The embodiments disclosed herein relate to a coating system and a coating method.
WO/2008/108401 discloses a coating system that conveys an object such as a vehicle on a conveyor into a coating booth having a space isolated from the environment and that subjects the conveyed object to coating using movable robots.
In the coating booth, a first travel guide rail and a second travel guide rail different in height from the first travel guide rail are aligned along the conveyor. One of the movable robots is located at the first travel guide rail, and another one of the movable robots is located at the second travel guide rail.
According to one aspect of the present disclosure, a coating system includes a coating robot and an operation robot. The coating robot has a height and is mounted in a coating booth to coat a workpiece while the workpiece is conveyed in the coating booth in a conveyance direction substantially perpendicular to a height direction. The workpiece including a body and a movable part movable with respect to the body. The operation robot is disposed in the coating booth below the coating robot in the height direction. The operation robot is movable in the coating booth in the conveyance direction and is configured to move the movable part of the workpiece.
According to another aspect of the present disclosure, a coating method includes controlling an operation robot provided in a coating booth to move a movable part of a workpiece with respect to a body of the workpiece while the workpiece is conveyed in the coating booth in a conveyance direction. The coating method includes controlling the operation robot to follow the workpiece while the workpiece is conveyed in a state where the movable part is moved with respect to the body. The coating method includes controlling a coating robot to coat the workpiece exposed through the movable part while the workpiece is conveyed in a state where the coating robot is mounted in the coating booth such that the operation robot is below the coating robot in a height direction along a height of the coating robot. The height direction is substantially perpendicular to the conveyance direction.
A more complete appreciation of the present disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The embodiments will now be described with reference to the accompanying drawings, wherein like reference numerals designate corresponding or identical elements throughout the various drawings.
It is noted that the following embodiments are provided for exemplary purposes only and are not intended in a limiting sense. For example, while in the following description a vehicle, such as an automobile, is exemplified as an object to be coated, a vehicle is not intended in a limiting sense.
In the following description, the terms “parallel”, “perpendicular”, “vertical”, “same”, “identical”, and “symmetric” may occasionally be used to not only mean “parallel”, “perpendicular”, “vertical”, “same”, “identical”, and “symmetric”, respectively, in a strict sense but also mean “parallel”, “perpendicular”, “vertical”, “same”, “identical”, and “symmetric”, respectively, in an approximate sense. That is, these terms are used taking into consideration production-related and/or installation-related tolerances and errors.
A coating system 1 according to the first embodiment will be described by referring to
Specifically,
In order to facilitate the understanding of the description,
Also in the following description, the conveyance direction in which a conveyor 210 conveys a workpiece (which is, in this embodiment, the X axis positive direction) will be referred to as “front”, the direction opposite to the front will be referred to as “rear”, the direction to the right for a workpiece oriented in the conveyance direction will be referred to as “right”, and the direction to the left for a workpiece oriented in the conveyance direction will be referred to as “left”. Also in the following description, a surface passing through the center of the conveyor 210 in its conveyance direction, as seen in a top view of the coating system 1, will be referred to as symmetry surface P2 (see
As illustrated in
For example, a device disposed to the right of the conveyor 210 bears “R”, and a device disposed to the left of the conveyor 210 bears “L”. Where there are a plurality of identical or equivalent robots and/or devices on the same side of the conveyor 210, such robots and/or devices bear a numerical designation next to the identification character. For example, a coating robot 10L2 is one of a plurality of coating robots 10 disposed to the left of the conveyor 210, and in the first embodiment illustrated in
A workpiece 500 is symmetric to itself with respect to the symmetry surface P2. The symmetricity of the workpiece 500, however, is not intended in a strict sense; any other shape is possible insofar as the robots to the left of the workpiece 500 and the robots to the right of the workpiece 500 are able to perform similar operations.
The coating robots 10L1 and 10L2 and movable opener robots 20L1 and 20L2 work on the left side of the workpiece 500. The coating robots 10R1 and 10R2 and movable opener robots 20R1 and 20R2 work on the right side of the workpiece 500. Fixed opener robots 40a and 40b operate a front openable member and a rear openable member respectively located a front portion and a rear portion of the workpiece 500.
