1. Field of the Invention
The present invention relates to a coating method using a plasma shock wave and a method for manufacturing a coated substance.
2. Description of Related Art
Heretofore, a laser peening method is used as a method using a plasma shock wave for reforming surfaces of such as machinery parts by applying residual stress into the surfaces.
Processing that uses the laser peening method is generally taken place by irradiating convergent laser beam to a surface to be worked, trapping produced plasma into a liquid medium such as water, oil, or the like, the liquid medium being formed on the surface to be worked, and applying a shock wave pressure generated thereby to the surface to be worked. Liquid such as water, oil, or the like for trapping plasma therein, needs to be formed on the surface to be worked so that the shock wave pressure generated by the plasma may be effectively applied to the surface to be worked.
Patent documents JP-A-2000-246468, JP-A-2006-122969 and JP-A-2007-169753 disclose a laser peening method in which liquid film such as water film or the like is formed on the surface to be worked so that plasma is trapped by the liquid film. Incidentally, according to the documents, a protection film such as black paint or the like is preliminarily applied to the surface to be worked. Moreover, a paragraph 0013 in patent document JP-A-2006-122969 discloses using running water as the water film.
Patent document JP-A-2002-346847 discloses a laser peening method, which is taken place with a laser radiation head and a surface to be worked being placed in the water (see paragraph 0004, FIGS. 10 and 11 in the document).
Moreover, the document discloses a peening method using a water-jet in combination with a laser (see the CLAIMS and FIG. 1 and so on).
Moreover, patent document JP-A-2007-169753 discloses a laser peening method in which a powder is struck into a surface to be worked by a shock wave of plasma generated when irradiating a laser.
According to the laser peening method, the powder is struck into the surface to be worked by irradiating the laser to a base sheet laid down on the surface to be worked, the base sheet preliminarily been made to carry the powder on one side thereof (see paragraphs 0040-0044 and FIG. 1 in the document JP-A-2007-169753). As a result, the surface to be worked in which the powder is implanted is obtained. In this way, reduction of slide friction and improvement of an antiwear characteristic are aimed (see paragraphs 0045-0046 and FIG. 2 in the document JP-A-2007-169753).
However, the technique disclosed in the patent document JP-A-2007-169753 is a technique, which is not for forming a coating but for implanting the powder sporadically into the surface to be worked. Moreover, equipments cannot help but being large-scaled because huge amount of energy is needed for implanting the powder (see paragraph 0043 and 0047 in the document).
As a coating technology, a thermal spraying including a flame spraying, a burst spraying, an electrical spraying such as an arc spraying and a plasma spraying or the like, a high-speed flame spraying (HVOF) or a cold spraying is used.
It is, therefore, a main object of the present invention to provide a coating method for forming a coating by using the plasma shock wave and a method for manufacturing a coated substance. Moreover, the present invention aims to provide a coating method in which thickness of the coating can be controlled by using a shock wave generated by the plasma. Moreover, the present invention aims to provide a coating method, which forms coating superior in adhesion strength or the like by taking advantage of a laser peening method in which particle collision speed is faster than that of in the thermal spray.
According to a first aspect of the present invention, there is provided a coating method using a plasma shock wave, the method including the steps of: irradiating a pulse laser to a first surface of a mixed layer including a powder and resin to generate a plasma, the mixed layer being formed on a second surface of a substance to be coated; running the powder into the second surface by using a shock wave arisen from the plasma; and forming a coat of the powder on the second surface.
Preferably, irradiating the pulse laser is prosecuted under a condition that the mixed layer is formed on the second surface by hardening the resin after applying an admixture ingredient including the powder and the resin to the second surface.
Preferably, irradiating the pulse laser is prosecuted under a condition that the mixed layer includes two or more different kinds of the powder.
Preferably, irradiating the pulse laser is prosecuted under a condition that the mixed layer is composed of two or more layers, each of the layers including the powder varying from one layer to another.
