Cement composite articles are becoming more and more common for use in building materials. Many of these articles are prepared from inexpensive materials, such as cement, wood (cellulose) fibers, natural (glass) fibers and polymers. These articles usually are prepared in the form of cement fiberboard substrates such as siding panels and boards. The substrate or articles can be made using methods such as extrusion or using a Hatschek machine.
In northern climates, damage from repeated freezing and thawing of water absorbed into the cement fiberboard substrate represents a significant problem. Continued exposure to moisture, freeze-thaw cycles, UV exposure and atmospheric carbon dioxide can cause physical and chemical changes in articles made from cement fiberboard compositions over time. Coating systems or coating compositions can prevent exposure to the elements such as UV light, carbon dioxide and water, or can help reduce the damage that can occur due to exposure to these elements. Several such systems are available for protecting cement fiberboard articles. However, there is a need for coating systems and coating compositions that provide a superior seal, have the ability to cure rapidly or can provide improved results when an article coated with the composition is submitted to wet adhesion testing and multiple freeze-thaw cycles.
The present invention provides in one aspect a coated article comprising a cement fiberboard substrate and a radiation-curable coating system applied to the substrate, wherein the coating system comprises one or more olefinic compounds and one or more polyvinyl chloride (PVC) dispersion resins. The disclosed coating system may be applied in one or more layers, may be substantially free of volatile solvents or carriers, or may optionally include a photoinitiator system.
In another aspect, the invention provides a method for preparing a coated article, which method comprises providing a cement fiberboard substrate, coating at least a portion of the substrate with the above-described coating system and radiation-curing the coating.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the application, guidance is provided through lists of examples, which examples can be used in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.
The details of one or more embodiments of the invention are set forth in the accompanying drawing and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various figures of the drawing indicate like elements. The elements in the drawing are not to scale.
The terms “a,” “an,” “the,” “at least one,” and “one or more” are used interchangeably.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.).
The term “comprises” and variations thereof does not have a limiting meaning where such term appears in the description or claims. Thus, for example, a composition comprising a wax compound means that the composition includes one or more wax compounds.
The terms “acrylate esters” and “methacrylate esters” refer to esters of acrylic acid and esters of methacrylic acid, respectively. They may be referred to as (meth)acrylates or (meth)acrylate esters.
The term “olefinic compound” refers to any monomer, oligomer or polymer containing reactive ethylenic unsaturation, such as vinyls, (meth)acrylates, vinyl ethers, allyl ethers, vinyl esters, unsaturated oils (including mono, di and triglycerides), unsaturated fatty acids, and the like. The term “olefinic group” refers to the reactive ethylenic unsaturated functional group in an olefinic compound.
The term “reactive sites” or “reactive groups” refers to a group that can react to form a covalent bond linking or otherwise chemically joining two or more molecules.
The present invention provides a coating system for a cement fiberboard substrate, such as a cement fiberboard siding product or other cement composite article. The coating system is a radiation-curable coating system applied to the substrate, wherein the coating system includes one or more olefinic compounds and one or more PVC dispersion resins. The disclosed coating system includes one or more coating compositions that may be applied in one or more layers.
Referring to
The disclosed articles may be coated on one or more surfaces with the disclosed radiation-curable coating system. The coating system includes one or more coating compositions that may be applied in one or more layers. The coating systems may be provided in a variety of embodiments. In one exemplary embodiment, the coating system includes a first coating composition that includes at least one olefinic compound, and a second coating composition that includes at least one PVC dispersion resin. The two coating compositions may be applied to the substrate sequentially or concurrently and sequentially or simultaneously cured using radiation. In another exemplary embodiment the coating system includes at least one olefinic compound and at least one PVC dispersion resin, and may be applied to the substrate and cured using radiation. The disclosed coating systems have particular utility for coating the bottom surface of a cement fiberboard article while it is being transported on a conveying system (e.g., on belts, rollers, air tables or the like), as described in applicants' copending PCT Application Ser. No. PCT/US2007/061327, filed Jan. 30, 2007 and entitled METHOD FOR COATING A CEMENT FIBERBOARD ARTICLE.
The olefinic compound in the disclosed coating systems appears to function as a reactive penetrant. This may be better appreciated by observing the coating system after it is applied to the substrate but before radiation curing is performed. The olefinic compound appears to improve wetting or penetration, and may help draw other components in the coating system into pores in the substrate. The olefinic compound also appears to help the cured coating adhere to the substrate following cure. The PVC dispersion resin appears to limit wetting or penetration, and may help prevent other components in the coating system from penetrating so deeply into pores in the substrate that they can not be sufficiently radiation cured. The PVC dispersion resin also appears to help subsequently applied coatings (e.g., a topcoat) adhere to the coated substrate.
Preferred coating systems may also include one or more of the following additional features:
A variety of cement fiberboard substrates may be employed in the disclosed articles. The disclosed substrates typically include cement and a filler. Exemplary fillers include wood, fiberglass, polymers or mixtures thereof. The substrates can be made using methods such as, extrusion, the Hatschek method, or other methods known in the art. See, e.g., U.S. Patent Application No. 2005/0208285 A1 (corresponds to International Patent Application No. WO 2005/071179 A1); Australian Patent Application No. 2005100347; International Patent Application No. WO 01/68547 A1; International Patent Application No. WO 98/45222 A1; U.S. Patent Application No. 2006/0288909 A1; and Australian Patent Application No. 198060655 A1. Non-limiting examples of such substrates include siding products, boards and the like, for uses including fencing, roofing, flooring, wall boards, shower boards, lap siding, vertical siding, soffit panels, trim boards, shaped edge shingle replicas and stone or stucco replicas. One or both major surfaces of the substrate may be profiled or embossed to look like a grained or roughsawn wood or other building product, or scalloped or cut to resemble shingles. The uncoated substrate surface typically contains a plurality of pores with micron- or submicron-scale cross-sectional dimensions.
A variety of suitable fiber cement substrates are commercially available. For example, several preferred fiber cement siding products are available from James Hardie Building Products Inc. of Mission Viejo, Calif., including those sold as HARDIEHOME™ siding, HARDIPANEL™ vertical siding, HARDIPLANK™ lap siding, HARDIESOFFIT™ panels, HARDITRIM™ planks and HARDISHINGLE™ siding. These products are available with an extended warranty, and are said to resist moisture damage, to require only low maintenance, to not crack, rot or delaminate, to resist damage from extended exposure to humidity, rain, snow, salt air and termites, to be non-combustible, and to offer the warmth of wood and the durability of fiber cement. Other suitable fiber cement siding substrates include AQUAPANEL™ cement board products from Knauf USG Systems GmbH & Co. KG of Iserlohn, Germany, CEMPLANK™, CEMPANEL™ and CEMTRIM™ cement board products from Cemplank of Mission Viejo, Calif.; WEATHERBOARDS™ cement board products from CertainTeed Corporation of Valley Forge, Pa.; MAXITILE™, MAXISHAKE™ AND MAXISLATE™ cement board products from MaxiTile Inc. of Carson, Calif.; BRESTONE™, CINDERSTONE™, LEDGESTONE™, NEWPORT BRICK™, SIERRA PREMIUM™ and VINTAGE BRICK™ cement board products from Nichiha U.S.A., Inc. of Norcross, Ga., EVERNICE™ cement board products from Zhangjiagang Evernice Building Materials Co., Ltd. of China and E BOARD™ cement board products from Everest Industries Ltd. of India.
