Coating process to enable electrophoretic deposition

Abstract
The present invention relates to a process for the deposition of protective coatings on complex shaped Si-based substrates which are used in articles and structures subjected to high temperature, aqueous environments comprises a non-line-of-sight process, particularly, electrophoretic deposition (EPD) process.
Description
BACKGROUND OF THE INVENTION

The present invention relates to an electrophoretic deposition process for the deposition of protective coatings on complex shaped Si-based substrates which are used in articles subjected to high temperature, aqueous environments.


Ceramic materials containing silicon have been proposed for structures used in high temperature applications, for example, gas turbine engines, heat exchangers, internal combustion engines, and the like. A particular useful application for these materials is for use in gas turbine engines which operate high temperatures in aqueous environments. It has been found that these silicon containing substrates can recede and lose mass as a result of a formation volatile Si species, particularly Si(OH)x and SiO when exposed to high temperature, aqueous environments. For example, silicon carbide when exposed to a lean fuel environment of approximately 1 ATM pressure of water vapor at 1200° C. will exhibit weight loss and recession at a rate of approximately 6 mils per 1000 hrs. It is believed that the process involves oxidation of the silicon carbide to form silica on the surface of the silicon carbide followed by reaction of the silica with steam to form volatile species of silicon such as Si(OH)x.


Suitable coatings for articles containing silicon based substrates which are employed in the environments claimed above are well known in the art. See for example U.S. Pat. Nos. 5,305,726; 5,869,146; 6,284,325; 6,296,941; 6,352,790; and 6,387,456. The prior art described in the foregoing patent documents fail to teach processes for applying protective coating to complex shaped parts such as, for example, integral vane rings and integrally bladed rotors. Typically, such complex shaped parts have been coated by a chemical vapor deposition (CVD) process; however, such CVD processes are limited in that it is only applicable to simple oxide coatings, is limited in terms of thickness and uniformity of the coating layer, and is expensive.


Naturally, it would be highly desirable to provide improved process for the deposition of protective coatings to complex shaped Si-based structures.


Accordingly, it is a principle object of the present invention to provide a non-line-of-sight electrophoretic deposition (EPD) process as aforesaid which is efficient and inexpensive when compared to prior art process.


It is a further object of the present invention to provide a process as aforesaid for applying a conductive coating to the complex shaped Si-based structure.


SUMMARY OF THE INVENTION

The present invention relates to a process for the deposition of protective coatings on complex shaped Si-based substrates which are used in articles and structures subjected to high temperature, aqueous environments. By complex shaped is meant components which have geometric shapes which make physical deposition techniques for depositing coatings difficult, i.e., difficult to coat by line-of-sight processes. Such complexed shaped parts include, for example, integral vane rings and integrally bladed rotors.


The process of the present invention comprises a non-line-of-sight process and, particularly, electrophoretic deposition (EPD) process. The EPD process can be used to deposit green barrier layer(s) on silicon-based substrates of complex shaped articles. The green deposited layers can then be densified by high temperature firing. Chemical vapor deposition (CVD) may be used in conjunction with the EPD process, in order to seal the coatings produced thereby.


When employing an electrophoretic deposition process in accordance with the present invention, it is necessary that the substrate be electrically conducting. The preferred electrophoretic deposition process of the present invention comprises depositing an electrically conductive layer on the substrate prior to depositing the barrier layer(s).


In a further embodiment, an oxide insulating layer is provided between the substrate and the conducting layer.







DETAILED DESCRIPTION

The present invention relates to a process for the electrophoretic deposition of protective coatings on complex shaped Si-based substrates which are used in structures subjected to high temperature, aqueous environments. By complex shaped structures is meant components which have geometric shapes which make physical deposition techniques for depositing coatings difficult, i.e., difficult to coat by line-of-sight processes, and typical structures include integral vane rings and integrally bladed rotors. The Si-based substrates include, but are not limited to, substrate materials containing SiC, Si3N4, Silicon-oxy nitrides and mixtures thereof.