Preferably, irradiating the pulse laser is prosecuted under a condition that the mixed layer is composed of two or more layers, each of the layers including two or more different kinds of the powder at different blend ratio.
According to a second aspect of the present invention, there is provided a method for manufacturing a coated substance using a plasma shock wave, the method including the steps of: irradiating a pulse laser to a first surface of a mixed layer obtained by mixing powders and resin to generate a plasma, the mixed layer being formed on a second surface of a substance to be coated; striking the powders on the second surface by using a shock wave of the plasma; and forming a coat of the powders on the second surface.
According to the first and second aspects of the present invention, the resin included in the mixed layer has a role to carry the powder. The amount of the powder to be carried on the surface to be worked can be obtained sufficiently per unit area by selecting a blend ratio of the powder and a thickness of the mixed layer. Therefore, the coating composed of the powder can be formed on the second surface by running sufficient amount of the powder into the second surface by the shock wave arisen from the plasma.
The above and other objects, advantages and features of the present invention will become more fully understood from the detailed description given hereinbelow and the appended drawings which are given by way of illustration only, and thus are not intended as a definition of the limits of the present invention, and wherein:
The best mode for carrying out the present invention will be described hereinbelow with reference to the drawings. The followings are embodiments of the present invention, which are not intended to limit the scope of the present invention.
First of all, a first embodiment of the present invention will be described with reference to
At first, as shown in
The substance 1 is not particularly limited but intended to metal, alloy or ceramic, which constitutes machinery parts, structural parts or industrial tools.
A material of resin 3 that constitutes the mixed layer 2 is preferred to be selected from thermohardening resin that is cured at normal temperature, when heated, or the like, photo-curable resin such as an instantaneously curable resin, visible light curing resin, ultraviolet curable resin, or the like. However, the material affects workability or compatibility with a powder constituting the mixed layer, so the material is preferred to be selected as needed basis.
A material of a powder 4 that constitutes the mixed layer 2 may be selected from resin, metal, intermetallic compound, metallic oxide, metallic carbide, ceramics, glass, cemented carbide, diamond, carbon, carbon nanotube, fullerene, cubic boron nitride, or the like. The material of the powder 4 is preferred to be selected corresponding to compatibility with the substance 1 to be coated or characteristic needed to the coating.
As a method for forming the mixed layer 2 on the surface of the substance 1, first applying a mixed material made by blending the powder 4 into the resin 3 on the surface of the substance 1. A spray used in coating or the like is preferred to be used in applying the mixed material. The mixed layer 2 may be formed on the surface of the substance 1 not by the applying method but by moving a sheet-like mixed layer so as to be placed on the surface of the substance 1. In the present embodiment, the mixed layer 2 is formed by the applying method, so the mixed layer 2 can be easily formed on any area of a surface of an arbitrary shape.
Then, harden the resin 3 in the mixed layer 2 applied on the surface of the substance 1. Hardening the resin 3 before a laser radiation is preferred because retentivity of the resin 3 for trapping the powder 4 is heightened by hardening the resin 3.
Next, as shown in, for example,
Here, water, oil or the like can be applied to the transparent liquid. The transparent liquid film 10 is formed in the form of flowing such as flowing water. In the case that the liquid is thick or semisolid, the film 10 is formed in the form of staying on the surface of the mixed layer 2.
As described above, a shock wave is arisen by the plasma 8 generated by irradiating the pulsed laser 7. The powder 4 included in the mixed layer 2 is run into the surface of the substance 1 at high velocities by the shock wave. The collision speed varies corresponding to materials of the powder 4 and resin 3, mix ratio of the powder 4 to the resin 3 and irradiance condition of the laser. However, the collision speed is usually faster compared with the thermal spray as shown in
By the shock wave of plasma 8, the powder 4 is adhesively-bonded to the surface of the substance 1 with the surface being roughening processed by being plastic deformed to be finely caved, as shown in
Thickness of the coating 11 corresponds to the amount of the powder 4 included in the mixed layer 2 to be held on the surface of the substance 1 per unit area. Therefore, the thickness of the coating 11 formed by the plasma 8 can be controlled by selecting blend ratio of the powder 4 and thickness of the mixed layer 2. The coating 11 can be formed with its thickness being within the range of about 5 to 50 μm, though the thickness depends on material or particle diameter of the powder 4.