As illustrated in
The robots and other devices disposed in the coating booth 200 (see
On the floor of the coating booth 200, the conveyor 210 is disposed. The conveyor 210 conveys the workpiece 500, which is an object to be coated, in a predetermined conveyance direction (in the X axis positive direction in the embodiment of
The pair of guides 31 are disposed on the floor of the conveyor 210 and are symmetric to each other with respect to the symmetry surface P2 (see
As illustrated in
The coating robots 10 coat the workpiece 500. A non-limiting example of each coating robot 10 is a six-axis multi-articular robot. The coating robots 10 are fixed to a wall and/or the ceiling of the coating booth 200. Specifically, the coating robots 10 are fixed to columns or beams surrounding the coating booth 200, and the walls and ceiling of the coating booth 200 are disposed at inner positions than the positions where the coating robots 10 are secured.
As illustrated in
The pair of coating robots 10R1 and 10R2 have first arms (see 11 illustrated in
Arranging the coating robots 10 in the above-described manner ensures higher density of robots. With higher density of robots, the footprint of the coating booth 200 (which is the area in a top view of the coating booth 200) decreases. In this respect, the running cost of the coating booth 200 is largely dependent upon maintaining coating environments such as air conditioning and is proportional to the footprint of the coating booth 200. Therefore, achieving higher density of robots minimizes the running cost.
As illustrated in
Specifically, when arm configurations are symmetric to each other, the arms may be different from each other in shape and/or appearance. That is, robots that are symmetric to each other in the arrangement of the axes are referred to as having symmetric arm configurations symmetric to each other, even if the arms of the robots are different from each other in shape and/or appearance. Similarly, robots that are identical to each other in the arrangement of the axes are referred to as having identical arm configurations, even if the arms of the robots are different from each other in shape and/or appearance.
Thus, using robots having symmetric arm configurations symmetric to each other ensures that teaching data can be shared between the robots by reversing the teaching data. This minimizes the cost of creating teaching data, resulting in minimized production cost of the robots. This configuration of the pair of coating robots 10R1 and 10R2 also applies in the pair of coating robots 10L1 and 10L2 illustrated in
As illustrated in
As described above, the pair of coating robots 10R1 and 10R2 have symmetric arm configurations symmetric to each other with respect to the symmetry surface P1, and the coating robots 10L1 and 10L2 have symmetric arm configurations symmetric to each other with respect to the symmetry surface P1. As can be seen from this arrangement, the coating robots 10 that are diagonally opposite to each other as illustrated in
Arranging the coating robots 10 in this manner ensures that the workpiece 500, which is symmetric to itself with respect to the symmetry surface P2, can be coated more efficiently while the above-described teaching data can be shared and/or re-used, with or without modifications, between the coating robots 10. For example, by reversing the orientation of the Y axis in the teaching data of the coating robot 10R1, this teaching data can be used as teaching data of the coating robot 10L1. This also applies in the coating robot 10R2 and the coating robot 10L2.
The movable opener robots 20 operate openable members (movable members movable with respect to bodies of the workpiece 500) of the workpiece 500. Specifically, each movable opener robot 20 is a three-axis multi-articular robot having a two-axis arm extendable and contractable in horizontal directions and a vertical movement axis. Using the two-axis arm and the vertical movement axis, the movable opener robot 20 opens and closes the openable members (side doors) of the workpiece 500. As described above, the movable opener robot 20 is supported by the travel driving mechanism 30, which makes the movable opener robot 20 movable along the guide 31, that is, movable in the conveyance direction of the conveyor 210.
As illustrated in
The coating robot 10 is more complicated in structure and heavier in weight than the movable opener robot 20. If the coating robot 10 were made movable, it would be necessary to make the travel driving mechanism 30 and the guide 31 more load-resistant and more complicated in structure. In the first embodiment, however, it is the comparatively lightweight movable opener robot 20 that is movable, on the travel driving mechanism 30. This configuration simplifies the travel driving mechanism 30 and the guide 31 in structure, minimizing the cost of the coating system 1.
