The exemplary embodiment(s) of the present invention relates to a field of coating method and a structure thereof. More specifically, the exemplary embodiment(s) of the present invention relates to a field of coating method and a structure thereof applied for uniformly heating a plastic casing and dissipating the heat from the plastic casing.
The conventional electronic devices of portable electronic apparatus such as mobile phone, notebook or personal digital assistant generate high heat during the operating time. The prior arts dissipate the heat generated by the electronic devices by a metal due to its higher heat conducting property than a plastic. In a totally sealed up plastic casing, the velocity of dissipating heat generated by the hot electronic devices out of the casing is determined by the air convection in the casing. However, in some applications, due to the limits of the design, there is not enough air inside the casing for cooling the electronic devices, so the operating temperature of the electronic devices is too high to work steadily without a crash.
Besides, the metallic casing has some disadvantages such as too heavy and hard to produce. The solution to the aforesaid problems is forming a metallic layer on the surface of a plastic casing by sputtering deposition or evaporating deposition. However, due to the concerns of manufacturing time and cost, the thickness of this kind of metal layer deposited by spurting or evaporating is not easy thicker than 1 micrometer, and the surface roughness average is very low so the surface is minor-like visually. In addition, a vacuum environment is needed for the sputtering deposition or the evaporating deposition, and it means that a vacuum chamber and a vacuum pump are needed. Nevertheless, the prices of the vacuum chamber and the vacuum pump are too expansive, and it needs a lot of time for the vacuum pump to pump out the air in the vacuum chamber to form the vacuum environment. Thus, forming a metallic layer by sputtering deposition or evaporating deposition has disadvantages such as the cost is too high and the manufacturing time is too long.
To solve the problems in the conventional arts, it is a primary object of the present invention to provide a coating method and a structure thereof to solve the problem that the conventional plastic casing could not uniformly absorb and transfer the heat, and generates a device hot concentration point.
To achieve the above object, a coating method according to the present invention is disclosed, which comprises the following steps of: providing a metal material and an insulating material; melting the metal material and the insulating material; atomizing and spraying the metal material on a substrate at least a predetermined thickness; disposing the insulating material on the metal material.
Wherein the predetermined thickness is 3˜20 micrometers.
Wherein the metal material comprises aluminum, copper, tin, or an alloy of at least two aforesaid materials.
Wherein the insulating material is an insulating paper.
Wherein the insulating material is a polymer.
Wherein the polymer comprises epoxy resin, bakelite, cyanoacrylate, methyl polyethylene, polyethylene butyl acrylate or silicone resin.
To achieve another object, a coating structure according to the present invention is disclosed, which comprises a substrate, a metal material layer and an insulating material layer. The metal material layer is disposed on the substrate and having a predetermined thickness. The insulating material layer is disposed on the metal material layer.
Wherein the predetermined thickness is 3˜20 micrometers.
Wherein the metal material comprises aluminum, copper, tin, or an alloy of at least two aforesaid materials.
Wherein the insulating material is an insulating paper.
Wherein the insulating material is a polymer.
Wherein the polymer comprises epoxy resin, bakelite, cyanoacrylate, methyl polyethylene, polyethylene butyl acrylate or silicone resin.
With the above arrangements, the coating method and structure thereof according to the present invention has the following advantage:
By disposing a metal material layer and an insulating material layer on a substrate (plastic casing), the coating method and structure thereof adsorbs the heat radiation of the hot devices inside the plastic casing. Thus, the heat is conducted diffusely by the metal material layer and out of the plastic casing. The dissipating area of the plastic casing is increased, so the hot spots of the devices are decreased.
With these and other objects, advantages, and features of the invention that may become hereinafter apparent, the nature of the invention may be more clearly understood by reference to the detailed description of the invention, the embodiments and to the several drawings herein.
The exemplary embodiment(s) of the present invention will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments of the invention, which, however, should not be taken to limit the invention to the specific embodiments, but are for explanation and understanding only.
Exemplary embodiments of the present invention are described herein in the context of a coating method and a structure thereof.
Those of ordinary skilled in the art will realize that the following detailed description of the exemplary embodiment(s) is illustrative only and is not intended to be in any way limiting. Other embodiments will readily suggest themselves to such skilled persons having the benefit of this disclosure. Reference will now be made in detail to implementations of the exemplary embodiment(s) as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts.
Please refer to
In some preferred embodiments, the predetermined thickness could be 3˜20 micrometers; the metal material comprises aluminum, copper, tin, or an alloy of at least two aforesaid materials; the insulating material could be an insulating paper or a polymer; and the polymer comprises epoxy resin, bakelite, cyanoacrylate, methyl polyethylene, polyethylene butyl acrylate or silicone resin.
Please refer to
Please refer to
Please refer to
By disposing a metal material layer and an insulating material layer on a substrate (plastic casing), the coating method and structure thereof according to the present invention adsorbs the heat radiation of the hot devices inside the plastic casing. Thus, the heat is conducted diffusely by the metal material layer and out of the plastic casing. The dissipating area of the plastic casing is increased, so the hot spots of the devices are decreased.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from this invention and its broader aspects. Therefore, the appended claims are intended to encompass within their scope of all such changes and modifications as are within the true spirit and scope of the exemplary embodiment(s) of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
099116920 | May 2010 | TW | national |