A variety of olefinic compounds may be used in the disclosed coating systems. The olefinic compounds are distinct from the PVC dispersion resins, and are carbon containing compounds having at least one site of unsaturation which can react, optionally in the presence of an initiator, to provide polymeric or crosslinked products. Non-limiting examples of olefinic compounds include monomers such as (meth)acrylates, vinyls, vinyl ethers, allyl ethers, vinyl esters, unsaturated oils (including mono-, di- and tri-glycerides), unsaturated fatty acids, and the like or mixtures thereof. The olefinic compounds also include oligomers or polymers having at least one site of unsaturation which can react, optionally in the presence of an initiator, to provide polymeric or crosslinked products.
Exemplary olefinic monomers include (meth)acrylate esters of unsubstituted or substituted C1-C15 alcohols such as tripropylene glycol, isobornyl alcohol, isodecyl alcohol, phenoxyethyl alcohol, trishydroxyethyl isocyanurate, trimethylolpropane ethoxylate, ditrimethylolpropane ethoxylate, hexanediol, ethoxylated neopentyl glycol, propoxylated neopentyl glycol, ethoxylated phenol, polyethylene glycol, bisphenol A ethoxylate, trimethylolpropane, propoxylated glycerol, pentaerythritol, tetrahydrofurfuryl alcohol, β-carboxyethyl alcohol, or combination thereof. For example, the olefinic monomer may be isobornyl (meth)acrylate, isodecyl (meth)acrylate, phenoxyethyl (meth)acrylate, trimethylolpropane tri(meth)acrylate, alkoxylated cyclohexane dimethanol di(meth)acrylate, trimethylolpropane ethoxylate tri(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, tetrahydrofurfuryl (meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, propoxylated glycerol tri(meth)acrylate, beta-carboxyethyl (meth)acrylate, bisphenol A ethoxylate di(meth)acrylate, ethoxylated neopentyl glycol di(meth)acrylate, propoxylated neopentyl glycol di(meth)acrylate, or combination thereof. Preferred olefinic monomers include trimethylolpropane tri(meth)acrylate, bisphenol A ethoxylate di(meth)acrylate, propoxylated glycerol tri(meth)acrylate, trimethylolpropane ethoxylate tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, or combination thereof. The olefinic monomer may contain a (C1-C15) alcohol radical such as hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxypropyl, 2hydroxypropyl, 3-hydroxypropyl, 1-hydroxybutyl, 4-hydroxybutyl, 1 -hydroxypentyl, 5hydroxypentyl, 1 -hydroxyhexyl, 6-hydroxyhexyl, 1,6-dihydroxyhexyl, 1,4-dihydroxybutyl, and the like.
Exemplary allyl ether monomers contain one or more allyl ether groups which typically are bonded to a core structural group which can be based on a wide variety of polyhydric alcohols. Non-limiting examples of suitable polyhydric alcohols include neopentyl glycol, trimethylolpropane, ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, trimethylene glycol, triethylene glycol, trimethylolethane, pentaerythritol, glycerol, diglycerol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, and any of the other polyols mentioned above in connection with the (meth)acrylate esters. Other exemplary allyl ether monomers include hydroxyethyl allyl ether, hydroxypropyl allyl ether, trimethylolpropane monoallyl ether, trimethylolpropane diallyl ether, trimethylolethane monoallyl ether, trimethylolethane diallyl ether, glycerol monoallyl ether, glycerol diallyl ether, pentaerythritol monoallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, 1,2,6-hexanetriol monoallyl ether, 1,2,6-hexanetriol diallyl ether, and the like. Preferred allyl ethers include poly propoxylated and ethoxylated forms of allyl ethers.
Exemplary vinyl ether monomers contain one or more vinyl ether groups and include 4-hydroxybutyl vinyl ether, 1,4-cyclohexanedimethanol monovinyl ether, 1,4-cyclohexanedimethanol divinyl ether, ethylene glycol monovinyl ether, ethylene glycol divinyl ether, diethylene glycol monovinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, and the like. Preferred vinyl ether monomers include propoxylated or ethoxylated forms of vinyl ether monomers.
The olefinic compounds can include latex polymers or polyurethane dispersions having attached olefinic groups. These compounds can be prepared as described in applicants' copending PCT Application Serial No. PCT/US2007/061326, filed Jan. 30, 2007 and entitled COATING SYSTEM FOR CEMENT COMPOSITE ARTICLES.
A subset of the previously mentioned olefinic compounds (e.g., hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate and di-(trimethylolpropane tetra(meth)acrylate) have multiple (e.g., two or more) reactive groups. These monomers or oligomers can function as crosslinking agents.
The disclosed coating systems or coating compositions preferably contain about 20 to about 95% by weight of olefinic compounds based on the total weight of the non-volatile components in the coating system, preferably about 30 to about 90% by weight and most preferably about 50 to about 80% by weight.
A variety of PVC dispersion resins may be used in the disclosed coating systems and method. A PVC dispersion resin typically contains resin particles (or a mixture of particles of various resins or mixed resins) in a liquid plasticizer. The PVC dispersion resin may for example include a PVC homopolymer, copolymer or a combination thereof, and various additives. PVC dispersion resins can be made by emulsion polymerization, microsuspension polymerization or by a process borrowing from both techniques. PVC dispersion resins typically have very fine particles (e.g., an average particle diameter of about 0.1 μm to about 1.5 μm). Typically, the PVC dispersion resin particles show little or no porosity and have very high surface area. When sufficient plasticizer is added to a dispersion resin (e.g., about 40 phr or higher) a liquid suspension which may be called a plastisol or organosol is obtained. Copolymers of vinyl chloride and other monomers such as acetates and acrylates can be used to produce dispersion resins. PVC dispersion resins are typically produced by suspension polymerization and have an average particle size range of about 25μm to 75μm. Exemplary commercially available PVC dispersion resins include GEON™resins (e.g., GEON 137, 171, and 172) from PolyOne Corporation, Avon Lake, OH and NORVINYL™resins (e.g., NORVINYL S6261, S6571, S7060 and S8060) from Hydro Polymers, Oslo, Norway.
The disclosed coating systems or coating compositions preferably contain about 5 to about 80% by weight PVC dispersion resin based on the total weight of the non-volatile components in the coating system, more preferably about 10 to about 70% by weight and most preferably about 20% to about 50% by weight.