The fixed opener robots 40 operate the front openable member and the rear openable member of the workpiece 500. A non-limiting example of each fixed opener robot 40 is a six-axis multi-articular robot, similarly to the coating robots 10. Each fixed opener robot 40 is fixed to a wall or the ceiling of the coating booth 200 and has a first arm (see 11 illustrated in
Specifically, as illustrated in
The fixed opener robots 40a and 40b at least partially overlap the lengths of the guides 31R and 31L in the conveyance direction, and the first arms (see 11 illustrated in
The fixed opener robot 40a engages with the tail gate 530 in closed state and opens the tail gate 530 by changing the postures of the arms of the fixed opener robot 40a. Then, the fixed opener robot 40a holds the open tail gate 530 while changing the postures of the arms so that the arms follow the workpiece 500 that is being conveyed. Upon completion of coating on an exposed portion exposed through the open tail gate 530, the fixed opener robot 40a closes the tail gate 530. The fixed opener robot 40b opens and closes the hood 520 by a procedure similar to the procedure for opening and closing the open tail gate 530.
The fixed opener robots 40 are disposed above the movable opener robots 20. While in
In the first embodiment illustrated in
In the first embodiment illustrated in
Next, details of the workpiece 500 will be described by referring to
As illustrated in
The B pillars 502 are located inside the workpiece 500 when the side doors are closed and, therefore, difficult to coat with the side doors closed. In view of the circumstances, the coating system 1 coats the B pillars 502 with the front doors and the rear doors open.
The openable members of the workpiece 500 include a front-right side door 510RF, a rear-right side door 510RR, a front-left side door 510LF, and a rear-left side door 510LR. The front-right side door 510RF and the rear-right side door 510RR are disposed on the right side of the workpiece 500, and the front-left side door 510LF and the rear-left side door 510LR are disposed on the left side of the workpiece 500. The doors 510 are openable in the X axis positive direction and closable in the X axis negative direction. These openable members disposed on the right and left sides of the workpiece 500 will be referred to as side openable members.
Other openable members of the workpiece 500 include a front openable member 520 and a rear openable member 530. The front openable member 520 is disposed at a front portion of the workpiece 500, and the rear openable member 530 is disposed at a rear portion of the workpiece 500. A non-limiting example of the front openable member 520 is a hood, and non-limiting examples of the rear openable member 530 are a tail gate and a rear hatch. The front openable member 520 and the rear openable member 530 are openable and closable in vertical directions.
These openable members disposed at front and rear portions of the workpiece 500 will be referred to as “front and rear openable members”. In the following description, the term “rear” may occasionally be referred to as “tail”.
The coating system 1 performs “inner surface coating” on the workpiece 500 illustrated in
Next, a configuration of the coating robot 10 will be described by referring to
As illustrated in
The coating robot 10 includes joints corresponding to the respective axes. The joints are driven by actuators (not illustrated), causing the arms of the coating robot 10 to make turning and/or rotation movement so as to change the postures of the arms. It should be noted that the six-axis robot illustrated in
The coating robot 10 includes, in increasing order of distance from the base end, a base 10B, a first arm 11, a second arm 12, a third arm 13, a fourth arm 14, a fifth arm 15, and a sixth arm 16.
The base 10B is fixed to the coating booth 200 (see
The first arm 11 is, at its base end, supported by the base 10B turnably about the first axis A11, which is along the X axis illustrated in
The fourth arm 14 is, at its base end, supported by the leading end of the third arm 13 turnably about the fourth axis A14, which is perpendicular to the third axis A13. The fifth arm 15 is, at its base end, supported by the leading end of the fourth arm 14 turnably about the fifth axis A15, which crosses the fourth axis A14 at a predetermined angle. The sixth arm 16 is, at its base end, supported by the leading end of the fifth arm 15 turnably about the sixth axis A16, which crosses the fifth axis A15 at a predetermined angle.
The sixth arm 16 is the leading end arm of the coating robot 10 and capable of receiving a detachable end effector 10E (indicated by broken lines in
The fixed opener robots 40a and 40b illustrated in
Next, a configuration of the movable opener robot 20 will be described by referring to
As illustrated in
The base 20B is fixed to the travel driving mechanism 30. The first arm 21 is, at its base end, supported by the base 20B turnably about the first axis A21, which is vertically oriented. The second arm 22 is, at its base end, supported by the leading end of the first arm 21 turnably about the second axis A22, which is parallel to the first axis A21.
The second arm 22 includes a horizontal extension 22a and a vertical extension 22b. The horizontal extension 22a extends horizontally, and the vertical extension 22b extends vertically upward from the leading end of the horizontal extension 22a. In the vertical extension 22b, an elevating mechanism is disposed to move the third arm 23 upward and downward.
