2015071270 May 2015 WO
2015096322 Jul 2015 WO
2015186014 Dec 2015 WO
2016-087016 Jun 2016 WO
2016142510 Sep 2016 WO
2016145000 Sep 2016 WO
2017006245 Jan 2017 WO
2017006246 Jan 2017 WO
2018102846 Jun 2018 WO
2018108565 Jun 2018 WO
Non-Patent Literature Citations (72)
Entry
Non-Final Office Action dated Dec. 13, 2022 in related U.S. Appl. No. 16/468,699 (21 pages).
Non-Final Office Action for related U.S. Appl. No. 16/468,699 dated Mar. 9, 2022 (180 pages).
Final Office Action dated Aug. 17, 2022 for U.S. Appl. No. 16/468,699 (26 pages).
JPO Decision to Grant in related application No. JP2019-532030 dated Dec. 1, 2022 (6 pages; English machine translation provided).
EPO Notification of Objection dated May 18, 2022 for Patent No. EP3718643, related to related U.S. Appl. No. 16/468,693 (55 pages; with English machine translation).
Non-Final Office Action dated Dec. 24, 2021 for related U.S. Appl. No. 16/468,693 (19 pages).
Ghasem, G. et al.; “Chapter 2 Background on Sprays and Their Production”, Industrial Sprays and Atomization: Design, Analysis and Applications, Jan. 1, 2002, Springer, London, pp. 7-33, XP009195118, ISBN: 978-1-4471-3816-7.
International Search Report and Written Opinion for PCT/EP2017/081141 dated Feb. 26, 2018 (17 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081114 dated May 15, 2018 (33 pages; with English translation).
Anonymous: “Roboterkalibrierung—Wikipedia”, Nov. 7, 2016, XP055471615, Gefunden im Internet: URL: https://de.wikipedia.org/w/index.php?title=Roboterkalibrierung&oldid=159460756 [gefunden am Apr. 30, 2018] das ganze dockument (8 pages; with English translation).
Beyer, Lukas: “Genauigkeitssteigerung von Industrierobotern”, Forschungsberichte Aus Dem Laboratorium Fertigungstechnik/Helmut-Schmidt-Universitat, Universitat Der Bundeswehr Hamburg, Dec. 31, 2005, Seiten 1-4, XP009505118; ISSN: 1860-2886; ISBN: 978-3-8322-3681-6 (13 pages; with English machine translation).
International Search Report and Written Opinion for PCT/EP2017/081108 dated Feb. 28, 2018 (with English translation; 18 pages).
International Search Report and Written Opinion for PCT/EP2017/081099 dated Feb. 26, 2018 (21 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081102 dated Mar. 14, 2018 (16 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081105 dated Feb. 26, 2018 (19 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081152 dated May 15, 2018 (25 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081098 dated May 14, 2018 (26 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081101 dated Feb. 28, 2018 (14 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081121 dated Feb. 26, 2018 (20 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081117 dated Mar. 12, 2018 (27 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081123 dated Feb. 26, 2018 (20 pages; with English translation).
JPO Submission for JP2019-531096; submitted Dec. 21, 2020 (32 pages; with English translation).
JPO Submission for JP2019-531957; submitted Dec. 21, 2020 (21 pages; with English translation).
Japenese Patent Office Notice of Reasons of Refusal for Application No. JP 2019-531967 dated Jun. 8, 2021 (8 pages; with English machine translation).
Notification of Reasons for Refusal for Application No. JP2019-532012 dated Jun. 22, 2021 (6 pages; with English machine translation).
Notification of Reasons for Refusal for Application No. JP2019-527330 dated Jun. 22, 2021 (10 pages; with English machine translation).
Chinese Office Action dated Jun. 2, 2021 for Application No. CN201780077017.9 (17 pages; with English machine translation).
Japanese Notification of Reasons for Rejection dated Jun. 1, 2021 for Application No. JP2019-531944 (14 pages; with English machine translation).
Japanese Notification of Reasons for Rejection dated Jun. 8, 2021 for Application No. JP2019-531957 (13 pages; with English machine translation).
Supplemental Notice of Allowability dated Jul. 8, 2021 for U.S. Appl. No. 16/468,696 (11 pages).
Liptak, Bela. (2006). Instrument Engineers' Handbook (4th Edition)—Process Control and Optimization, vol. 2—2.1.3.5 Process Time Constant, (pp. 99-102). Taylor & Francis. Retrieved from https://app.knovel.eom/hotlink/pdf/id:kt00CC7HL1/instrument-engineers/process-time-constant (Year: 2006).
JPO Office Action for Application No. JP2019-531097 dated Jun. 29, 2021 (10 pages; with English machine translation).
JPO Office Action for Application No. 2019-531096 dated Jul. 6, 2021 (9 pages; with English machine translation).