The disclosed coating systems may include one or more optional silicates (e.g., a silicate salt). Exemplary silicates include lithium silicate, potassium silicate, sodium silicate, ammonium silicate and the like. The amount of silicate may for example be from about 2 to about 50% by weight, from about 5 to about 40% by weight or from about 10 to about 35% by weight, based on the total weight of the non-volatile components. Silicates are available through a variety of chemical suppliers, for example potassium silicate is available from The PQ Corporation, Valley Forge, Pa.
Wet adhesion testing and “freeze-thaw” cycles have been shown, under laboratory conditions, to simulate long-term outdoor exposure encountered in northern climates. A Wet Adhesion Test may be carried out as follows to evaluate adhesion of the coating system after a coated cement fiberboard substrate has been saturated with water. According to this test procedure, coated substrates (e.g., fiber cement boards) are soaked in room temperature water for 24 hours. After soaking, the boards are removed from the water and kept at room temperature for 24 hours. A six-inch (15.24 cm) length of 3M HD 250 tape is applied to the surface of the board with the long axis of the tape in the direction of any embossing patterns that may be present. The tape is firmly pressed onto the board ensuring full contact. The tape is then removed by quickly pulling it off at a 90-degree angle to the board. “Wet Adhesion” performance is rated based on the percent of coating removed from the cement board. Performance is further assessed by noting where any failure occurs. For example, failure may occur between interfacial coating layers, between the coating and the surface of the board, or within the board itself. Preferred coating systems or coating compositions typically have less than 25% coating removal, more preferably less than 15% coating removal. In addition, the failure preferably is within the board as indicated by a significant amount of fiber from the board adhering to the removed coating.
Preferred coated articles can withstand at least 30 freeze-thaw cycles, when tested according to ASTM D6944-03, Test Method A. As written, this ASTM test method recites a 30-cycle sequence. However, rather than simply grade a specimen as a “pass” at the end of 30 cycles, the test desirably is lengthened to include additional cycles. More preferably, the coated articles can withstand at least 75 freeze-thaw cycles, most preferably at least 125 freeze-thaw cycles and optimally at least 175 freeze-thaw cycles.
The disclosed coating systems or coating compositions preferably have improved, viz., lower, volatile organic content (VOC). The coating systems or coating compositions desirably have a VOC of less than about 5%, based on the total weight of the coating system, preferably a VOC of less than about 2%, more preferably a VOC of less than about 0.5%.
The olefinic compounds are curable by radiation, e.g., visible light, ultra violet light, electron beam, microwave, gamma radiation, infrared radiation and the like. An initiator system is not required for electron beam curing but for other radiation sources typically will be chosen based on the particular type of curing energy (e.g., UV, visible light or other energy) and cationic, free-radical, cationic or other curing mechanism) employed. Thus in one preferred embodiment, the coating system is electron beam curable and does not require an initiator. In another preferred embodiment, the coating system is UV curable and free-radically polymerizable, and includes a UV photoinitiator system which generates free radicals in response to UV light and thereby cures the coating.
Non-limiting examples of initiators include peroxide compounds, azo compounds, cationic-generating initiators, cleavage-type initiators, hydrogen abstraction-type initiators, and the like. Exemplary peroxide compounds include t-butyl perbenzoate, t-amyl perbenzoate, cumene hydroperoxide, t-amyl peroctoate, methyl ethyl ketone peroxide, benzoyl peroxide, cyclohexanone peroxide, 2,4-pentanedione peroxide, di-t-butyl peroxide, t-butyl hydroperoxide and di-(2-ethylhexyl)-peroxydicarbonate. Preferably, the curing agent is t-butyl perbenzoate, methyl ethyl ketone peroxide, or cumene hydroperoxide. Methyl ethyl ketone peroxide conveniently is employed as a solution in dimethyl phthalate, e.g., LUPERSOL™ DDM-9 from Ato-Chem.
Exemplary azo compounds include 2,2-azo bis-(2,4-dimethylpentane-nitrile), 2,2-azo bis-(2-methylbutanenitrile) and 2,2-azo bis-(2-methylpropanenitrile).
Exemplary cationic-generating photoinitiators include super acid-generating photoinitiators such as triaryliodonium salts, triarylsulfonium salts and the like. A preferred triarylsulfonium salt is triphenyl sulfonium hexafluorophosphate.
Exemplary cleavage-type photoinitiators include α,α-diethoxyacetophenone (DEAP); dimethoxyphenylacetophenone (IRGACURE™ 651); hydroxycyclo-hexylphenylketone (IRGACURE™ 184); 2-hydroxy-2-methyl-1-phenylpropan-1-one (DAROCUR™ 1173); a 25:75 blend of bis-(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentyl phosphine oxide and 2-hydroxy-2-methyl-1-phenylpropan-1-one (IRGACURE™ 1700), a 50:50 blend of hydroxycyclo-hexylphenylketone and benzophenone (IRGACURE™ 500), 50:50 blend of 2,4,6-trimethylbenzoyl-diphenyl-phosphineoxide and 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR™ 4265), bis acryl phosphine (IRGACURE™ 819) and phosphine oxide (IRGACURE™ 2100), all available from Ciba Corporation, Ardsley, N.Y. Other cleavage-type initiators include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (LUCIRIN™ TPO) from BASF Corporation and a 70:30 blend of oligo 2-hydroxy-2-methyl-[4-(1-methylvinyl)phenyl]propan-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1-one (KIP™ 100) available from Sartomer (Exton, Pa.). Preferred cleavage-type photoinitiators are hydroxycyclo-hexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzophenone, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide bis acryl phosphine and a 70:30 blend of 2-hydroxy-2-methyl-[4-(1-methylvinyl)phenyl]propan-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1-one.
Non-limiting examples of hydrogen abstraction-type photoinitiators include benzophenone, substituted benzophenones (e.g., ESCACURE™ TZT of Fratelli-Lamberti) and other diaryl ketones such as xanthones, thioxanthones, Michler's ketone, benzil, quinones and substituted derivatives of all of the above. Camphorquinone is an example of a compound that may be used when one desires to cure a coating system with visible light.
For coating compositions or systems having an olefinic compound including a mixture of two or more of a (meth)acrylate, an allyl ether and a vinyl ether functional group, a combination of curing procedures can be used. For example, a coating composition having a (meth)acrylate and a vinyl ether functional group typically may include an α-cleavage-type or hydrogen abstraction type photoinitiator for polymerization of the (meth)acrylate groups and a cationic-generating photoinitiator for polymerization of the vinyl ether groups.