The third arm 23 is supported by the second arm 22 with the leading end of the third arm 23 protruding from the upper surface of the vertical extension 22b of the second arm 22. With this configuration, the third arm 23 is movable upward and downward along the third axis A23. The third arm 23 is the leading end arm of the movable opener robot 20 and capable of receiving a detachable end effector 20E, which is capable of engaging with an openable member of the workpiece 500 (see
As illustrated in
An operation of the movable opener robot 20 will be described. When the doors 510 of the workpiece 500 (see
Then, the movable opener robot 20 moves the third arm 23 downward to engage with the door 510. Next, the movable opener robot 20 folds the first arm 21 and the second arm 22 to open the door 510. Then, with the movable opener robot 20 engaging with the open door 510, the movable opener robot 20 moves on the guide 31 to follow the workpiece 500 (see
Next, the coating robot 10 (see
While in
Next, a configuration of the coating system 1 according to the first embodiment will be described by referring to
The coating system 1 also includes a robot controller 100. The conveyor 210, the coating robot 10, the movable opener robot 20, and the fixed opener robot 40 are connected to the robot controller 100.
The coating system 1 also includes an upper-level device 300. The upper-level device 300 is in charge of overall control of operation of the conveyor 210 and the robot controller 100. The upper-level device 300 also notifies the robot controller 100, described later, of information such as vehicle type information, which shows the type of the workpiece 500 (see
As described above, the conveyor 210 conveys the workpiece 500 in a predetermined conveyance direction. The conveyor 210 includes a detecting device such as a sensor (not illustrated) to detect the position of the workpiece 500, and notifies the robot controller 100 of a timing at which the workpiece 500 has passed a predetermined point. The following description will be under the assumption that the conveyor 210 conveys the workpiece 500 at a constant speed.
The coating robot 10 coats the workpiece 500, In the first embodiment illustrated in
The movable opener robot 20 operates the doors 510 (see
The fixed opener robot 40 operates the front openable member 520 and the rear openable member 530 (see
The robot controller 100 includes a controller 110 and a storage 120. The controller 110 includes a timing obtainer 111 and an operation controller 112. The storage 120 stores teaching information 121. While
The robot controller 100 includes a computer and various circuits. The computer includes CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), HDD (Hard Disk Drive), and an input/output port.
The CPU of the computer reads programs stored in the ROM and executes the programs, and thus functions as the timing obtainer 111 and the operation controller 112 of the controller 110.
Alternatively, at least one or all of the timing obtainer 111 and the operation controller 112 may be implemented by hardware such as ASIC (Application Specific Integrated Circuit) and FPGA (Field Programmable Gate Array).
The storage 120 corresponds to the RAM and/or the HDD. The RAM and the HDD are capable of storing the teaching information 121. In another possible embodiment, the robot controller 100 may obtain the above-described programs and the various kinds of information from another computer connected to the robot controller 100 through a wired or wireless network or from a portable recording medium. In still another possible embodiment, the robot controller 100 may be provided in plural, as described above, and the plurality of robot controllers 100 may be capable of communicating with each other or may be provided in a hierarchical manner so that one robot controller 100 is capable of communicating with an upper-level robot controller 100 or a lower-level robot controller 100.
The controller 110 controls the robots while obtaining position information (pulse signals) and interlock signals from the conveyor 210. The pulse signals indicate positions of jigs such as a platform with which the workpiece 500 (see
As described above, the timing obtainer 111 obtains the position information and the interlock signals from the conveyor 210. Then, based on the obtained position information and interlock signals, the timing obtainer 111 determines the timing at which to operate each robot, and notifies the operation controller 112 of the determined operation timing. For example, the timing obtainer 111 obtains the timing at which the workpiece 500 (see
In response to the instruction from the timing obtainer 111, the operation controller 112 operates the robots based on the teaching information 121. The operation controller 112 performs feedback control using encoder values from the actuators of the robots (not illustrated) so as to improve the accuracy with which the robots are operated. In the case where the operation controller 112 has received from the upper-level device 300 the vehicle type information, which shows the type of the workpiece 500 (see
The teaching information 121 is generated at the teaching stage of teaching the robots how to operate, and includes “jobs”, which are programs specifying movement paths of the robots. As described above, the coating system 1 includes robots having symmetric arm configurations symmetric to each other and includes robots symmetric to each other with respect to the conveyor 210 (see
Next, a procedure for operation of the coating system 1 will be described by referring to
The following description refers to the robots illustrated in
First, a procedure for coating the rear half of the workpiece 500 will be described. As illustrated in
At timing t2, the fixed opener robot 40a opens the tail gate of the workpiece 500 (step S102) and holds the open tail gate while changing the postures of the arms to follow the workpiece 500 that is being conveyed (step S103). At timing t2, the movable opener robots 20R1 and 20L1, while holding the open rear doors, move in the conveyance direction of the workpiece 500 to follow the workpiece 500 that is being conveyed (step S203).