JPO Office Action for Application No. 2019-531098 dated Jul. 6, 2021 (5 pages; English translation only).
JPO Office Action for Application No. 2019-531459 dated Jul. 6, 2021 (8 pages; with English machine translation).
JPO Office Action dated Jul. 13, 2021 for Application No. JP2019-532024 (12 pages; with English machine translation).
Non-Final Office Action dated Aug. 27, 2021 for U.S. Appl. No. 16/468,695 (149 pages).
JPO Notification of Reasons for Rejection for Application No. JP2019-532030 dated May 18, 2021 (6 pages; with English translation).
CIPO Office Action for Application No. CN201780077474.8 dated Apr. 26, 2021 (17 pages; with English translation).
Notice of Allowance mailed in U.S. Appl. No. 16/468,689 dated Jun. 2, 2021 (38 pages).
Non-Final Office Action dated Feb. 5, 2021 for U.S. Appl. No. 16/468,701 (80 pages).
Non-Final Office Action dated Feb. 18, 2021 for U.S. Appl. No. 16/468,692 (97 pages).
Final Office Action dated May 13, 2021 for U.S. Appl. No. 16/468,691 (70 pages).
JPO Decision to Grant dated Oct. 5, 2021 for Application No. JP2019-532113 (7 pages; with English machine translation).
Final Office Action dated Oct. 7, 2021 for U.S. Appl. No. 16/468,693 (58 pages).
Non-Final Office Action for U.S. Appl. No. 16/468,691 dated Jan. 7, 2021 (79 pages).
China National Intellectual Property Administration Office Action and Search Report for CN Application No. 201780077018.3 dated Aug. 27, 2020 (11 pages; Search Report in English).
Chinese Office Action and Search Report for CN201780077603.3 dated Oct. 12, 2020 (15 pages; English translation not available).
European Search Report for EP20170638.9 dated Sep. 14, 2020 (4 pages—English translation not available).
European Search Report for EP20170021.8 dated Sep. 8, 2020 (11 pages—English translation not available).
European Search Report for EP20170025.9 dated Sep. 9, 2020 (4 pages—English translation not available).
European Search Report for EP20170016.8 dated Sep. 7, 2020 (4 pages—English translation not available).
EPO Examination Report for Application No. 201702818.1 dated Dec. 18, 2020 (with English machine translation; 6 pages).
EPO Official Notification of Opposition for Application No. 17821803.8 dated Feb. 10, 2021 (64 pages; with English machine translation).
Non-Final Office Action dated Apr. 28, 2021 for U.S. Appl. No. 16/468,693 (109 pages).
Final Office Action dated Apr. 19, 2021 for U.S. Appl. No. 16/468,700 (62 pages).
Final Office Action dated Jun. 11, 2021 for U.S. Appl. No. 16/468,701 (64 pages).
Chinese Office Action for Application No. CN20178007017.9 dated Aug. 31, 2020 (8 pages; with English translation).
Non Final Office Action for U.S. Appl. No. 16/468,697 dated Oct. 22, 2020 (78 pages).
Non Final Office Action for U.S. Appl. No. 16/468,696 dated Nov. 2, 2020 (58 pages).
Non Final Office Action for U.S. Appl. No. 16/468,689 dated Oct. 15, 2020 (77 pages).
Chinese Office Action for CN201780077476.7 dated Sep. 23, 2020 (12 pages; English translation not available).
Non Final Office Action for U.S. Appl. No. 16/468,700 dated Dec. 1, 2020 (73 pages).
Final Office Action dated Mar. 19, 2021 for U.S. Appl. No. 16/468,696 (45 pages).
Non-Final Office Action dated Nov. 23, 2021 for U.S. Appl. No. 16/468,694 (25 pages).
JPO Decision to Grant in related application JP2019-532012 dated Jan. 25, 2022 (6 pages; with English machine translation).
Chinese Office Action in related application No. CN201780077045.0 dated Jan. 29, 2022 (17 pages; English machine translation provided).
Non-Final Office Action dated Jan. 6, 2022 for related U.S. Appl. No. 16/468,701 (36 pages).
USPTO Non-Final Office Action dated Jun. 23, 2023 for related U.S. Appl. No. 17/740,537 (107 pages).
USPTO Non-Final Office Action dated Jun. 26, 2023 for related U.S. Appl. No. 17/965,062 (85 pages).
Huo Lijiang, “Packaging Printing Technology”, 1st edition, pp. 321-323, Printing Industry Press, Sep. 30, 2011 (10 pages; with English machine translation).
Chinese Patent Office—Office Action for Application No. CN202211512023.1 dated Aug. 16, 2023 (26 pages; with English machine translation).
Related Publications (1)
Number Date Country
20220080445 A1 Mar 2022 US
Continuations (1)
Number Date Country
Parent 16468690 US
Child 17532411 US