If desired, the coating composition or system may also include a co-initiator or photoinitiator synergist. Non-limiting examples of co-initiators include (1) tertiary aliphatic amines such as methyl diethanol amine and triethanol amine; (2) aromatic amines such as amylparadimethylaminobenzoate, 2-n-butoxyethyl-4-(dimethylamino)benzoate, 2-(dimethylamino)ethylbenzoate, ethyl-4-(dimethylamino)benzoate and 2-ethylhexyl-4-(dimethylamino)benzoate; (3) (meth)acrylated amines such as EBECRYL™ 7100 and UVECRYL™ P104 and P115, all from UCB RadCure Specialties; and (4) amino-functional acrylate or methacrylate resin or oligomer blends such as EBECRYL™ 3600 or EBECRYL™ 3703, both from UCB RadCure Specialties. Combinations of the above four categories of co-initiators may also be used.
In the case of visible or UV radiation curing systems, the preferred amount of photoinitiator present in the disclosed coating systems can be from about 0.2 to about 15 wt. % of the non-volatile components. More preferably the photoinitiator can be from about 0.5 to about 10 wt. %, and most preferably the photoinitiator can be from about 0.75 to about 5 wt. % of the non-volatile components.
Other methods for curing the coating systems can be used in combination with methods described herein Such other curing methods include heat cure, chemical cure, anaerobic cure, moisture cure, oxidative cure, and the like. Such methods may require inclusion of a corresponding curing initiator or curing agent in the composition. For example, heat cure can be induced by peroxides, metal curing packages can induce an oxidative cure, or multifunctional amines (for example isophorone diamine) can effect a chemical crosslinking cure through Michael addition of amine groups onto acrylate reactive unsaturated groups. If these additional initiators are present in the coating system they typically make up about 0.1-12% by weight of the curable coating system. Means for effecting cures by such methods are known to those of skill in the art or can be determined using standard methods.
Other optional components for use in the coating systems herein are described in Koleske et al., Paint and Coatings Industry, April, 2003, pages 12-86. Typical performance enhancing additives that may be employed include surface active agents, pigments, colorants, dyes, surfactants, dispersants, defoamers, thickeners, heat stabilizers, leveling agents, coalescents, biocides, mildewcides, anti-cratering agents, curing indicators, plasticizers, fillers, sedimentation inhibitors, ultraviolet light absorbers, optical brighteners, and the like to modify properties.
The coating systems may also contain an optional coalescent and many coalescents are known in the art. The optional coalescent is preferably a low VOC coalescent such as is described in U.S. Pat. No. 6,762,230.
Exemplary coating systems that can be used in the coating systems are listed below. This is not intended to be an exhaustive list of examples of coating systems. The examples include the following compositions:
Composition A—An example of a coating system suitable for use in the invention includes a mixture of (i) olefinic monomers or oligomers, (e.g., trimethylolpropane triacrylate (TMPTA) (available from Sartomer) and (ii) a PVC dispersion (e.g., GEON 137, 171 or 172 from PolyOne Corporation or NORVINYL S6261, S6571, S7060 or S8060 from Hydro Polymers).
Composition B—An example of a coating system suitable for use in the invention includes a mixture of (i) olefinic monomers or oligomers, (e.g., trimethylolpropane tri-acrylate (TMPTA); (ii) a PVC dispersion (e.g., GEON 137, 171 or 172 from PolyOne Corporation or NORVINYL S6261, S6571, S7060 or S8060 from Hydro Polymers); and (iii) an initiator, (e.g., DAROCURE 1173 (D-1173).
The instant method includes applications of suitable coating systems which can be applied as a single layer or as multiple applications of at least one coating composition. The specific application and order of application of the selected coating compositions can be readily determined by a person skilled in the art of preparing or applying such compositions. Exemplary descriptions of these coating systems are provided below.
Specific application routes for preparing the coated articles include:
Accordingly, the disclosed articles can be prepared by applying the coating system as a single layer or the coating system can be applied as multiple layers. Coating compositions applied using multiple coating layers may allow mixing of the coating layers at an interface.
In any of the above application routes when there is a carrier (e.g., water or solvent) present in one of more of the compositions, the coated article may be subjected to quick drying to remove at least a portion of any carrier which may be present. The coating composition(s) are preferably applied at about 75 to 100% solids by weight and preferably at about 85 to 100% solids.
The coating systems may be applied by any number of application techniques including but not limited to brushing (e.g., using a brush coater), direct roll coating, reverse roll coating, flood coating, dip coating, vacuum coating, curtain coating and spraying. The various techniques each offer a unique set of advantages and disadvantages depending upon the substrate profile, morphology and tolerable application efficiencies. The disclosed coating systems can for example advantageously be applied to a cement fiberboard substrate by roll coating or spraying. Lower viscosities facilitate uniform film control. The applied film thickness may be controlled by varying the application rate.
A dry film thickness (DFT) of the coating system on the cement fiberboard substrate may for example be in the range of, but not limited to, about 0.2 to about 4 mil (about 0.005 to about 0.1 mm), more preferably about 0.3 to about 3 mil (about 0.008 to about 0.08 mm).
It is preferred that the coated articles are coated on at least one major surface with the coating system. More preferably, the coated articles are coated on a major surface and up to four minor surfaces including any edges. Most preferably, the coated articles are coated on all (e.g., both) major surfaces, and up to four minor surfaces including any edges.
Multiple layers of the disclosed coating systems may be applied. A primer (e.g., a latex-containing primer) or topcoat (e.g., a latex-containing topcoat) or both a primer and topcoat may be applied directly to the coating system. If desired this may be done at the site where the cement fiberboard substrate is manufactured.
The coating systems and compositions described herein may be used in place of or in addition to coatings that the prior art has categorized as “sealers,” “primers” and “topcoats.” However, the systems and compositions may not fit neatly into any category per se and such terms should not be limiting.
It is also noted that the disclosed coating systems and coating compositions can be used with other coating compositions such as those disclosed in the following applications: U.S. Application Ser. Nos. 60/764,103, 60/764,044 and 60/674,131, each filed Jan. 31, 2006, and 60/802,185, filed May 19, 2006.
All patents, patent applications, and literature cited in the specification are hereby incorporated by reference in their entirety. In the case of any inconsistencies, the present disclosure, including any definitions therein will prevail. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.
