The disclosure concerns a coating method for the coating of components with a nozzle applicator with several nozzles, in particular for painting motor vehicle body components.
For the serial painting of motor vehicle body components, rotary atomizers have usually been used as application devices up to now, but they have the disadvantage of a limited application efficiency, i.e. only a part of the applied paint deposits on the components to be coated, while the rest of the applied paint has to be disposed of as a so-called overspray.
A newer development line, on the other hand, provides for so-called printheads as application device, as known for example from DE 10 2013 002 412 A1, U.S. Pat. No. 9,108,424 B2 and DE 10 2010 019 612 A1. In contrast to the known rotary atomizers, such printheads do not emit a spray of the paint to be applied, but a narrowly confined paint jet, which is almost completely deposited on the component to be painted, so that almost no overspray occurs.
However, such printheads are not yet sufficiently well suited for surface coating, since high area coating performance and accuracy are required for the series coating of motor vehicle body components.
Furthermore, there is the problem that wraps around component edges and complex surface geometries on the outer skin or in the interior of motor vehicle body components cannot be painted satisfactorily.
The technical background of the disclosure can also be found in EP 3 002 128 A2, US 2001/0019340 A1 and EP 2 196 267 A2.
The disclosure is therefore based on the task of creating the possibility of making such nozzle applicators (e.g. printheads) suitable for the series painting of series-produced motor vehicle body components.
The disclosure relates to flexibly controlling a nozzle applicator (e.g. printhead) during a coating method, for example by a flexible fluid-technical or valve-technical control or by a flexible mechanical guidance of the nozzle applicator.
The term “nozzle applicator” used in the disclosure is to be generally understood and initially only serves to distinguish it from conventional atomizers (e.g. rotary atomizers, ultrasonic atomizers, airmix atomizers, airless atomizers, etc.), which do not emit a narrowly limited coating agent jet but a spray of the coating agent to be applied. The term “nozzle applicator” implies that at least one nozzle emits a coating agent jet which is relatively narrowly limited in space. Preferably, however, the nozzle applicator is a printhead as it is known from the state of the art and is described for example in DE 10 2013 002 412 A1, U.S. Pat. No. 9,108,424 B2 and DE 10 2010 019 612 A1.
In one example of the disclosure, the nozzle applicator is designed for the application of a paint (e.g. base coat, clear coat, water-based paint, solvent-based paint, etc.). However, the term “coating agent” used in the disclosure is not limited to paints, but can also include other coating agents, such as adhesives, insulating materials, sealants, primers, etc., to name but a few examples.
The coating method according to the disclosure provides that the nozzle applicator is guided over the surface of the component to be coated, which is preferably done by means of a multi-axis coating robot with serial robot kinematics and at least six or seven movable robot axes.
The nozzle applicator is flexibly controlled according to the disclosure. For example, the nozzle applicator can be flexibly controlled using valves, for example by releasing or blocking the nozzles with control valves in the nozzle applicator in order to control the release of the coating agent. Another option for flexible control is that the amount of coating agent supplied and applied can be flexibly adjusted. It is also possible to flexibly control the nozzle applicator mechanically, for example by rotating, tilting or positioning or aligning the nozzle applicator during the coating method, e.g. by essentially aligning it orthogonal to the coating surface.
In an example of the disclosure, the nozzle applicator is selectively operated with a large area coating performance or with a small area coating performance.
The high area coating performance is then selected to coat large component surfaces, such as the outer surfaces of motor vehicle body components.
The small area coating performance of the nozzle applicator, on the other hand, is selected when details are to be coated, especially in the interior or on edges or design lines of the motor vehicle body components to be painted.
The switching between the large area coating performance and the small area coating performance can be carried out automatically and program-controlled depending on the type of the respective colour impact point.
If, for example, the colour impact point is located on a large surface area of the roof of a motor vehicle body component to be painted, the nozzle applicator should coat the coating agent with a large area coating performance.
If, on the other hand, the colour impact point is in the interior or on an edge or a design line of the motor vehicle body component to be painted, the nozzle applicator should preferably be operated with the small area coating performance.
In this context it should be mentioned that the disclosure is not limited to a certain large area coating performance and a certain small area coating performance, i.e. two different area coating performances. Rather, it is also possible within the scope of the disclosure that the area coating performance is continuously adapted.
In one example of the disclosure, the nozzles in the nozzle applicator are arranged next to each other in a nozzle row, whereby several parallel nozzle rows with several nozzles each are also possible. The nozzle applicator is moved along a preset, programmed (“teached”) movement path over the surface of the component to be coated (e.g. motor vehicle body component), which—as already briefly mentioned above—can be done by means of a multi-axis coating robot with serial robot kinematics and at least six or seven movable robot axes.
If the nozzle applicator is now to be operated with the high area coating performance, the nozzle applicator is rotated around the jet axis of the coating agent jets in such a way that the nozzle row is aligned transversely (e.g. at right angles) to the movement path. The nozzle applicator thus covers a relatively large component area per time unit. The formulation used in the disclosure of an alignment of the nozzle row transverse to the movement path means preferably that the angle between the nozzle row and the movement path is greater than 50°, 60°, 75°, 80° or 85°.
If, on the other hand, the nozzle applicator is to be operated with the small area coating performance, the nozzle applicator is rotated around the jet axis in a preferred variant so that the nozzle row is aligned longitudinally (e.g. parallel) to the movement path. The nozzle applicator then covers a relatively small component area per time unit. The formulation used in the context of the disclosure of an alignment of the nozzle row along the movement path means preferably that the angle between the nozzle row and the movement path is smaller than 60°, 50°, 40°, 30°, 25°, 20°, 15°, 10° or 5°.
