The present invention relates to a coating structure and a surface processing method that afford to have a heat resistance and a water vapor wall-thinning resistance secured at least in part of a high temperature component such as a gas turbine component.
In recent years, there have been attentions focused on SiC series ceramics matrix composites (CMC) being small in specific gravity, and better in heat resistance than heat resistant alloys such as nickel alloys, as materials for high temperature components such as a gas turbine component to be used under high temperature gas environments containing water vapor. In this regard, it is known that in high temperature gases the water vapor acts on Si-containing materials, causing the wall to be thinned, so in use of such an SiC series ceramics matrix composite selected as a material for a high temperature component, the high temperature component should have a heat resistance and a water vapor wall-thinning resistance secured at least in part thereof. Typically, for a heat resistance and a water vapor wall-thinning resistance to be secured, there is a coating structure implemented in part of a high temperature component, as follows:
That is, the high temperature component has an intermediate layer formed on a surface in part thereof, and comprised of a set of oxide ceramics containing a glass. The intermediate layer has an environment resistant coat formed on a surface thereof, and comprised of a coating material having a heat resistance and a water vapor wall-thinning resistance. In other words, the high temperature component has the environment resistant coat formed on a surface in part thereof, with the intermediate layer in between. Those oxide ceramics constituting the intermediate layer have coefficients of thermal expansion residing between a coefficient of thermal expansion of an SiC series ceramics matrix composite constituting the high temperature component and a coefficient of thermal expansion of the coating material constituting the environment resistant coat.
This permits the intermediate layer to work for stepwise relaxing residual stresses in the environment resistant coat due to differences in thermal expansion between the high temperature component and the environment resistant coat, suppressing cracks and detachment of the environment resistant coat, allowing for the high temperature component to have a heat resistance and a water vapor wall-thinning resistance ensured over a long service.
As techniques relevant to the present invention, there have been those disclosed in a patent literature 1 or a patent literature 2 listed below.
Patent literature 1: Japanese Patent Application Laying-Open Publication No. 2004-346428
Patent literature 2: Japanese Patent Application Laying-Open Publication No. 2005-200226
In this concern, for formation of intermediate layers comprised of oxide ceramics, there has been employed a thermal spray method affording to implement the coating structure with ease and certainty. However, intermediate layers formed by a spraying have unstable particles of ceramics (sprayed particles) therein. Once exposed to heat under high temperature gas environments of 900 degrees C. or more, such ceramics particles in intermediate layers are sintered, with a transition to stable status, causing the intermediate layers to contract in cubic volume. For this reason, in high temperature components used under high temperature gas environments of 900 degrees C. or more, intermediate layers had tendencies to crack or get detached, so such high temperature components have been subject to a difficulty in ensuring heat resistance and water vapor wall-thinning resistance over a long service. That is, as an issue in implementing a coating structure, or in other words, in implementing a surface processing to be convenient with ease and certainty, there has been a difficulty for high temperature components in use under high temperature gas environments of 900 degrees C. or more to have a combination of heat resistance and water vapor wall-thinning resistance secured over a long service.
With that, it is an object of the present invention to provide anew a coating structure and a surface processing method affording to solve such an issue.
To achieve the object described, according to a first aspect of the present invention, there is a coating structure for a combination of heat resistance and water vapor wall-thinning resistance to be secured at least in part of a high temperature component comprised of an SiC series ceramics matrix composite for use under a hot temperature gas atmosphere containing water vapor, the coating structure comprising an intermediate layer formed by a spraying on a surface in part of the high temperature component, and comprised of an oxide ceramics set containing a glass, and an environment resistant coat formed on a surface of the intermediate layer, and comprised of a coating material having a heat resistance and a water vapor wall-thinning resistance, wherein the oxide ceramics set constituting the intermediate layer comprises a set of kinds of oxide ceramics adapted to be unchanged in crystalline phase, or isometric in cubic volume even when phase-changed, within a temperature range from a room temperature to 1,400 degrees C., the set of kinds of oxide ceramics having a coefficient of thermal expansion between a coefficient of thermal expansion of the SiC series ceramics matrix composite constituting the high temperature component and a coefficient of thermal expansion of the coating material constituting the environment resistant coat.
According to a second aspect of the present invention, there is a surface processing method for a combination of heat resistance and water vapor wall-thinning resistance to be secured at least in part of a high temperature component comprised of an SiC series ceramics matrix composite for use under a hot temperature gas atmosphere containing water vapor, the surface processing method comprising an intermediate layer forming step of making a thermal spray using powder of an oxide ceramics set containing a glass, as a spray material, depositing semi-molten powder of the oxide ceramics set on a surface in part of the high temperature component, forming an intermediate layer thereon, and an environment resistant coat forming step of having a completion of the intermediate layer forming step followed by making a thermal spray using powder of a coating material having a heat resistance and a water vapor wall-thinning resistance, as a spray material, depositing semi-molten powder of the coating material on a surface of the intermediate layer, forming an environment resistant coat thereon, wherein the oxide ceramics set used in the intermediate layer forming step comprises a set of kinds of oxide ceramics adapted to be unchanged in crystalline phase, or isometric in cubic volume even when phase-changed, within a temperature range from a room temperature to 1,400 degrees C., the set of kinds of oxide ceramics having a coefficient of thermal expansion between a coefficient of thermal expansion of the SiC series ceramics matrix composite constituting the high temperature component and a coefficient of thermal expansion of the coating material constituting the environment resistant coat.