This application is a continuation of International Application No. PCT/US2007/002587, filed on Jan. 30, 2007, which claims priority from U.S. provisional patent application Ser. No. 60/764,242, filed Jan. 31, 2006, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2128961 | Patterson | Sep 1938 | A |
2356542 | Sloan | Aug 1944 | A |
2633458 | Shokal | Mar 1953 | A |
2674775 | Willson | Apr 1954 | A |
2727012 | Treat et al. | Dec 1955 | A |
2730517 | Vogel et al. | Jan 1956 | A |
3010919 | MacKinney et al. | Nov 1961 | A |
3049458 | Willard | Aug 1962 | A |
3091551 | Robertson | May 1963 | A |
3219467 | Redican et al. | Nov 1965 | A |
3380831 | Cohen et al. | Apr 1968 | A |
3449161 | Hindersinn et al. | Jun 1969 | A |
3481894 | Lima et al. | Dec 1969 | A |
3655423 | Lin et al. | Apr 1972 | A |
3781396 | Okuda et al. | Dec 1973 | A |
3804735 | Radlove et al. | Apr 1974 | A |
3899611 | Hall | Aug 1975 | A |
3935173 | Ogasawara et al. | Jan 1976 | A |
3935364 | Prokesh et al. | Jan 1976 | A |
3952032 | Vrancken et al. | Apr 1976 | A |
3970628 | Connelly et al. | Jul 1976 | A |
3986996 | Villa et al. | Oct 1976 | A |
3991136 | Dalton et al. | Nov 1976 | A |
4015040 | Hoshida et al. | Mar 1977 | A |
4028294 | Brown et al. | Jun 1977 | A |
4113893 | Hahn | Sep 1978 | A |
4132526 | Schwarz et al. | Jan 1979 | A |
4197389 | Becker et al. | Apr 1980 | A |
4211848 | Blount | Jul 1980 | A |
4228761 | Glover et al. | Oct 1980 | A |
4324822 | Kobayashi et al. | Apr 1982 | A |
4333867 | Sauntson | Jun 1982 | A |
4385152 | Boyack et al. | May 1983 | A |
4390688 | Walz et al. | Jun 1983 | A |
4408018 | Bartman et al. | Oct 1983 | A |
4486553 | Wesch | Dec 1984 | A |
4522962 | Abbey et al. | Jun 1985 | A |
4528307 | Fuhr et al. | Jul 1985 | A |
4536534 | Singer et al. | Aug 1985 | A |
4582755 | Dietrich | Apr 1986 | A |
4598108 | Hoefs | Jul 1986 | A |
4719149 | Aasen et al. | Jan 1988 | A |
4737577 | Brown | Apr 1988 | A |
4742121 | Toman | May 1988 | A |
4782109 | DuLaney et al. | Nov 1988 | A |
4822828 | Swofford | Apr 1989 | A |
4822858 | Pivotto et al. | Apr 1989 | A |
4852316 | Webb | Aug 1989 | A |
4880660 | Aasen et al. | Nov 1989 | A |
4886852 | Numa | Dec 1989 | A |
4904522 | Markusch | Feb 1990 | A |
4908229 | Kissel | Mar 1990 | A |
4916004 | Ensminger et al. | Apr 1990 | A |
5017632 | Bredow et al. | May 1991 | A |
5073578 | Boodaghains et al. | Dec 1991 | A |
5075370 | Kubitza et al. | Dec 1991 | A |
5100948 | Aydin et al. | Mar 1992 | A |
5157074 | Metzger et al. | Oct 1992 | A |
5191012 | Markusch et al. | Mar 1993 | A |
5212230 | Tirpak et al. | May 1993 | A |
5221710 | Markusch et al. | Jun 1993 | A |
5236994 | Markusch et al. | Aug 1993 | A |
5262444 | Rusincovitch et al. | Nov 1993 | A |
5296530 | Bors et al. | Mar 1994 | A |
5356716 | Patel | Oct 1994 | A |
5371148 | Taylor et al. | Dec 1994 | A |
5407783 | Caruso | Apr 1995 | A |
5409984 | Gerhardinger et al. | Apr 1995 | A |
5418264 | Obloh et al. | May 1995 | A |
5426142 | Rosano et al. | Jun 1995 | A |
5461125 | Lu et al. | Oct 1995 | A |
5468804 | Schmalstieg et al. | Nov 1995 | A |
5478601 | Larson et al. | Dec 1995 | A |
5484849 | Bors et al. | Jan 1996 | A |
5500457 | Sarkar et al. | Mar 1996 | A |
5534310 | Rokowski et al. | Jul 1996 | A |
5559192 | Bors et al. | Sep 1996 | A |
5562953 | Bors et al. | Oct 1996 | A |
5567767 | Smeal et al. | Oct 1996 | A |
5569686 | Makati et al. | Oct 1996 | A |
5571863 | Smeal et al. | Nov 1996 | A |
5672379 | Schall et al. | Sep 1997 | A |
5679721 | Courtoy et al. | Oct 1997 | A |
5681385 | Beckenhauer | Oct 1997 | A |
5688867 | Scheibelhoffer et al. | Nov 1997 | A |
5708077 | Nölken et al. | Jan 1998 | A |
5708093 | Bastelberger et al. | Jan 1998 | A |
5718943 | Hsu et al. | Feb 1998 | A |
5744078 | Soroushian et al. | Apr 1998 | A |
5766768 | Cummings et al. | Jun 1998 | A |
5777053 | McBain et al. | Jul 1998 | A |
5780117 | Swartz et al. | Jul 1998 | A |
5798426 | Anton et al. | Aug 1998 | A |
5814397 | Cagliostro et al. | Sep 1998 | A |
5859095 | Moyle et al. | Jan 1999 | A |
5869590 | Clark et al. | Feb 1999 | A |
5874503 | Scheibelhoffer et al. | Feb 1999 | A |
5928778 | Takahashi et al. | Jul 1999 | A |
5945044 | Kawai et al. | Aug 1999 | A |
5962571 | Overbeek et al. | Oct 1999 | A |
5973068 | Yamaya et al. | Oct 1999 | A |
5994428 | Lutz et al. | Nov 1999 | A |
5997952 | Harris et al. | Dec 1999 | A |
6007619 | Laas et al. | Dec 1999 | A |
6008289 | König et al. | Dec 1999 | A |
6011078 | Reich et al. | Jan 2000 | A |
6028155 | Collins et al. | Feb 2000 | A |
6030447 | Naji et al. | Feb 2000 | A |
6045871 | Matt et al. | Apr 2000 | A |
6045873 | Adachi et al. | Apr 2000 | A |
6048471 | Henry | Apr 2000 | A |
6063864 | Mathur et al. | May 2000 | A |
6103352 | Takahashi | Aug 2000 | A |
6114440 | Yamaya et al. | Sep 2000 | A |
6136383 | Schwartz et al. | Oct 2000 | A |
6146710 | Symons | Nov 2000 | A |
6146711 | Courtoy et al. | Nov 2000 | A |
6162511 | Garnett et al. | Dec 2000 | A |
6235228 | Nicholl et al. | May 2001 | B1 |
6297320 | Tang et al. | Oct 2001 | B1 |