It should also be mentioned that the nozzle applicator can be rotated during movement, i.e. within a coating path. This can be distinguished from a rotation of the nozzle applicator only at the beginning or end of a movement path or at the turning points of a meandering movement path.
It has already been mentioned briefly above that the nozzle applicator can have several parallel nozzle rows in which several nozzles are arranged next to each other. Here it is possible that one or more nozzle rows of the nozzle applicator are activated or deactivated depending on the desired area coating performance.
If the nozzle applicator is to be operated with a small area coating performance, it is preferable that not all nozzle rows of the nozzle applicator are activated, in particular only a single nozzle row or individual nozzles of a nozzle row. This is helpful, for example, to keep the coating distance within an ideal tolerance window or to allow the coating agent to impinge almost orthogonally on the component surface.
If, on the other hand, the nozzle applicator is to be operated with a large area coating performance, more than one nozzle row of the nozzle applicator is preferably activated, in particular all nozzle rows.
It should be mentioned here that the number of activated or deactivated nozzle rows of the nozzle applicator does not have to be switched between a maximum value and a minimum value. Within the scope of the disclosure, there is also the possibility that the nozzle rows can be individually switched on or off in order to increase or decrease the area coating performance accordingly and thus enable a quasi continuous adjustment of the area coating performance.
In an example of the disclosure, the flexible adjustment of the control of the nozzle applicator is carried out by switching the nozzle applicator between a jet mode and a drop mode.
In the jet mode, the nozzle applicator emits a coating agent jet which is connected in the longitudinal direction of the coating agent jet, in contrast to a droplet jet which consists of droplets which are separated from each other in the longitudinal direction of the droplet jet. For this purpose, the painting distance should be chosen so that the coating agent jet is not subject to natural decay.
In the drop mode, however, the nozzle applicator emits a droplet jet consisting of droplets which are separated from each other in the longitudinal direction of the droplet jet, in contrast to the coating agent jet which is connected in the longitudinal direction of the coating agent jet.
The jet mode may be selected program-controlled when a surface coating with a high area coating performance is required, for example for painting large outer surfaces of a motor vehicle body component.
The drop mode, on the other hand, is preferably used under program control if coating is to take place in the overlapping area of coating agent paths or at the beginning or end of the path.
In addition, the drop mode can be used advantageously if detailed painting is to be carried out or if graphics are to be applied to the component surface.
In general, it is also possible that when coating a component surface, the inner surfaces of the component surface are coated with the jet mode, while the edges of the component surface are coated with the drop mode.
It should also be mentioned here that the droplet jet and the continuous coating agent jet can be emitted simultaneously with the same nozzle applicator. This means that a droplet jet is emitted from at least one nozzle while at the same time a continuous coating agent jet is emitted from at least one other nozzle of the same nozzle applicator.
Alternatively it is possible that the droplet jet and the continuous coating agent jet are alternately discharged with the same nozzle applicator. This means that the nozzle applicator is switched over between the drop mode and the jet mode and then works either only in the drop mode or in the jet mode.
Alternatively, in an applicator with several nozzle plates, one nozzle plate can be operated in the jet mode and another in the drop mode.
Alternatively, it is also possible to use several nozzle applicators, whereby a first nozzle applicator operates in the drop mode while a second nozzle applicator operates in the jet mode.
The disclosure also allows two nozzle applicators to be guided by a coating robot over the component surface of the component to be coated and then coat the component surface together. A prerequisite for such a cooperation between two coating robots and the nozzle applicators guided by these two coating robots, however, is a very precise relative positioning of the two nozzle applicators. This is particularly relevant when the two nozzle applicators apply coating agent paths that abut against each other, since mispositions are then easily visible. An undesired overlapping of the coating agent then leads to an overcoating, i.e. to an excessive thickness of the coating in the overlapping area. If, on the other hand, the distance between the nozzle applicators is too large, gaps can occur between the adjacent coating agent paths, which can also be disruptive. The two nozzle applicators are therefore guided over the component surface of the component to be coated by the two coating robots with a high relative positioning accuracy with a very small positioning tolerance. This relative positioning tolerance is preferably smaller than 2 mm, 1 mm, 500 μm, 200 μm, 100 μm or even 50 μm.
This smaller positioning tolerance cannot, however, be easily achieved in painting systems for the painting of motor vehicle body components. In addition, the usual multi-axis painting robots have a certain positioning tolerance depending on the design. On the other hand, the motor vehicle body components to be painted are also conveyed by a conveyor through the painting system, whereby the conveyor also has a relatively large positioning tolerance.
The disclosure therefore preferably provides for an optical measurement system to determine the spatial position of the coating object and/or the two nozzle applicators. Thus, within the scope of the disclosure, it is possible to adjust tolerance-related positioning errors so that the desired high relative positioning accuracy is achieved.
For example, such an optical measurement system can be camera-based and optically detects markers on the coating robots and/or on the nozzle applicators.
Alternatively, it is also possible for the coating robots to have sensors, for example on the robot hand axes or on the nozzle applicators themselves, in order to detect the relative positioning of the two nozzle applicators, which in turn enables appropriate readjustment to achieve the desired high positioning accuracy.
Another problem is the coating of heavily curved component surfaces, such as motor vehicle body components. This is because the application distance between the nozzles of the nozzle applicator and the component surface changes continuously. Furthermore, the application distance between the nozzles within the nozzle applicator is not uniform, so that a uniform control of the nozzle applicator can lead to problems due to the different application distance of the individual nozzles.
In another example of the disclosure, it is therefore planned that when coating strongly curved component surfaces, only a first part of the nozzles is activated, preferably a relatively small, connected part of the nozzles, so that within the activated part of the nozzles there is as uniform an application distance as possible with as orthogonal an orientation of the coating agent jets as possible.