[
[
[
[
[
[
There will be described embodiments of the present invention with reference to
[1] Description is now made of new knowledge constituting a premise of a coating structure and a surface processing method according to an embodiment of the present invention, with reference to
More specifically, for the comparative example, there was a set of test specimens A modulating an intermediate layer, fabricated by a vacuum spray using a powder of 3Al2O3.2SiO2-mullite, as a spray material. For the embodiment example, there was a set of test specimens B modulating an intermediate layer, fabricated by a vacuum spray using, as a spray material, a combination of powder of 3Al2O3.2SiO2-mullite and powder of Yb2SiO5 being powders mixed (as a powder with a mix proportion prepared to have a volume proportion of 1:1 after formation of a sprayed coat). There were thermal expansion tests made of a test specimen A and a test specimen B at varied environment temperatures (increased from a room temperature to 1,200 degrees C. and decreased from 1,200 degrees C. to 100 degrees C.), measuring coefficients of thermal expansion of the test specimen A and the test specimen B. Then, for test specimen A, thermal expansion test results were collected in the form
As apparent from
In addition, there was a set of test specimens C (non-depicted) fabricated by using powder of Yb2Si2O7 substituting for the powder of Yb2SiO5, of which also thermal expansion tests were made, successfully obtaining similar results to thermal expansion test results of test specimen B.
For 3Al2O3.2SiO2, Yb2SiO5, and Yb2Si2O7, they are all oxide ceramics adapted to be unchanged in crystalline phase within a temperature range from a room temperature to 1,400 degrees C. It is speculated that there should be obtained similar effects to the effects of thermal expansion test described, also in use of oxide ceramics substituting for oxide ceramics adapted to be unchanged in crystalline phase within a range from room temperature to 1,400 degrees C., as those oxide ceramics are adapted to be isometric in cubic volume, even if phase-changed, within the range from room temperature to 1,400 degrees C.
On bases of results of the thermal expansion tests described there is obtained new knowledge such that, for a respective intermediate layer comprised of a set of kinds of oxide ceramics adapted to be unchanged in crystalline phase or isometric in cubic volume even if phase-changed within a temperature range from a room temperature to 1,400 degrees C., the intermediate layer can work, even if it is formed by a thermal spray, to suppress development of a sintering that particles of ceramics (sprayed particles) in the intermediate layer tend to undergo with an exposure once made to heat under high temperature gas environments of 900 degrees C. or more, thus allowing for a reduced contraction in volume of the intermediate layer.
[2] Description is now made of a coating structure according to a certain embodiment of the present invention, with reference to
According to the embodiment of the present invention, as illustrated in
The gas turbine component 2 has an intermediate layer 3 formed by way of a vacuum spray on a surface in part of the gas turbine component 2, and comprised of an oxide ceramics set containing a glass. It is noted that the intermediate layer 3 may be formed by way of an atmospheric spray substituting for the vacuum spray.
The intermediate layer 3 has an environment resistant coat 4 formed by way of an atmospheric spray on a surface thereof, and comprised of an oxide ceramics (as an example of coating material) having a heat resistance and a water vapor wall-thinning resistance. In other words, the gas turbine component 2 has the environment resistant coat 4 formed on a surface in part thereof, with the intermediate layer 3 interposed in between. Here, the oxide ceramics constituting the environment resistant coat 4 may be a rare-earth oxide, a rare-earth silicate, a strontium aluminosilicate, or a Group-IVA metal oxide. It is noted that the environment resistant coat 4 may be formed by way of a vacuum spray substituting for the atmospheric spray.
According to this embodiment of the present invention, in the coating structure 1, the oxide ceramics set constituting the intermediate layer 3 is comprised of a pair of kinds of oxide ceramics adapted to be unchanged in crystalline phase, or isometric in cubic volume even when phase-changed, within a temperature range from a room temperature to 1,400 degrees C. More specifically, it is comprised of a combination of 3Al2O3.2SiO2 and Yb2SiO5, or of a combination of 3Al2O3.2SiO2 and Yb2Si2O7. Further, the pair of kinds of oxide ceramics constituting the intermediate layer 3 has a coefficient of thermal expansion between a coefficient of thermal expansion of the SiC series ceramics matrix composite constituting the gas turbine component 2 (3×10−6/degrees C. in this case) and a coefficient of thermal expansion of the oxide ceramics constituting the environment resistant coat 4 (5 to 10×10−6/degrees C. in this case). For the pair of kinds of oxide ceramics constituting the intermediate layer 3, the coefficient of thermal expansion determined depends on a mix proportion by volume of the paired kinds of oxide ceramics, or the like. Here, the mix proportion by volume of the paired kinds of oxide ceramics may be 1:1 for instance. As used herein, the mix proportion by volume means a volumetric proportion (as a mix proportion) after formation of a sprayed coat.