6346146 | Duselis et al. | Feb 2002 | B1 |
6395827 | Pears et al. | May 2002 | B1 |
6398976 | Sandoval et al. | Jun 2002 | B1 |
6417267 | Stockl et al. | Jul 2002 | B1 |
6426414 | Laas et al. | Jul 2002 | B1 |
6453960 | Kondo et al. | Sep 2002 | B1 |
6458250 | Holliday et al. | Oct 2002 | B1 |
6475556 | Sobczak et al. | Nov 2002 | B1 |
6485601 | Egan et al. | Nov 2002 | B1 |
6485793 | Ott et al. | Nov 2002 | B1 |
6492450 | Hsu | Dec 2002 | B1 |
6506248 | Duselis et al. | Jan 2003 | B1 |
6528610 | Frouin et al. | Mar 2003 | B1 |
6534176 | Terase et al. | Mar 2003 | B2 |
6555625 | Overbeek et al. | Apr 2003 | B1 |
6590025 | Carlson et al. | Jul 2003 | B1 |
6635735 | Zhang et al. | Oct 2003 | B1 |
6638567 | Beisele | Oct 2003 | B1 |
6638998 | Zhao et al. | Oct 2003 | B2 |
6641629 | Safta et al. | Nov 2003 | B2 |
6649679 | Stockl et al. | Nov 2003 | B1 |
6660386 | Haque | Dec 2003 | B2 |
6696518 | Dersch et al. | Feb 2004 | B1 |
6740423 | Murase | May 2004 | B2 |
6753394 | Weikard et al. | Jun 2004 | B2 |
6762230 | Brandenburger et al. | Jul 2004 | B2 |
6777458 | Jaworek et al. | Aug 2004 | B1 |
6818697 | Zhang et al. | Nov 2004 | B2 |
6849338 | Clemens et al. | Feb 2005 | B2 |
6893751 | Naji et al. | May 2005 | B2 |
6941720 | DeFord et al. | Sep 2005 | B2 |
6998012 | Koelliker et al. | Feb 2006 | B2 |
7049352 | Gould et al. | May 2006 | B2 |
7101921 | Edwards et al. | Sep 2006 | B2 |
7105593 | Solomon et al. | Sep 2006 | B2 |
7148270 | Bowe | Dec 2006 | B2 |
7235595 | Hermes et al. | Jun 2007 | B2 |
7235603 | Madle et al. | Jun 2007 | B2 |
7238391 | Dargontina et al. | Jul 2007 | B2 |
7247671 | Overbeek et al. | Jul 2007 | B2 |
7265166 | Gebhard et al. | Sep 2007 | B2 |
7338989 | Gross et al. | Mar 2008 | B2 |
7381785 | Detrembleur et al. | Jun 2008 | B2 |
7449516 | Bayer et al. | Nov 2008 | B2 |
7758954 | Nguyen et al. | Jul 2010 | B2 |
7812090 | Killilea et al. | Oct 2010 | B2 |
7834086 | Killilea et al. | Nov 2010 | B2 |
20020007009 | Stark et al. | Jan 2002 | A1 |
20020009622 | Goodson | Jan 2002 | A1 |
20020081437 | Dargontina et al. | Jun 2002 | A1 |
20020179240 | Clemens et al. | Dec 2002 | A1 |
20020195191 | Weiss et al. | Dec 2002 | A1 |
20030027915 | Gerst et al. | Feb 2003 | A1 |
20030055171 | Overbeek et al. | Mar 2003 | A1 |
20030073778 | Zhang et al. | Apr 2003 | A1 |
20030089061 | DeFord et al. | May 2003 | A1 |
20030150359 | Lassmann | Aug 2003 | A1 |
20030153673 | Schwalm et al. | Aug 2003 | A1 |
20030203991 | Schottman et al. | Oct 2003 | A1 |
20030207121 | McGee | Nov 2003 | A1 |
20030211346 | Kausch | Nov 2003 | A1 |
20030224184 | Hermes et al. | Dec 2003 | A1 |
20040002559 | Troutman et al. | Jan 2004 | A1 |
20040044094 | Garnett | Mar 2004 | A1 |
20040063809 | Fu et al. | Apr 2004 | A1 |
20040068045 | Betremieux et al. | Apr 2004 | A1 |
20040077782 | Heldmann et al. | Apr 2004 | A1 |
20040082715 | Bayer et al. | Apr 2004 | A1 |
20040086676 | Peng | May 2004 | A1 |
20040161542 | Ziemann et al. | Aug 2004 | A1 |
20040176502 | Raymond et al. | Sep 2004 | A1 |
20040198903 | Madle et al. | Oct 2004 | A1 |
20040229978 | Bowe | Nov 2004 | A1 |
20050009954 | Gebhard et al. | Jan 2005 | A1 |
20050020718 | Gosse et al. | Jan 2005 | A1 |
20050027079 | Palmer Lauer et al. | Feb 2005 | A1 |
20050053797 | Rumph et al. | Mar 2005 | A1 |
20050126430 | Lightner, Jr. et al. | Jun 2005 | A1 |
20050176321 | Crette et al. | Aug 2005 | A1 |
20050203211 | Gebhard | Sep 2005 | A1 |
20050208285 | Lyons et al. | Sep 2005 | A1 |
20060013950 | Porter et al. | Jan 2006 | A1 |
20060024480 | Lyons et al. | Feb 2006 | A1 |
20060046068 | Barancyk et al. | Mar 2006 | A1 |
20060048708 | Hartig | Mar 2006 | A1 |
20060111503 | Killilea et al. | May 2006 | A1 |
20060135684 | Killilea | Jun 2006 | A1 |
20060135686 | Kililea et al. | Jun 2006 | A1 |
20060182946 | Zarb et al. | Aug 2006 | A1 |
20060288909 | Naji et al. | Dec 2006 | A1 |
20070027233 | Yamaguchi et al. | Feb 2007 | A1 |
20070042192 | Nguyen et al. | Feb 2007 | A1 |
20070110981 | Killilea et al. | May 2007 | A1 |
20070149077 | Stanislawczyk et al. | Jun 2007 | A1 |
20070213445 | Klijn et al. | Sep 2007 | A1 |
20070259166 | Killilea et al. | Nov 2007 | A1 |
20070259188 | Wu et al. | Nov 2007 | A1 |
20070269660 | Killilea et al. | Nov 2007 | A1 |
20070282046 | Killilea et al. | Dec 2007 | A1 |
20080008895 | Garner et al. | Jan 2008 | A1 |
20080139737 | Alderfer et al. | Jun 2008 | A1 |
20080141908 | Peng et al. | Jun 2008 | A1 |
20080275155 | Wagner et al. | Nov 2008 | A1 |
20080300338 | Wagner et al. | Dec 2008 | A1 |
20090004468 | Chen et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
198060655 | Mar 1981 | AU |
2005100347 | May 2005 | AU |
1182724 | May 1998 | CN |
33 02 767 | Aug 1984 | DE |
0 060 505 | Sep 1982 | EP |
0 486 278 | May 1992 | EP |
0 623 659 | Nov 1994 | EP |
0 640 629 | Mar 1995 | EP |
0 697 417 | Feb 1996 | EP |
0 705 855 | Apr 1996 | EP |
0 725 088 | Aug 1996 | EP |
0 728 779 | Aug 1996 | EP |
0 757 059 | Feb 1997 | EP |
0 894 780 | Feb 1999 | EP |
1 118 632 | Jul 2001 | EP |
1 170 340 | Jan 2002 | EP |
1 454 935 | Sep 2004 | EP |