When coating less curved component surfaces and in particular when coating flat component surfaces, a larger second part of the nozzles is preferably activated in order to achieve the greatest possible area coating performance.
In addition to the coating method according to the disclosure described above, the disclosure also includes a corresponding coating device (e.g. paint shop), whereby the structure and function of this coating device are already apparent from the above description, so that reference is made to the above description in order to avoid repetitions.
In the following, the drawing according to
The nozzle applicator has numerous nozzles, each of which emits a coating agent jet, whereby the nozzle applicator 2 has an active part 4, within which all nozzles of the nozzle applicator 2 are active and emit the coating agent jets 3. The active part 4 of the nozzle applicator 2 conventionally includes all nozzles of the nozzle applicator 2, i.e. all nozzles of the nozzle applicator 2 emit a coating agent jet 3, which also applies to the coating of strongly curved component surfaces. As a result, however, the application distance d indicated by the double arrows is very non-uniform within the nozzle applicator 2. For example, the application distance d is very small for the nozzle on the left of the nozzle applicator 2 in the drawing, while the application distance d is very large for the nozzle on the right in the drawing. This non-uniformity of the application distance d within the nozzle applicator 2 can, however, lead to a corresponding inhomogeneity of the coating on the component surface 1.
This problem is solved by the solution according to the disclosure shown in
It should first be mentioned that the nozzle applicator 2 is guided along a programmed (“taught”) movement path 6 over the component surface by a multi-axis painting robot with a serial robot kinematics, where the drawing shows only a small section of the movement path 6 to illustrate the principle of the disclosure.
It should also be mentioned that the nozzle applicator has several parallel nozzle rows, each with several nozzles 7, which can be switched either inactive or active. The active nozzles are shown as filled circles, while the inactive nozzles are shown as circular rings.
It should also be mentioned that the nozzles 7 are arranged next to each other in one of three nozzle rows 8.
The multi-axis painting robot now rotates the nozzle applicator 2 during the movement along the movement path 6 depending on the desired area coating performance.
However, the nozzle applicator need not necessarily be parallel to the movement path. Rather, it may be turned in a preferred variation at any angle α especially α<60°, α<45° or α<20° to the movement path.
Here the nozzle applicator 2 emits continuous coating agent jets 3a which are connected in the longitudinal direction of the coating agent jet 3a. This mode of operation may be useful, for example, for painting large external surfaces with a high area coating performance.
It should be mentioned that the nozzle applicator 2 can be switched between the operating mode shown in
Here it can be useful if the nozzle applicator 2 applies the droplet jets 3b in the area of the turning points, whereas the nozzle applicator 2 applies the continuous coating agent jets 3a between the turning points.
The drawing speed of the nozzle applicator 2 for the application of the droplet jets 3b may differ from the drawing speed for the application of the continuous coating agent jets 3a, in particular it may be lower.
The painting is done by two painting robots 12, 13 with a serial robot kinematics and more than six movable robot hand axes, whereby the painting robots 12, 13 are shown here only schematically.
The painting robots 12, 13 each guide a nozzle applicator 14, 15, whereby the nozzle applicators 14, 15 interact during painting, which requires a very high relative positioning accuracy when positioning the nozzle applicators 14, 15. However, the required relative positioning accuracy cannot be easily achieved since both the painting robots 12, 13 and the conveyor 11 each have relatively coarse positioning tolerances.
In this example, a camera-based measuring system is provided to measure the actual relative positioning of the nozzle applicators 14, 15 and/or the motor vehicle body component 10 and thus to be able to adjust the positioning so that the required positioning tolerances of less than 200 μm are maintained.
The camera-based measuring system has a camera 16, which takes an image of the nozzle applicators 14, 15 and the component surface and forwards it to an image evaluation unit 17.
The image evaluation unit 17 then determines the relative positioning of the two nozzle applicators 14, 15 by means of an image evaluation and, if necessary, controls a control device 18 in such a way that the painting robots 12, 13 are controlled subsequently, since the desired relative positioning of the nozzle applicators 14, 15 is achieved with the required high positioning accuracy. The absolute position of the motor vehicle body components 10 can also be determined here.
A feature of this example is that, in contrast to the example in
A feature of the example according to
Within the component surface to be coated, coating is applied with the continuous coating agent jets 3a, whereas coating is applied with the droplet jet 3a at the edges of the component surface to be coated.