The inventors of the present invention applied aluminum as the substance 1, epoxy resin as the resin 3 and ceramics powder as the powder 4. The irradiance condition of the pulsed laser is that the pulse energy is from 10 to 80 mJ and the laser is narrowed down to 0.4 to 1 mm by the lens 6. This led to the formation of a ceramics coating having thickness of 5 to 10 μm on the surface of the aluminum member without implanting the powder 4 into the substance 1, thereby having improved an abrasion resistance of the aluminum member.
As described above, according to the coating method of the present invention, a coating having various functions or characteristics such as abrasion resistance or corrosion resistance can be formed on the surface of the substance 1 corresponding to a characteristics of the material of the powder 4.
Moreover, as shown in
Moreover, as shown in
Next, a second embodiment of the present invention will be described with reference to
Apply a material composed by mixing the resin 3 and two kinds of powders 4a and 4b on the surface of the substance 1, and then cure the resin 3. The mixed layer 2 includes two kinds of powders 4a and 4b.
Next, as shown in
As shown in
Next, a third embodiment of the present invention will be described with reference to
Apply a material composed by mixing the resin 3 and powder 4b on the surface of the substance 1, and cure the applied resin 3. Then, on top thereof, apply a material composed by mixing the resin 3 and powder 4a to form two-layered mixed layer 2, and cure the applied resin 3.
The powders 4a and 4b are different kinds of materials. Depending on a difference of characteristics between the powders 4a and 4b, the resin 3 to be mixed with the powder 4a may be different from the resin 3 to be mixed with the powder 4b, or may be the same as the resin 3 to be mixed with the powder 4b.
As shown in
Next, as shown in
At this time, if the process is carried out by a big pulse energy that can implant the powder 4b into the substance 1, the powders 4a and 4b becomes mixed. Therefore, it is preferred that the process is accomplished at pulse energy lower than a pulse energy disclosed in the patent document 4. For example, set the pulse energy from 10 to 80 mJ and narrow down the laser to 0.4 to 1 mm by the lens 6. This can lead to the formation of the two-layered coating 13, in which material of powder 4b is arranged in relatively lower layer and material of powder 4a is arranged in relatively upper layer, as shown in
According to the present embodiment, for example, by applying aluminum as the substance 1, carbon as the powder 4a and ceramics as the powder 4b, ceramics intermediate between aluminum and carbon. Consequently, carbon coating, which is incompatible with aluminum, can be formed on an outer surface of an aluminum member. It is possible to form a coating of material, which is not suitable to be directly formed on the substance 1 for a chemical reason or a mechanical reason such as thermal stress. It is also possible to obtain multiple functions or characteristics of a two-layered coating composed of two different materials. Needless to say, the mixed layer 2 may have a three-layered structure or more.
The two-layered coating composed of different materials can be formed by repeating the above-mentioned steps of the first embodiment twice. In contrast, the present embodiment has an advantage from the viewpoint of manufacturing step because the two-layered coating can be formed by one step of laser radiation. Moreover, by properly controlling conditions of laser to radiate such as a pulse energy or radiation diameter, interlayer mixing degree can be controlled and so-called gradient function can be realized.
As an application of the above-mentioned second and third embodiments, as shown in
By forming two-layered mixed layer 2 including two layers each of which having different blend ratio of the different powders in each layer, a coating having different blend ratio of materials in each layer can be formed. In the example shown in
It may be possible that the coating characteristics vary continuously or discontinuously in a stepwise fashion or the like as departing from the surface of the substance 1, and that constituent material or characteristic of the coating has a depth variation such as, for example, change characteristics that increase gradually or decrease gradually at a slant corresponding to the depth.