1 473 331 | Nov 2004 | EP |
1 505 088 | Feb 2005 | EP |
1 505 127 | Feb 2005 | EP |
1 589 083 | Oct 2005 | EP |
1 650 045 | Apr 2006 | EP |
1 798 258 | Jun 2007 | EP |
1 407 827 | Sep 1975 | GB |
2 148 871 | Jun 1985 | GB |
54 038323 | Mar 1979 | JP |
01 229242 | Sep 1989 | JP |
02 308887 | Dec 1990 | JP |
08 059939 | Mar 1996 | JP |
11 236281 | Aug 1999 | JP |
03 44986 | Dec 2000 | JP |
2003 226835 | Aug 2003 | JP |
2003251269 | Sep 2003 | JP |
2004 010805 | Jan 2004 | JP |
2004 250607 | Sep 2004 | JP |
2004 292748 | Oct 2004 | JP |
2005-307161 | Apr 2005 | JP |
2006 117812 | May 2006 | JP |
833892 | May 1981 | SU |
WO 9407674 | Apr 1994 | WO |
WO 9425499 | Nov 1994 | WO |
WO 9845222 | Oct 1998 | WO |
WO 9967312 | Dec 1999 | WO |
WO 0023495 | Apr 2000 | WO |
WO 0056826 | Sep 2000 | WO |
WO 0168547 | Sep 2001 | WO |
WO 02070623 | Sep 2002 | WO |
WO 03000761 | Jan 2003 | WO |
WO 03076536 | Sep 2003 | WO |
WO 03101918 | Dec 2003 | WO |
WO 2005071179 | Aug 2005 | WO |
WO 2006032512 | Mar 2006 | WO |
WO 2006065914 | Jun 2006 | WO |
PCTUS2006060943 | Nov 2006 | WO |
PCTUS2007002587 | Jan 2007 | WO |
PCTUS2007002802 | Jan 2007 | WO |
PCTUS2007061326 | Jan 2007 | WO |
PCTUS200761327 | Jan 2007 | WO |
PCTUS2007069387 | May 2007 | WO |
WO 2007059516 | May 2007 | WO |
PCTUS2007070356 | Jun 2007 | WO |
PCTUS2007073070 | Jul 2007 | WO |
PCTUS07074991 | Aug 2007 | WO |
WO 2007087458 | Aug 2007 | WO |
WO 2007089807 | Aug 2007 | WO |
WO 2007089913 | Aug 2007 | WO |
WO 2007090132 | Aug 2007 | WO |
WO 2008018910 | Feb 2008 | WO |
PCTUS2009065811 | Nov 2009 | WO |
Entry |
---|
ASTM D6944-03, Test Method A (2003). |
Koleske et al., Two Thousand Three Additives Guide, Paint and Coatings Industry, pp. 12-86, (Apr. 2003). |
Witzeman, J. S. et al., Comparison of Methods for the Preparation of Acetoacetylated Coating Resins, Coatings Technology; vol. 62, No. 789, pp. 101-112 (Oct. 1990). |
American Society of Testing Materials, ASTM Designation: D523-89, “Standard Test Method for Specular Gloss;” 5 pages, (Reapproved 1999). |
American Society of Testing Materials, ASTM Designation: D5402-93, “Standard Practice for Assessing the Solvent Resistance of Organic Coatings Using Solvent Rubs;” 3 pages, (Reapproved 1999). |
Eastman Chemical Company, Publications N-319C, Kingport, TN., Title Page, Table of Contents, “Acetoacetoxyethyl Methacrylate (AAEM) Acetoacetyl Chemistry,” pp. 1-11, (Dec. 1999). |
Lewis et al., “Luminescence”, Hawley's Condensed Chemical Dictionary, 14th Ed., John Wiley and Sons, Inc., retrieved from Knovel® online; 1 page (2002). |
“Photoinitiators for UV Curing,” “Darocur 1173”, p. 2; Ciba Specialty Chemicals; 8 pages (2003). |
U.S. Federal Register, vol. 60, No. 116, pp. 31633-31637, (Jun. 16, 1995). |
Wicks, Zeno W. Jr., et al., “Latexes”, Organic Coatings, Science and Technology, Second Edition, (Wiley-Interscience, New York), Title Page, Copyright Page, Chapter 8, p. 143, (1999). |
Dow® Z-6018 Intermediate Product Information, “Silicone Intermediates”, 3 pgs., (Aug. 28, 2006). |
ISR and Written Opinion for PCTUS/2007/002587 dated Aug. 13, 2007. |
ASTM D6944-03, Test Method A. |
Koleske et al., Two Thousand Three Additives Guide, Paint and Coatings Industry, Apr. 2003, pp. 1-76. |
Witzeman, J. S. et al., Comparison of Methods for the Preparation of Acetoacetylated Coating Resins, Coatings Technology; vol. 62, No. 789, Oct. 1990, pp. 101-112 (and references contained therein). |
Clemens, R. J. et al., A Comparison of Catalysts for Crosslinking Acetoacetylated Resins via the Michael Reaction, Journal of Coatings Technology, Mar. 1989, vol. 61, No. 770, pp. 83-91. |
Clemens, R. J., A Comparison of Catalysts for Crosslinking Acetoacetylated Resins via the Michael Reaction, Water-Borne & Higher Solids Coatings Symposium, 1988, New Orleans, LA, 55-67. |
Wicks, Z.W. et al., Epoxy and Phenolic Resins, Organic Coatings Science and Technology, vol. 1, Chapter XI, pp. 162-187. |
Tennebroek et al., New Polymer Synthesis for (self) Crosslinkable Urethanes and Urethane Acrylics, 4th Nürnberg Congress; International Centre for Coatings Technology, Paper 17, 2000, 19 pages. |
Geurts, J.M. et al., Self-crosslinkable Urethanes and Urethane/Acrylics, Verfkroniek Nummer, Jan. 1999. |
Geon® Lo-Sope Dispersion Resin, Geon® 171 Vinyl Chloride Homopolymer Technical Data Sheet, PolyOne Corporation, May 2003, 2 pages. |
Geon Copolymer Dispersion Resin Geon® 137 Vinyl Chloride Copolymer Technical Data Sheet, PolyOne Corporation, Apr. 1997, 2 pages. |
Industrial Research Services, Test Report No. 54703-1 for Epirez Safe Step 100, CSIRO, Manuf. & Infrastr. Technology, Australia, May 2004, pp. 1-6. |
DSM NeoResins, Technical Data Sheet, DSM NeoResins Inc.,Bulletin XK-90, Jan. 2006, 6 pages. |
Tex•Cote® Stretch Product Information, Textured Coatings of America, Inc., Panama City, Florida, Nov. 2003, 3 pages. |
UCAR Emulsion Systems Applications, Architectural Coatings-Exterior-Cement Fiber Board, Dow Chemical Company product information sheet printed on Oct. 25, 2007 from the following Internet archives website at: http://web.archive.org/web/20041022123748/http://www.dow.com/ucarlatex/app/arch/ex—fiber.htm. |