The example shown in
In the example shown in
The disclosure is not limited to the examples described above. Rather, a large number of variants and modifications are possible, which also make use of the disclosure's idea and therefore fall within the scope of protection.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 014 944.2 | Dec 2016 | DE | national |
This application is a continuation of, and claims priority to, U.S. patent application Ser. No. 16/468,690, filed on Jun. 12, 2019, which application is a national stage of, and claims priority to, Patent Cooperation Treaty Application No. PCT/EP2017/081114, filed on Dec. 1, 2017, which application claims priority to German Application No. DE 10 2016 014 944.2, filed on Dec. 14, 2016, which applications are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3421694 | Muller | Jan 1969 | A |
3717306 | Hushon et al. | Feb 1973 | A |
3981320 | Wiggins | Sep 1976 | A |
4141231 | Kudlich | Feb 1979 | A |
4375865 | Springer | Mar 1983 | A |
4383264 | Lewis | May 1983 | A |
4423999 | Choly | Jan 1984 | A |
4430010 | Zrenner et al. | Feb 1984 | A |
4435719 | Snaper | Mar 1984 | A |
4478241 | Cardenas-Franco | Oct 1984 | A |
4555719 | Arway et al. | Nov 1985 | A |
4593360 | Cocks | Jun 1986 | A |
4668948 | Merkel | May 1987 | A |
4714044 | Kikuchi | Dec 1987 | A |
4734711 | Piatt et al. | Mar 1988 | A |
4826135 | Mielke | May 1989 | A |
4894252 | Bongen et al. | Jan 1990 | A |
4941778 | Lehmann | Jul 1990 | A |
4974780 | Nakamura et al. | Dec 1990 | A |
4985715 | Cyphert et al. | Jan 1991 | A |
5050533 | Zaber | Sep 1991 | A |
5072881 | Taube, III | Dec 1991 | A |
5429682 | Harlow, Jr. | Jul 1995 | A |
5435884 | Simmons et al. | Jul 1995 | A |
5538221 | Joswig | Jul 1996 | A |
5556466 | Martin et al. | Sep 1996 | A |
5602575 | Pauly | Feb 1997 | A |
5636795 | Sedgwick et al. | Jun 1997 | A |
5647542 | Diana | Jul 1997 | A |
5659347 | Taylor | Aug 1997 | A |
5681619 | Ogasawara | Oct 1997 | A |
5740967 | Simmons et al. | Apr 1998 | A |
5843515 | Crum et al. | Dec 1998 | A |
5951882 | Simmons et al. | Sep 1999 | A |
5964407 | Sandkleiva | Oct 1999 | A |
5976343 | Schlaak | Nov 1999 | A |
6179217 | Yoshida et al. | Jan 2001 | B1 |
6325302 | Guzowski | Dec 2001 | B1 |
6540835 | Kim et al. | Apr 2003 | B2 |
6607145 | Boriani et al. | Aug 2003 | B1 |
6641667 | Ochiai et al. | Nov 2003 | B2 |
6712285 | Provenaz et al. | Mar 2004 | B2 |
6777032 | Ogasahara et al. | Aug 2004 | B2 |
6811807 | Zimmermann et al. | Nov 2004 | B1 |
6849684 | Poppe et al. | Feb 2005 | B2 |
7160105 | Edwards | Jan 2007 | B2 |
7178742 | Nellentine et al. | Feb 2007 | B2 |
7182815 | Katagami et al. | Feb 2007 | B2 |
7244310 | Edwards | Jul 2007 | B2 |
7270712 | Edwards | Sep 2007 | B2 |
7357959 | Bauer | Apr 2008 | B2 |
7387071 | Heinke et al. | Jun 2008 | B2 |
7449070 | Fellingham | Nov 2008 | B2 |
7604333 | Horsnell | Oct 2009 | B2 |
7757632 | Edwards | Jul 2010 | B2 |
7837071 | Achrainer | Nov 2010 | B2 |
7901741 | Katagami et al. | Mar 2011 | B2 |
8028651 | Rademacher et al. | Oct 2011 | B2 |
8118385 | Van De Wynckel et al. | Feb 2012 | B2 |
8449087 | Kataoka et al. | May 2013 | B2 |
8545943 | Frankenberger et al. | Oct 2013 | B2 |
8652581 | Merchant | Feb 2014 | B2 |
8678535 | Beier et al. | Mar 2014 | B2 |
8875655 | Pettersson et al. | Nov 2014 | B2 |
8882242 | Beier et al. | Nov 2014 | B2 |
9010899 | Harjee et al. | Apr 2015 | B2 |
9108424 | Wallsten et al. | Aug 2015 | B2 |
9140247 | Herre et al. | Sep 2015 | B2 |
9156054 | Ikushima | Oct 2015 | B2 |
9266353 | Beier et al. | Feb 2016 | B2 |
9393787 | Ikushima | Jul 2016 | B2 |
9464573 | Remy et al. | Oct 2016 | B2 |
9592524 | Fritz et al. | Mar 2017 | B2 |
9701143 | Ikushima | Jul 2017 | B2 |
9707585 | Reimert et al. | Jul 2017 | B2 |
9844792 | Pettersson et al. | Dec 2017 | B2 |
9901945 | Fehr et al. | Feb 2018 | B2 |
9914150 | Pettersson et al. | Mar 2018 | B2 |
10016977 | Stefani et al. | Jul 2018 | B2 |
10105946 | Nakamura et al. | Oct 2018 | B2 |
10150304 | Herre et al. | Dec 2018 | B2 |
10252552 | Pitz et al. | Apr 2019 | B2 |
10272677 | Stefani et al. | Apr 2019 | B2 |
10464095 | Fritz | Nov 2019 | B2 |
10532569 | Wallsten et al. | Jan 2020 | B2 |
10814643 | Herre | Oct 2020 | B2 |
11504735 | Fritz | Nov 2022 | B2 |
20010006392 | Otsuki | Jul 2001 | A1 |
20010017085 | Kubo et al. | Aug 2001 | A1 |
20010019340 | Kubo et al. | Sep 2001 | A1 |
20020024544 | Codos | Feb 2002 | A1 |
20020043280 | Ochiai et al. | Apr 2002 | A1 |
20020043567 | Provenaz et al. | Apr 2002 | A1 |
20020105688 | Katagami et al. | Aug 2002 | A1 |