The process of the present invention comprises providing a complex shaped Si-based substrate as described above, depositing a conductive layer on the substrate, and thereafter depositing at least one barrier layer by electrophoretic deposition (EPD) as a protective coating. The conductive layer may be deposited by any method known in the prior art. Particularly suitable methods for depositing the conductive layer include melt coating, chemical vapor deposition, and physical vapor deposition. Melt coating offers an advantageously low cost method to prepare relatively thick coatings on the complex shaped Si-based substrate. The Si-based substrate is heated in contact with the material of the conductive layer to be deposited and above the melting point thereof with the result that molten material completely wets and coats the silicon-based substrate. Whether the conductive layer is deposited by melt coating or chemical/vapor deposition, the deposition of the conductive layer should be carried out, preferably, in a non-oxidizing environment. The material of the conductive layer comprises a material selected from the group consisting of Cr, Ta, Hf, Nb, Si, Mo, Ti, W, Al, Zr, Y and mixtures thereof. Particularly suitable materials are silicon metal and/or an alloy of silicon. The primary advantage of silicon or alloyed silicon is that the silicon reduces the resistance of the surface layer of the silicon-based substrate from about 10 to 100 k-Ohms down to 10 to 500 Ohms. By lowering the resistance, the uniformity of the coating of the barrier material by electrophoretic deposition (EPD) is improved. In addition, alloyed Si is believed to impart creep resistance to the coating.


In accordance with one embodiment of the present invention, an electrically insulating layer is applied between the substrate and the electrically conducting layer. It has been found that an advantage of this layer is that it inhibits potential chemical reaction between the silicon in the silicon-based substrate and the conductive layer as well as any layer, such as a bond coat, deposited on the electrically conductive layer. The insulating layer is selected from the group consisting of SiC; Si3N4; rare earth oxides; oxides of Si, Hf, Zr, Nb, Ta, Ti, Y; and mixtures thereof. It has been found that these materials form acceptable electrically insulating layers which inhibit chemical reaction between the substrate and subsequent bond and/or barrier layers. The oxide insulating layer may be deposited by any of the methods described above with regard to the electrically conductive layer; however, deposition by chemical vapor deposition is a preferred method for the deposition of the insulating layer.


In a further embodiment of the present invention, as noted above, a bond coat may be deposited on the electrically conductive layer prior to the deposition of barrier layers. In accordance with the present invention, the bond coat comprises a material selected from the group consisting of Cr, Ta, Hf, Nb, Si, Mo, Ti, W, Al, Zr, Y or mixtures thereof. The bond coat may be deposited by chemical vapor deposition, physical vapor deposition, electrostatic deposition, and electrophoretic deposition. The preferred processes for deposition of the bond coat are CVD and EPD. Once the bond coat is applied, the bond coat may be fired at elevated temperature in, preferably, a non-oxidizing environment so as to densify the bond coat. The firing of the bond coat may be carried out at a temperature of between 1000° C. to 1500° C. and the preferred non-oxidizing environment includes nitrogen and/or argon.


Once the bond coat is applied, at least one barrier layer may be applied to the bond coat by electrophoretic deposition. Suitable barrier layer(s) include those barrier layers selected from the group consisting of yttrium monosilicate, yttrium disilicate, rare earth silicates, barium-strontium-aluminosilicates, niobium oxide, tantalum oxide, zirconium oxide, hafnium oxide, titanium oxide, mullite and mixtures thereof. After deposition of the barrier layer(s), a top coat may be applied, if desired. A particularly suitable top coat is described in co-pending application (Attorney's Docket No. 03-659) filed concurrently herewith.


It has been found that the electrophoretic process of the present invention allows for very efficient coating of complex shaped structures. The coatings produced are of sufficient thickness and uniformity so as to have a predictable service life in high temperature environments.


This invention may be embodied in other forms or carried out in other ways without departing from the spirit or essential characteristics thereof. The present embodiment is therefore to be considered as in all respects illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and all changes which come within the meaning and range of equivalency are intended to be embraced therein.

Claims
  • 1-13. (canceled)
  • 14. A composite article comprising: a Si-containing substrate; an electrically conductive layer; and a barrier layer.
  • 15. An article according to claim 14, further including an electrically insulating layer between the substrate and the electrically conductive layer.
  • 16. An article according to claim 15, further including a bond coat between the electrically conductive layer and the barrier layer.
  • 17. An article according to claim 14, wherein the article is complex shaped.
  • 18. An article according to claim 17, wherein the article is one of integral vane rings and integrally bladed rotors.
  • 19. An article according to claim 18, wherein the barrier layer is an EPD deposited barrier layer.
  • 20. An article according to claim 15, wherein the insulating layer is selected from the group consisting of SiC; Si3N4; rare earth oxides; oxides of Y, Si, Hf, Zr, Nb, Ta, Ti; and mixtures thereof.
  • 21. An article according to claim 20, further including a bond coat between the electrically conductive layer and the barrier layer.
  • 22. An article according to claim 21, wherein the bond coat material is selected from the group consisting of Ta, Hf, Nb, Si, Mo, Ti, W, Al, Zr, Y, Cr and mixtures thereof.
U.S. GOVERNMENT RIGHTS

The invention was made with U.S. Government support under contract N00014-01-C-0032 awarded by the U.S. Navy. The U.S. Government has certain rights in the invention.