The entire disclosure of Japanese Patent Application No. 2008-231025 filed on Sep. 9, 2008 including description, claims, drawings, and abstract are incorporated herein by reference in its entirety.
Although various exemplary embodiments have been shown and described, the invention is not limited to the embodiments shown. Therefore, the scope of the invention is intended to be limited solely by the scope of the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
2008-231025 | Sep 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4732778 | Kawasaki | Mar 1988 | A |
5131957 | Epstein et al. | Jul 1992 | A |
5614339 | Tankovich | Mar 1997 | A |
5741559 | Dulaney | Apr 1998 | A |
5750205 | Shashkovsky et al. | May 1998 | A |
5961861 | McCay et al. | Oct 1999 | A |
5985056 | McCay et al. | Nov 1999 | A |
6049058 | Dulaney et al. | Apr 2000 | A |
6197133 | Unternahrer et al. | Mar 2001 | B1 |
6350326 | McCay et al. | Feb 2002 | B1 |
6747240 | Tenaglia et al. | Jun 2004 | B2 |
6994635 | Poynor | Feb 2006 | B2 |
7137282 | Westley et al. | Nov 2006 | B2 |
7861573 | Tenaglia et al. | Jan 2011 | B1 |
7868268 | Tenaglia et al. | Jan 2011 | B1 |
20090314824 | Sawaguchi | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
53-001642 | Jan 1978 | JP |
5-125557 | May 1993 | JP |
2000-246468 | Sep 2000 | JP |
2001-527601 | Dec 2001 | JP |
2002-346847 | Dec 2002 | JP |
2002346847 | Dec 2002 | JP |
2007-169753 | Dec 2005 | JP |
2006-122969 | May 2006 | JP |
2006122969 | May 2006 | JP |
2006-320907 | Nov 2006 | JP |
2007169753 | Jul 2007 | JP |
2008090662 | Jul 2008 | WO |
Entry |
---|
Translation of JP 2007-169753. |
European Search Report dated Nov. 23, 2010 for Application No. EP 09 16 9799. |
Japanese Office Action mailed Nov. 20, 2012 for Japanese Application No. 2008-231025. |
Menig, et al., “Shot Peening, Comparison of Surface Characteristics and Thermal Residual Stress Relaxation of Laser Peened and Shot Peened AISI 4140”, pp. 498-504, 2002. |
Carey, et al., “Effects of Laser Interaction with Graphite Coatings”, Laser Assisted Net Shape Engineering 5, pp. 673-686, 2007. |
Niehoff, et al., “Laser Induced Shock Waves in Deformation Processing”, Metalurgija—Journal of Metallurgy, vol. 11, pp. 183-194, 2005. |
Edwards, et al., “Laser Micro Peen Forming Without a Tamping Layer”, IJAM—International Journal of Advanced Manufacturing, Jul. 12, pp. 1-10, 2009. |
Sano, et al., “Laser Peening without Coating as a Surface Enhancement Technology”, JLMN—Journal of Laser Micro/Nanoengineering vol. 1, No. 3, 2006, pp. 161-166. |
Wojciech Napadlek, “Laser Percussive Strengthening of the Aluminum Alloys”, Journal of Kones Powertrain and Transport, vol. 18, No. 1, 2011, pp. 373-384. |
Y.B. Guo, “Laser Shock Peening: Modeling, Simulations and Applications”, Numerical Simulations —Applications, Examples and Theory, 2011, pp. 331-354. |
Allan Clauer, “Laser Shock Peening for Fatigue Resistance”, Surface Performance of Titanium, 1996, pp. 217-230. |
Vollertsen, et al., “State of the Art of Laser Hardening and Cladding”, Proceedings of the Third International WLT-Conference in Manufacturing, 2005, pp. 1-22. |
Number | Date | Country | |
---|---|---|---|
20100062179 A1 | Mar 2010 | US |