20020109741 | Okabe et al. | Aug 2002 | A1 |
20020128371 | Poppe et al. | Sep 2002 | A1 |
20030020783 | Sanada | Jan 2003 | A1 |
20030041884 | Bahr | Mar 2003 | A1 |
20030049383 | Ogasahara et al. | Mar 2003 | A1 |
20030063154 | Goto | Apr 2003 | A1 |
20040028830 | Bauer | Feb 2004 | A1 |
20040089234 | Hagglund et al. | May 2004 | A1 |
20040107900 | Clifford et al. | Jun 2004 | A1 |
20040123159 | Kerstens | Jun 2004 | A1 |
20040173144 | Edwards | Sep 2004 | A1 |
20040221804 | Zimmermann et al. | Nov 2004 | A1 |
20040231594 | Edwards | Nov 2004 | A1 |
20040238522 | Edwards | Dec 2004 | A1 |
20040256501 | Mellentine et al. | Dec 2004 | A1 |
20040261700 | Edwards | Dec 2004 | A1 |
20050000422 | Edwards | Jan 2005 | A1 |
20050015050 | Mowery et al. | Jan 2005 | A1 |
20050016451 | Edwards | Jan 2005 | A1 |
20050023367 | Reighard et al. | Feb 2005 | A1 |
20050156963 | Song et al. | Jul 2005 | A1 |
20050243112 | Kobayashi et al. | Nov 2005 | A1 |
20060061613 | Fienup et al. | Mar 2006 | A1 |
20060068109 | Frankenberger et al. | Mar 2006 | A1 |
20060146379 | Katagami et al. | Jul 2006 | A1 |
20060238587 | Horsnell | Oct 2006 | A1 |
20060251796 | Fellingham | Nov 2006 | A1 |
20070062383 | Gazeau | Mar 2007 | A1 |
20070292626 | Larsson et al. | Dec 2007 | A1 |
20080271674 | Rademarcher | Nov 2008 | A1 |
20080309698 | Nakano et al. | Dec 2008 | A1 |
20090027433 | Van De Wynckel et al. | Jan 2009 | A1 |
20090029069 | Edwards | Jan 2009 | A1 |
20090117283 | Herre | May 2009 | A1 |
20090181182 | Sloan | Jul 2009 | A1 |
20090244216 | Niimi | Oct 2009 | A1 |
20100132612 | Achrainer | Jun 2010 | A1 |
20100156970 | Ikushima | Jun 2010 | A1 |
20100170918 | Achrainer | Jul 2010 | A1 |
20100225685 | Kwon et al. | Sep 2010 | A1 |
20100279013 | Frankenberger et al. | Nov 2010 | A1 |
20100282283 | Bauer | Nov 2010 | A1 |
20100321448 | Buestgens et al. | Dec 2010 | A1 |
20110014371 | Herre et al. | Jan 2011 | A1 |
20110084150 | Merchant | Apr 2011 | A1 |
20110248046 | Simion | Oct 2011 | A1 |
20110262622 | Herre | Oct 2011 | A1 |
20120085842 | Ciardella | Apr 2012 | A1 |
20120105522 | Wallsten | May 2012 | A1 |
20120114849 | Melcher | May 2012 | A1 |
20120162331 | Kataoka | Jun 2012 | A1 |
20120186518 | Herre | Jul 2012 | A1 |
20120219699 | Pettersson et al. | Aug 2012 | A1 |
20120249679 | Beier et al. | Oct 2012 | A1 |
20120282405 | Herre | Nov 2012 | A1 |
20130201243 | Yoshida | Aug 2013 | A1 |
20130215203 | Chen | Aug 2013 | A1 |
20130257984 | Beier et al. | Oct 2013 | A1 |
20130284833 | Fritz et al. | Oct 2013 | A1 |
20140076985 | Pettersson et al. | Mar 2014 | A1 |
20140120457 | Choi | May 2014 | A1 |
20140242285 | Pettersson et al. | Aug 2014 | A1 |
20140329001 | Rouaud et al. | Nov 2014 | A1 |
20150009254 | Kaiba et al. | Jan 2015 | A1 |
20150042716 | Beier et al. | Feb 2015 | A1 |
20150086723 | Bustgens | Mar 2015 | A1 |
20150098028 | Ohnishi | Apr 2015 | A1 |
20150328654 | Scwab | Nov 2015 | A1 |
20150375258 | Fritz et al. | Dec 2015 | A1 |
20150375507 | Ikushima | Dec 2015 | A1 |
20160001322 | Fritz et al. | Jan 2016 | A1 |
20160052312 | Pitz et al. | Feb 2016 | A1 |
20160074822 | Han | Mar 2016 | A1 |
20160288552 | Ikushima | Oct 2016 | A1 |
20160306364 | Ikushima | Oct 2016 | A1 |
20170087837 | Stefani et al. | Mar 2017 | A1 |
20170106393 | Hamspon et al. | Apr 2017 | A1 |
20170128962 | Kashiyama et al. | May 2017 | A1 |
20170136481 | Fritz et al. | May 2017 | A1 |
20170252765 | Medard et al. | Sep 2017 | A1 |
20170267002 | Pitz et al. | Sep 2017 | A1 |
20170299088 | Rau | Oct 2017 | A1 |
20170361346 | Lahidjanian et al. | Dec 2017 | A1 |
20180022105 | Nakamura et al. | Jan 2018 | A1 |
20180056670 | Kerr | Mar 2018 | A1 |
20180093491 | Murayama et al. | Apr 2018 | A1 |
20180178505 | Stefani et al. | Jun 2018 | A1 |
20180222186 | Stefani et al. | Aug 2018 | A1 |
20180250955 | Herre | Sep 2018 | A1 |
20190091712 | Medard et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2287527 | Aug 1998 | CN |
1331661 | Jan 2002 | CN |
1411914 | Apr 2003 | CN |
1438942 | Aug 2003 | CN |
1512919 | Jul 2004 | CN |
1176815 | Nov 2004 | CN |
1668386 | Sep 2005 | CN |
1761530 | Apr 2006 | CN |
101264698 | Sep 2008 | CN |
101309755 | Nov 2008 | CN |
101657264 | Feb 2010 | CN |
101784348 | Jul 2010 | CN |
102177002 | Sep 2011 | CN |
102198434 | Sep 2011 | CN |
102971080 | Mar 2013 | CN |
103153483 | Jun 2013 | CN |
103909743 | Jul 2014 | CN |
104613205 | May 2015 | CN |
104994966 | Oct 2015 | CN |
105358259 | Feb 2016 | CN |
205042649 | Feb 2016 | CN |
106414081 | Feb 2017 | CN |
1284250 | Nov 1968 | DE |