At timing t2, the coating robots 10R1 and 10L1 coat the side panels exposed through the open rear doors (step S302). Next, the coating robots 10R1 and 10L1 coat interior portion exposed through the open tail gate (step S303). Next, the coating robots 10R1 and 10L1 coat interiors portions exposed through the open rear doors (step S304). Upon completion of the coating at step S304, the coating robots 10R1 and 10L1 return to home position (step S305).
At timing t4, the coating robots 10R1 and 10L1 have finished coating the tail gates. At or after timing t4, the fixed opener robot 40a closes the tail gate of the workpiece 500 (step S104). Upon completion of the processing at step S104, the fixed opener robot 40a returns to home position (step S105).
At timing t6, the coating robots 10R1 and 10L1 have finished coating the interiors of the rear doors of the workpiece 500. At or after timing t6, the movable opener robots 20R1 and 20L1 close the rear doors (step S204). Upon completion of the processing at step S204, the movable opener robots 20R1 and 20L1 move in the direction opposite to the conveyance direction of the workpiece 500 and return to home position (step S205).
As described above, the rear doors of the workpiece 500 are opened at timing t1 and closed at timing t6. The tail gate of the workpiece 500 is opened at timing t2, which is later than timing t1, and closed at timing t4, which is earlier than timing t6. Thus, the period of time for which the tail gate is open overlaps the period of time for which the rear doors are open.
Thus, the period of time for which the front and rear openable members are open overlaps the period of time for which the side openable members are open. This configuration shortens the time for the coating processing. While in
Next, a procedure for coating the front half of the workpiece 500 will be described. As illustrated in
At timing t3, the movable opener robots 20R2 and 20L2 wait at home position (step S501), and the coating robots 10R2 and 10L2 also wait at home position (step S401).
At timing t4, the movable opener robots 20R2 and 20L2 open the front doors of the workpiece 500 (step S502), Then, while holding the open front doors, the movable opener robots 20R2 and 20L2 move in the conveyance direction of the workpiece 500 to follow the workpiece 500 that is being conveyed (step S503). In
Then, the coating robots 10R2 and 10L2 coats interior portion exposed through the open hood (step S402). Next, the coating robots 10R2 and 10L2 coat the B pillars 502 (see
Next, the coating robots 10R2 and 10L2 coat interiors portions exposed through the open front doors (step S405). Then, the coating robots 10R2 and 10L2 coat rear side panels (step S406). Upon completion of the processing at step S406, the coating robots 10R2 and 10L2 return to home position (step S407).
At timing t5, the coating robots 10R2 and 10L2 have finished coating the hood of the workpiece 500. At or after timing t5, the fixed opener robot 40b closes the hood of the workpiece 500 (step S604). Upon completion of the processing at step S604, the fixed opener robot 40b returns to home position (step S605).
At timing t7, the coating robots 10R2 and 10L2 have finished coating the rear side panels of the workpiece 500. At or after timing t7, the movable opener robots 20R2 and 20L2 close the front doors of the workpiece 500 (step S504). Upon completion of the processing at step S504, the movable opener robots 20R2 and 20L2 move in the direction opposite to the conveyance direction of the workpiece 500 and return to home position (step S505).
As described above, the rear doors of the workpiece 500 are opened at timing t1 and closed at timing 16. The front doors of the workpiece 500 are opened at timing t4, which is later than timing t1, and closed at timing t7, which is later than timing t6. Thus, the period of time for which the front doors are open overlaps the period of time for which the rear doors are open.
Thus, the period of time for which the front doors are open overlaps the period of time for which the rear doors are open. This configuration facilitates coating on portions that can be coated more effectively with the front and rear doors open (for example, the B pillars 502 illustrated in
As described above, the front doors of the workpiece 500 are opened at timing t4 and closed at timing t7. The hood of the workpiece 500 is opened at timing t3, which is earlier than timing t4, and closed at timing t5, which is earlier than timing t7. Thus, the period of time for which the hood is open overlaps the period of time for which the front doors are open.