[3] Description is now made of a surface processing method according to a certain embodiment of the present invention, with reference to
According to the embodiment of the present invention, the surface processing method is adapted for a combination of heat resistance and water vapor wall-thinning resistance to be secured at least in part of a gas turbine component 2 (refer to
This is a step of making a vacuum spray using powder of an oxide ceramics set containing a glass, as a spray material, depositing semi-molten powder of the oxide ceramics set on a surface in part of the gas turbine component 2. This affords, as illustrated in
This is a step of having a completion of the intermediate layer forming step followed by making an atmospheric spray using powder of an oxide ceramics (as an example of coating material) having a heat resistance and a water vapor wall-thinning resistance, as a spray material, depositing semi-molten powder of the oxide ceramics on a surface of the intermediate layer 3. This affords, as illustrated in
According to this embodiment of the present invention, in the surface processing method, the oxide ceramics set used in the intermediate layer forming step is comprised of a pair of kinds of oxide ceramics adapted to be unchanged in crystalline phase, or isometric in cubic volume even when phase-changed, within a temperature range from a room temperature to 1,400 degrees C. Here, it is comprised of a combination of 3Al2O3.2SiO2 and Yb2SiO5, or of a combination of 3Al2O3.2SiO2 and Yb2Si2O7. Further, the pair of kinds of oxide ceramics used in the intermediate layer forming step has a coefficient of thermal expansion between a coefficient of thermal expansion of an SiC series ceramics matrix composite constituting the gas turbine component 2 (3×10−6/degrees C. in this case) and a coefficient of thermal expansion of the oxide ceramics constituting the environment resistant coat 4 (5 to 10×10−6/degrees C. in this case).
Description is now made of behaviors and effects of embodiments of the present invention, with reference to
There is a pair of kinds of oxide ceramics (two kinds of oxide ceramics used in an intermediate layer forming step) constituting an intermediate layer 3, and having a coefficient of thermal expansion between a coefficient of thermal expansion of an SiC series ceramics matrix composite constituting a gas turbine component 2 and a coefficient of thermal expansion of an oxide ceramics constituting an environment resistant coat 4, permitting the intermediate layer 3 to work for stepwise relaxing residual stresses in the environment resistant coat 4 due to differences in thermal expansion between the gas turbine component 2 and the environment resistant coat 4.
Moreover, the pair of kinds of oxide ceramics constituting the intermediate layer 3 is adapted to be unchanged in crystalline phase, or isometric in cubic volume even when phase-changed, within a temperature range from a room temperature to 1,400 degrees C. This affords, in view of the afore-mentioned new knowledge, to have the intermediate layer 3 work, even if it is formed by a thermal spray, to suppress development of a sintering that particles of ceramics C and CD in the intermediate layer 3 tend to undergo with an exposure once made to heat under high temperature gas environments of 900 degrees C. or more, thus allowing for a reduced contraction in volume of the intermediate layer 3.
Further, the intermediate layer 3 can be formed by way of a vacuum spray (that is, the intermediate layer 3 can be formed by a vacuum spray in the intermediate layer forming step), affording to have a densified texture of intermediate layer 3, acting on high temperature gases containing water vapor, allowing for a sufficient suppression of the permeation through intermediate layer 3.
Therefore, according to embodiments of the present invention, there is an intermediate layer 3 enabled to work, even if it is formed by a thermal spray, to suppress development of a sintering that particles of ceramics C and CD in the intermediate layer 3 tend to undergo with an exposure once made to heat under high temperature gas environments of 900 degrees C. or more, thus allowing for a reduced contraction in volume of the intermediate layer 3. Accordingly, it is enabled to implement a coating structure (or to implement a surface processing) to be convenient with ease and certainty, suppressing cracks and detachment of the intermediate layer 3, allowing for a gas turbine component to have a heat resistance and a water vapor wall-thinning resistance ensured over a long service.
Further, when formed by a vacuum spray, the intermediate layer 3 can work to act on high temperature gases containing water vapor, sufficiently suppressing the permeation through intermediate layer 3, allowing for the more enhanced water vapor wall-thinning resistance of gas turbine component 2.
It is noted that the present invention is not restricted to the embodiments described, and may be implemented in a variety of embodiments else. Further, the scope of right the present invention covers should be construed non-restrictive to the embodiments described.
According to the present invention, there is an intermediate layer enabled to work, even if it is formed by a thermal spray, to suppress development of a sintering that particles of ceramics in the intermediate layer tend to undergo with an exposure once made to heat under high temperature gas environments of 900 degrees C. or more, allowing for a reduced contraction in volume of the intermediate layer, while affording to implement a coating structure, or to implement a surface processing, to be convenient with ease and certainty, suppressing cracks and detachment of the intermediate layer, thus permitting high temperature components in use under high temperature gas environments of 900 degrees C. or more to have a combination of heat resistance and water vapor wall-thinning resistance secured over a long service.
Number | Date | Country | Kind |
---|---|---|---|
2008-074603 | Mar 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/055345 | 3/18/2009 | WO | 00 | 9/20/2010 |