7710895 | Sep 1977 | DE |
3045401 | Jul 1982 | DE |
3221327 | Sep 1983 | DE |
3225554 | Jan 1984 | DE |
3634747 | Aug 1987 | DE |
3804092 | Sep 1988 | DE |
4013322 | Oct 1991 | DE |
4115111 | Nov 1991 | DE |
4138491 | May 1993 | DE |
9405600 | Jun 1994 | DE |
68924202 | Feb 1996 | DE |
19606716 | Aug 1997 | DE |
19630290 | Jan 1998 | DE |
19731829 | Jan 1999 | DE |
19743804 | Apr 1999 | DE |
9422327 | Mar 2000 | DE |
19852079 | May 2000 | DE |
19936790 | Feb 2001 | DE |
20017629 | Mar 2001 | DE |
10048749 | Apr 2002 | DE |
69429354 | May 2002 | DE |
69622407 | Mar 2003 | DE |
10307719 | Sep 2003 | DE |
60001898 | Feb 2004 | DE |
102004021223 | Dec 2004 | DE |
10331206 | Jan 2005 | DE |
102004034270 | Feb 2006 | DE |
102004044655 | Mar 2006 | DE |
102004049471 | Apr 2006 | DE |
60212523 | Feb 2007 | DE |
69836128 | Aug 2007 | DE |
60125369 | Oct 2007 | DE |
102006021623 | Nov 2007 | DE |
102006056051 | May 2008 | DE |
102007018877 | Oct 2008 | DE |
60132100 | Dec 2008 | DE |
102007037663 | Feb 2009 | DE |
10 2008 018 881 | Sep 2009 | DE |
102008053178 | May 2010 | DE |
102009029946 | Dec 2010 | DE |
102009038462 | Mar 2011 | DE |
102010004496 | Jul 2011 | DE |
102010019612 | Nov 2011 | DE |
102012006371 | Jul 2012 | DE |
102012005087 | Oct 2012 | DE |
102012005650 | Sep 2013 | DE |
102012212469 | Jan 2014 | DE |
102012109123 | Mar 2014 | DE |
202013101134 | Jun 2014 | DE |
102013002412 | Aug 2014 | DE |
102013011107 | Aug 2014 | DE |
102013205171 | Sep 2014 | DE |
102014006991 | Dec 2014 | DE |
102014007523 | Nov 2015 | DE |
102014008183 | Dec 2015 | DE |
10 2014 217 892 | Mar 2016 | DE |
102014012705 | Mar 2016 | DE |
102014013158 | Mar 2016 | DE |
10 2016 014 952 | Jun 2018 | DE |
0138322 | Apr 1985 | EP |
0297309 | Jan 1989 | EP |
0665106 | Aug 1995 | EP |
1120258 | Aug 2001 | EP |
1270086 | Jan 2003 | EP |
1764226 | Mar 2007 | EP |
1852733 | Nov 2007 | EP |
1884365 | Feb 2008 | EP |
1946846 | Jul 2008 | EP |
2002898 | Dec 2008 | EP |
2133154 | Dec 2009 | EP |
2151282 | Feb 2010 | EP |
2196267 | Jun 2010 | EP |
2380744 | Oct 2011 | EP |
2433716 | Mar 2012 | EP |
2468512 | Jun 2012 | EP |
2641661 | Sep 2013 | EP |
2644392 | Oct 2013 | EP |
2777938 | Sep 2014 | EP |
2799150 | Nov 2014 | EP |
2842753 | Mar 2015 | EP |
3002128 | Apr 2016 | EP |
3156138 | Apr 2017 | EP |
3213823 | Sep 2017 | EP |
3257590 | Dec 2017 | EP |
3272669 | Jan 2018 | EP |
3068626 | Oct 2019 | EP |
3010918 | Mar 2015 | FR |
2200433 | Aug 1988 | GB |
2367771 | Apr 2002 | GB |
2507069 | Apr 2014 | GB |
S5722070 | Feb 1982 | JP |
S62116442 | May 1987 | JP |
H04-106669 | Sep 1992 | JP |
H0798171 | Oct 1995 | JP |
H09192583 | Jul 1997 | JP |
2011206958 | Jun 2000 | JP |
2000317354 | Nov 2000 | JP |
2001129456 | May 2001 | JP |
2001157863 | Jun 2001 | JP |
2001239652 | Sep 2001 | JP |
2001300404 | Oct 2001 | JP |
2005501745 | Jan 2002 | JP |
2002361863 | Dec 2002 | JP |
2003506210 | Feb 2003 | JP |
2003136030 | May 2003 | JP |
2003164780 | Jun 2003 | JP |
2004528956 | Sep 2004 | JP |
2004337710 | Dec 2004 | JP |
2000158670 | Sep 2005 | JP |
2005526234 | Sep 2005 | JP |
2007021760 | Feb 2007 | JP |
2007152666 | Jun 2007 | JP |
2007520340 | Jul 2007 | JP |
2007245633 | Sep 2007 | JP |
2007289848 | Nov 2007 | JP |
2008110332 | May 2008 | JP |
2009006324 | Jan 2009 | JP |
2010528852 | Aug 2010 | JP |
2010531213 | Sep 2010 | JP |
2010531729 | Sep 2010 | JP |
2010241003 | Oct 2010 | JP |
2012011310 | Jan 2012 | JP |
2012506305 | Mar 2012 | JP |
2012135925 | Jul 2012 | JP |
2012206116 | Oct 2012 | JP |
2012228643 | Nov 2012 | JP |
2012228660 | Nov 2012 | JP |
2013067179 | Apr 2013 | JP |
2013530816 | Aug 2013 | JP |
2013188706 | Sep 2013 | JP |
2014019140 | Feb 2014 | JP |
2014050832 | Mar 2014 | JP |
2014111307 | Jun 2014 | JP |
2015-009222 | Jan 2015 | JP |
2015027636 | Feb 2015 | JP |
2015096322 | May 2015 | JP |
2015520011 | Jul 2015 | JP |
2015193129 | Nov 2015 | JP |
2015535735 | Dec 2015 | JP |
2016507372 | Mar 2016 | JP |
2016526910 | Sep 2016 | JP |
2016175077 | Oct 2016 | JP |
2016175662 | Oct 2016 | JP |
2018012065 | Jan 2018 | JP |
2020513311 | May 2020 | JP |
2020513314 | May 2020 | JP |
8601775 | Mar 1986 | WO |
9856585 | Dec 1998 | WO |
02098576 | Dec 2002 | WO |
2003021519 | Mar 2003 | WO |
2003062129 | Jul 2003 | WO |
2004142382 | May 2004 | WO |
2004048112 | Jun 2004 | WO |
2004085738 | Oct 2004 | WO |
2005016556 | Feb 2005 | WO |
2005075170 | Aug 2005 | WO |
2006022217 | Mar 2006 | WO |
2007121905 | Nov 2007 | WO |
2009019036 | Feb 2009 | WO |
2010046064 | Apr 2010 | WO |
2010146473 | Dec 2010 | WO |