Thus, the period of time for which the front and rear openable members are open overlaps the period of time for which the side openable members are open. This configuration shortens the time for the coating processing. While in
As has been described hereinbefore, the coating system according to the first embodiment includes coating robots and movable opener robots. The coating robots are fixed in the coating booth and coat a vehicle that is being conveyed in a predetermined conveyance direction. The movable opener robots are disposed below the coating robots in the coating booth and movable in the conveyance direction to operate openable members of the vehicle.
With this configuration, the coating system according to the first embodiment minimizes the initial cost, the operating cost, and other costs while eliminating or minimizing interference between the coating robot and the movable opener robot.
In the coating system according to the first embodiment, two movable opener robots are disposed to the right of the conveyor, and another two movable opener robots are disposed to the left of the conveyor. In another possible embodiment, one movable opener robot may be disposed to the right of the conveyor, and another one movable opener robot may be disposed to the left of the conveyor. In this case, in coating a four-door vehicle, the movable opener robots first close the rear doors of the four-door vehicle and then open the front doors. In coating a two-door vehicle, one movable opener robot is sufficient on one side of the two-door vehicle, and, likewise, one movable opener robot is sufficient on the other side of the two-door vehicle.
The first embodiment is open to variations of the number of robots and the arrangement of the robots. Examples of the variations will be described below as a second embodiment and a third embodiment.
A coating system 1a according to the second embodiment will be described by referring to
As illustrated in
Thus, the coating system 1a according to the second embodiment coats the side openable members (doors) 510 of the workpiece 500 using the coating robots 10R1 and 10L1 and the movable opener robots 20R1 and 20L1. The coating robots 10R1 and 10L1 have symmetric arm configurations symmetric to each other with respect to the symmetry surface P2. Likewise, the movable opener robots 20R1 and 20L1 have symmetric arm configurations symmetric to each other with respect to the symmetry surface P2. The arrangement of these robots is similar to the arrangement of the equivalent robots in the coating system 1 according to the first embodiment.
The movable opener robots 20R1 and 20L1 open and close the front doors and the rear doors of the workpiece 500. In this respect, the movable opener robots 20R1 and 20L1 are different from the equivalent robots in the first embodiment. Specifically, the movable opener robots 20R1 and 20L1 open the rear doors of the workpiece 500 and move in the conveyance direction of the workpiece 500 while holding the open rear doors to follow the workpiece 500 that is being conveyed. Then, the coating robots 10R1 and 10L1 coat exposed portions of the workpiece 500 exposed through the open rear doors. Upon completion of the coating, the movable opener robots 20R1 and 20L1 close the rear doors.
Next, while moving in the conveyance direction to follow the workpiece 500 that is being conveyed, the movable opener robots 20R1 and 20L1 open the front doors of the workpiece 500. Then, the movable opener robots 20R1 and 20L1 move further in the conveyance direction while holding the open front doors to follow the workpiece 500 that is being conveyed. Then, upon completion of coating by the coating robots 10R1 and 10L1, the movable opener robots 20R1 and 20L1 close the front doors.
The coating system 1a also coats the front and rear openable members of the workpiece 500 using groups 81 and 82. Each of the groups 81 and 82 includes three robots, namely, two coating robots 10 and one fixed opener robot 40.
The robots of the group 81 coat the rear openable member (tail gate) 530 of the workpiece 500. The group 81 includes coating robots 10R3 and 10L3, which have symmetric arm configurations symmetric to each other with respect to the symmetry surface P2. The coating robots 10R3 and 10L3 are disposed at the same height as the height of the coating robots 10R1 and 10L1 illustrated in
The group 81 also includes the fixed opener robot 40c. The fixed opener robot 40c is disposed to the right of the conveyor 210 with the first axis of the fixed opener robot 40c extending upward. The fixed opener robot 40c is installed at a height between the height of the movable opener robots 20R1 and 20L1 and the height of the coating robots 10R1 and 10L1.