Rector, F.D. et al., Applicatons for the Acetoacetyl Chemistry in Thermoset Coatings, Journal of Coatings Technology, vol. 61, No. 771, Apr. 1989. |
“UV Cured Undercoat Vitrecure 7”, Product Data Sheet 74, Architectural & Industrial Coatings, 1 page (Dec. 21, 2004). |
“UV Cured Sealer for Cement Based Substrates Vitrecure 9”, Product Data Sheet 54, Architectural & Industrial Coatings, 1 page (Jul. 24, 2004). |
Fox, T. G., “Influence of diluent and of copolymer composition on the glass temperature of a polymer system”, Bull. Am. Phys. Soc. I (3), 123 (1956). |
PQ® Potassium Silicates, PQ Corporation Brochure, (2004). |
“Ancarez AR550 Waterborne Epoxy Resin Technical Bulletin”, Air Products and Chemicals, Inc., High Performance Coatings Resins, Pub. No. 125-9914, 13 pages, (Mar. 2006). |
“Anquamine 401 Curing Agent Technical Bulletin”, Air Products and Chemicals, Inc., Epoxy Curing Agents and Modifiers, Publication No. 125-9744,1 page, (May 2004). |
“Polycat 41 Catalyst”, Product Information Sheet, Air Products and Chemicals, Inc., 2 pages, (2003). |
Hardiplank™ Lap Siding Installation, James Hardie Siding Products, 8 pages, (Dec. 2005), http://www.jameshardie.com/homeowner/technical/installation/hardieplank—installation.php, downloaded from the Dec. 15, 2005 Internet Archive entry at: http://web.archive.org/web/20051215084041/http ://www.jameshardie.com/homeowner/installation/hardiplank—installation.php. |
“Siding Painting Tips”, Paint Manufacturers' Recommendation Sheet—No. S-100, James Hardie Siding Products, 10 pages, (May 2005), http://www.jameshardie.com/homeowner/technical/paintingtips.php, downloaded from the Dec. 14, 2005 Internet Archive entry at: http://web.archive.org/web/20051214022056/http://www.jameshardie.com/homeowner/technical/paintingtips.php. |
U.S. Appl. No. 11/669,131, filed Jan. 30, 2007, Killilea et al. |
U.S. Appl. No. 11/669,134, filed Jan. 30, 2007, Wu et al. |
U.S. Appl. No. 11/590,329, filed Nov. 15, 2006, Killilea et al. |
U.S. Appl. No. 12/183,975, filed Jul. 31, 2008, Brandenburger et al. |
U.S. Appl. No. 12/184,150, filed Jul. 31, 2008, Killilea et al. |
U.S. Appl. No. 11/751,459, filed May 21, 2007, Killilea et al. |
U.S. Appl. No. 12/905,815, filed Oct. 15, 2010, Killilea et al. |
U.S. Appl. No. 12/905,815, filed Oct. 15, 2010, Garner et al. |
U.S. Appl. No. 12/032,213, filed Feb. 15, 2008, Vetter et al. |
U.S. Appl. No. 12/671,491, filed Jan. 29, 2010, Brandenburger et al. |
U.S. Appl. No. 13/131,005, filed May 24, 2011, Killilea et al. |
Epoxy Resins Chemistry and Technology 2nd Edition, Revised and Expanded—Tanaka, Yoshio: Synthesis and Characteristics of Epoxides, p. 54 (1988). |
“ASTM C920-11 Standard Specification for Elastomeric Joint Sealants” Abstract, Book of Standards, 2 pages, (vol. Apr. 2007). |
“ASTM C834-10 Standard Specification for Latex Sealants” Abstract, Book of Standards, 2 pages, (vol. Apr. 2007). |
Gardner's Commercially Important Chemicals, edited by G.W.A Milne, Wiley, p. 573 (2005). |
NaH2PO4 MSDS, found at http://muby.itgo.com/MSDS/sodium—phosphate—monobasic—anhyd%20MSDS.htm. |
Araujo, P.H.H. et al., “Techniques for Reducing Residual Monomer Content in Polymers: A Review”, Polymer Engineering and Science, vol. 42, No. 7, pp. 1442-1468 (Jul. 2002). |
Michigan State University Extension-Home Maintenance and Repair: Paint Problems, Jun. 24, 2003 and can be found at: http://www.msue.msu.edu/objects/content—revision/download.cfm/revision—id.498884/workspace—id.-4/01500572.html/. |
EPS 4203 Technical Data Sheet (May 25, 2011). |
EPS 4203 Material Safety Data Sheet (May 10, 2013). |
EPS 4213 Technical Data Sheet (May 26, 2011). |
EPS 4213 Material Safety Data Sheet (May 10, 2013). |
Technical Bulletin CC 2.0, “Yellowing of Alkyd Paints”, Glidden Professional™, Akzo Nobel Paints LLC, 2 pages. (Feb. 2010). |
Lux 399 Technical Data Sheet (Dec. 15, 2010). |
Lux 399 Material Safety Data Sheet (Apr. 29, 2011). |
Celanese Emulsions, “Brilliant Aspects” Technical Data Sheets (Feb. 2005). |
MaxiTile, Inc. Limited Warranty, MaxiLite P7 and P10, MaxiShake and MaxiSlate, SlateMax and ShakeMax, and SuperTile PVA Reinforced Roofing, 2 pages (2005). |
Celanese Emulsions, “Mowilith LDM 7416” Technical Data Sheets, Version 1, 2 pages, Issue 2005/02. |
Celanese Emulsion Polymers, “Mowilith LDM 7416” Technical Data Sheet, 2 pages, (Jan. 8, 2013). |
Celanese Emulsions—Wood Coatings, “Industrial Wood Coatings” sheet downloaded on Aug. 2, 2013 from the Internet Archives at: http://web.archive.org/web/20061016145419/http://www.celanese.com/i. |
Dach-Und Fassadenschindeln, Eternit, Preisliste 2002, 4 pages (Jan. 2002). |
Highly Durable Non-Abrasive Roof Tiles, pp. 52-56, (May 2004). |
Wir bei Etemit Information Sheets, 2 pages, (Aug. 1998). |
Number | Date | Country | |
---|---|---|---|
20100028696 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
60764242 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2007/002587 | Jan 2007 | US |
Child | 12184029 | US |