2011044491 | Apr 2011 | WO |
2011128439 | Oct 2011 | WO |
2011138048 | Nov 2011 | WO |
2013121565 | Aug 2013 | WO |
2014121916 | Aug 2014 | WO |
2014121927 | Aug 2014 | WO |
2015071270 | May 2015 | WO |
2015096322 | Jul 2015 | WO |
2015186014 | Dec 2015 | WO |
2016-087016 | Jun 2016 | WO |
2016142510 | Sep 2016 | WO |
2016145000 | Sep 2016 | WO |
2017006245 | Jan 2017 | WO |
2017006246 | Jan 2017 | WO |
2018102846 | Jun 2018 | WO |
2018108565 | Jun 2018 | WO |
Entry |
---|
Non-Final Office Action dated Dec. 13, 2022 in related U.S. Appl. No. 16/468,699 (21 pages). |
Non-Final Office Action for related U.S. Appl. No. 16/468,699 dated Mar. 9, 2022 (180 pages). |
Final Office Action dated Aug. 17, 2022 for U.S. Appl. No. 16/468,699 (26 pages). |
JPO Decision to Grant in related application No. JP2019-532030 dated Dec. 1, 2022 (6 pages; English machine translation provided). |
EPO Notification of Objection dated May 18, 2022 for Patent No. EP3718643, related to related U.S. Appl. No. 16/468,693 (55 pages; with English machine translation). |
Non-Final Office Action dated Dec. 24, 2021 for related U.S. Appl. No. 16/468,693 (19 pages). |
Ghasem, G. et al.; “Chapter 2 Background on Sprays and Their Production”, Industrial Sprays and Atomization: Design, Analysis and Applications, Jan. 1, 2002, Springer, London, pp. 7-33, XP009195118, ISBN: 978-1-4471-3816-7. |
International Search Report and Written Opinion for PCT/EP2017/081141 dated Feb. 26, 2018 (17 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081114 dated May 15, 2018 (33 pages; with English translation). |
Anonymous: “Roboterkalibrierung—Wikipedia”, Nov. 7, 2016, XP055471615, Gefunden im Internet: URL: https://de.wikipedia.org/w/index.php?title=Roboterkalibrierung&oldid=159460756 [gefunden am Apr. 30, 2018] das ganze dockument (8 pages; with English translation). |
Beyer, Lukas: “Genauigkeitssteigerung von Industrierobotern”, Forschungsberichte Aus Dem Laboratorium Fertigungstechnik/Helmut-Schmidt-Universitat, Universitat Der Bundeswehr Hamburg, Dec. 31, 2005, Seiten 1-4, XP009505118; ISSN: 1860-2886; ISBN: 978-3-8322-3681-6 (13 pages; with English machine translation). |
International Search Report and Written Opinion for PCT/EP2017/081108 dated Feb. 28, 2018 (with English translation; 18 pages). |
International Search Report and Written Opinion for PCT/EP2017/081099 dated Feb. 26, 2018 (21 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081102 dated Mar. 14, 2018 (16 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081105 dated Feb. 26, 2018 (19 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081152 dated May 15, 2018 (25 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081098 dated May 14, 2018 (26 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081101 dated Feb. 28, 2018 (14 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081121 dated Feb. 26, 2018 (20 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081117 dated Mar. 12, 2018 (27 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081123 dated Feb. 26, 2018 (20 pages; with English translation). |
JPO Submission for JP2019-531096; submitted Dec. 21, 2020 (32 pages; with English translation). |
JPO Submission for JP2019-531957; submitted Dec. 21, 2020 (21 pages; with English translation). |
Japenese Patent Office Notice of Reasons of Refusal for Application No. JP 2019-531967 dated Jun. 8, 2021 (8 pages; with English machine translation). |
Notification of Reasons for Refusal for Application No. JP2019-532012 dated Jun. 22, 2021 (6 pages; with English machine translation). |
Notification of Reasons for Refusal for Application No. JP2019-527330 dated Jun. 22, 2021 (10 pages; with English machine translation). |
Chinese Office Action dated Jun. 2, 2021 for Application No. CN201780077017.9 (17 pages; with English machine translation). |
Japanese Notification of Reasons for Rejection dated Jun. 1, 2021 for Application No. JP2019-531944 (14 pages; with English machine translation). |
Japanese Notification of Reasons for Rejection dated Jun. 8, 2021 for Application No. JP2019-531957 (13 pages; with English machine translation). |
Supplemental Notice of Allowability dated Jul. 8, 2021 for U.S. Appl. No. 16/468,696 (11 pages). |
Liptak, Bela. (2006). Instrument Engineers' Handbook (4th Edition)—Process Control and Optimization, vol. 2—2.1.3.5 Process Time Constant, (pp. 99-102). Taylor & Francis. Retrieved from https://app.knovel.eom/hotlink/pdf/id:kt00CC7HL1/instrument-engineers/process-time-constant (Year: 2006). |