The fixed opener robot 40c is supported by a platform (not illustrated) disposed on the floor of the coating booth 200 (see
The robots of the group 82 coat the front openable member (hood) 520 of the workpiece 500. The group 82 includes coating robots 10R4 and 10L4, which have symmetric arm configurations symmetric to each other with respect to the symmetry surface P2. The coating robots 10R4 and 10L4 are disposed at the same height as the height of the coating robot 10R2 illustrated in
The group 82 also includes the fixed opener robot 40d. The fixed opener robot 40d is disposed to the right of the conveyor 210 with the first axis of the fixed opener robot 40d extending upward. The fixed opener robot 40d is installed at a height between the height of the movable opener robots 20R1 and 20L1 and the height of the coating robots 10R4 and 10L4.
The fixed opener robot 40d is supported by a platform (not illustrated) disposed on the floor of the coating booth 200 (see
As illustrated in
Thus, in the coating system 1a, coating on the side openable members (doors) 510, coating on the front openable member (hood) 520, and coating on the rear openable member (tail gate) 530 are assigned to different robots. With this configuration, the coating system 1a simplifies the teaching information 121 (see
Also with the above configuration, either the group 81 or the group 82, depending on the type of the workpiece 500, may be stopped from working. This ensures coating on a wider variety of workpieces 500. For example, when coating on the rear openable member (tail gate) 530 is unnecessary, the group 81 may be stopped from working, while when coating on the front openable member (hood) 520 is unnecessary, the group 82 may be stopped from working.
In
Next, a modification of the coating system 1a according to the second embodiment will be described by referring to
In other words, the coating system 1b is equivalent to the coating system 1a illustrated in
Next, a coating system 1c according to the third embodiment will be described by referring to
As illustrated in
Description will be made with regard to the coating robots 10R1, 10L1, 10R5, and 10L5 and the movable opener robots 20R1, 20L1, 20R2, and 20L2. The first arms of the coating robots 10R5 and 10L5 extend in the direction opposite to the extending direction of the first arms of the coating robots 10R2 and 10L2 of the coating system 1 according to the first embodiment.
That is, all the first arms of the coating robots 10R1, 10L1, 10R5, and 10L5 extend in the direction opposite to the conveyance direction of the workpiece 500. Arranging the coating robots 10 in this manner ensures reliability with which the workpiece 500 (see
As illustrated in
In
Next, a modification of the coating system 1c according to the third embodiment will be described by referring to
Specifically, the coating system 1d is equivalent to the coating system 1c illustrated in
Obviously, numerous modifications and variations of the present disclosure are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the present disclosure may be practiced otherwise than as specifically described herein.
The present application is a continuation application of International Application No. PCT/JP2015/073142, filed Aug. 18, 2015. The contents of this application are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4768462 | Kuronaga | Sep 1988 | A |
4869935 | Hayashi | Sep 1989 | A |
5014644 | Yamamoto | May 1991 | A |
5429682 | Harlow, Jr. | Jul 1995 | A |
5989643 | Nakagawa | Nov 1999 | A |
20040107900 | Clifford | Jun 2004 | A1 |
20040115360 | Clifford | Jun 2004 | A1 |
20060292308 | Clifford | Dec 2006 | A1 |
20070166463 | Kelly | Jul 2007 | A1 |
20080020135 | Fouvet | Jan 2008 | A1 |
20090320753 | Yoshino et al. | Dec 2009 | A1 |
20110166708 | Herre | Jul 2011 | A1 |
20120138207 | Ortlieb | Jun 2012 | A1 |
20120145075 | Takahashi | Jun 2012 | A1 |
20120191243 | Haas | Jul 2012 | A1 |
20120325142 | Takahashi | Dec 2012 | A1 |
20130034660 | Koyanagi | Feb 2013 | A1 |
20140069335 | Bania | Mar 2014 | A1 |
20140109830 | Herre | Apr 2014 | A1 |
20140135986 | Kanehara | May 2014 | A1 |
20140220249 | Rouaud | Aug 2014 | A1 |
20180221904 | Yoshino | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
08-164349 | Jun 1996 | JP |
2007-518556 | Jul 2007 | JP |
2014-61589 | Apr 2014 | JP |
2008108401 | Sep 2008 | WO |
Entry |
---|
International Search Report for corresponding International Application No. PCT/JP2015/073142, dated Nov. 17, 2015. |
Written Opinion for corresponding International Application No. PCT/JP2015/073142, dated Nov. 17, 2015. |
Number | Date | Country | |
---|---|---|---|
20180169690 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2015/073142 | Aug 2015 | US |
Child | 15896074 | US |