JPO Office Action for Application No. JP2019-531097 dated Jun. 29, 2021 (10 pages; with English machine translation). |
JPO Office Action for Application No. 2019-531096 dated Jul. 6, 2021 (9 pages; with English machine translation). |
JPO Office Action for Application No. 2019-531098 dated Jul. 6, 2021 (5 pages; English translation only). |
JPO Office Action for Application No. 2019-531459 dated Jul. 6, 2021 (8 pages; with English machine translation). |
JPO Office Action dated Jul. 13, 2021 for Application No. JP2019-532024 (12 pages; with English machine translation). |
Non-Final Office Action dated Aug. 27, 2021 for U.S. Appl. No. 16/468,695 (149 pages). |
JPO Notification of Reasons for Rejection for Application No. JP2019-532030 dated May 18, 2021 (6 pages; with English translation). |
CIPO Office Action for Application No. CN201780077474.8 dated Apr. 26, 2021 (17 pages; with English translation). |
Notice of Allowance mailed in U.S. Appl. No. 16/468,689 dated Jun. 2, 2021 (38 pages). |
Non-Final Office Action dated Feb. 5, 2021 for U.S. Appl. No. 16/468,701 (80 pages). |
Non-Final Office Action dated Feb. 18, 2021 for U.S. Appl. No. 16/468,692 (97 pages). |
Final Office Action dated May 13, 2021 for U.S. Appl. No. 16/468,691 (70 pages). |
JPO Decision to Grant dated Oct. 5, 2021 for Application No. JP2019-532113 (7 pages; with English machine translation). |
Final Office Action dated Oct. 7, 2021 for U.S. Appl. No. 16/468,693 (58 pages). |
Non-Final Office Action for U.S. Appl. No. 16/468,691 dated Jan. 7, 2021 (79 pages). |
China National Intellectual Property Administration Office Action and Search Report for CN Application No. 201780077018.3 dated Aug. 27, 2020 (11 pages; Search Report in English). |
Chinese Office Action and Search Report for CN201780077603.3 dated Oct. 12, 2020 (15 pages; English translation not available). |
European Search Report for EP20170638.9 dated Sep. 14, 2020 (4 pages—English translation not available). |
European Search Report for EP20170021.8 dated Sep. 8, 2020 (11 pages—English translation not available). |
European Search Report for EP20170025.9 dated Sep. 9, 2020 (4 pages—English translation not available). |
European Search Report for EP20170016.8 dated Sep. 7, 2020 (4 pages—English translation not available). |
EPO Examination Report for Application No. 201702818.1 dated Dec. 18, 2020 (with English machine translation; 6 pages). |
EPO Official Notification of Opposition for Application No. 17821803.8 dated Feb. 10, 2021 (64 pages; with English machine translation). |
Non-Final Office Action dated Apr. 28, 2021 for U.S. Appl. No. 16/468,693 (109 pages). |
Final Office Action dated Apr. 19, 2021 for U.S. Appl. No. 16/468,700 (62 pages). |
Final Office Action dated Jun. 11, 2021 for U.S. Appl. No. 16/468,701 (64 pages). |
Chinese Office Action for Application No. CN20178007017.9 dated Aug. 31, 2020 (8 pages; with English translation). |
Non Final Office Action for U.S. Appl. No. 16/468,697 dated Oct. 22, 2020 (78 pages). |
Non Final Office Action for U.S. Appl. No. 16/468,696 dated Nov. 2, 2020 (58 pages). |
Non Final Office Action for U.S. Appl. No. 16/468,689 dated Oct. 15, 2020 (77 pages). |
Chinese Office Action for CN201780077476.7 dated Sep. 23, 2020 (12 pages; English translation not available). |
Non Final Office Action for U.S. Appl. No. 16/468,700 dated Dec. 1, 2020 (73 pages). |
Final Office Action dated Mar. 19, 2021 for U.S. Appl. No. 16/468,696 (45 pages). |
Non-Final Office Action dated Nov. 23, 2021 for U.S. Appl. No. 16/468,694 (25 pages). |
JPO Decision to Grant in related application JP2019-532012 dated Jan. 25, 2022 (6 pages; with English machine translation). |
Chinese Office Action in related application No. CN201780077045.0 dated Jan. 29, 2022 (17 pages; English machine translation provided). |
Non-Final Office Action dated Jan. 6, 2022 for related U.S. Appl. No. 16/468,701 (36 pages). |
USPTO Non-Final Office Action dated Jun. 23, 2023 for related U.S. Appl. No. 17/740,537 (107 pages). |
USPTO Non-Final Office Action dated Jun. 26, 2023 for related U.S. Appl. No. 17/965,062 (85 pages). |
Huo Lijiang, “Packaging Printing Technology”, 1st edition, pp. 321-323, Printing Industry Press, Sep. 30, 2011 (10 pages; with English machine translation). |
Chinese Patent Office—Office Action for Application No. CN202211512023.1 dated Aug. 16, 2023 (26 pages; with English machine translation). |
Number | Date | Country | |
---|---|---|---|
20220080445 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16468690 | US | |
Child | 17532411 | US |