The present disclosure is directed to a coating layer configuration that will provide oxidation resistance to high pressure compressor blade tips and blade tip abrasives. A thin film coating is applied at the blade tip over a metal matrix CBN abrasive coating.
Gas turbine engines and other turbomachines have rows of rotating blades and static vanes or knife-edge seals within a generally cylindrical case. To maximize engine efficiency, the leakage of the gas or other working fluid around the blade tips should be minimized. This may be achieved by designing sealing systems in which the tips rub against an abradable seal. Generally, the tip is made to be harder and more abrasive than the seal; thus, the tips will abrade or cut into the abradable seal during those portions of the engine operating cycle when they come into contact with each other.
During the operation of a gas turbine engine, it is desired to maintain minimum clearance between the tips and corresponding abradable seals as a large gap results in decreased efficiency of the turbine, due to the escape of high-energy gases. However, a small gap may increase the frequency of interaction between the tips and seal. That in turn, due to the friction between the tips and seals, will lead to excessive component wear and efficiency reduction or even component distress. Since aircraft turbines experience cyclic mechanical and thermal load variations during operation their geometry varies during the different stages of the operating cycle. Both passive and active clearance control and abrasive tip paired with abradable seals are currently used to establish and maintain optimum clearance during operation. Ideally, those tips should retain their cutting capability over many operating cycles compensating for any progressive changes in turbine geometry.
The metal matrix and/or abrasive grit in a compressor blade tip abrasive coating are prone to oxidation and/or corrosion due to normal engine operation and adverse environmental conditions. This oxidation/corrosion can lead to decreased cutting performance of the abrasive tip system against an abradable coating leading to blade damage and decreased engine performance over time. What is needed is a coating which can be applied over the blade tip abrasive coating to improve the oxidation/corrosion resistance of the abrasive coating system.
In accordance with the present disclosure, there is provided an abrasive coating for a substrate of a component in a gas path exposed to a maximum temperature of 1750 degree Fahrenheit, comprising a plurality of grit particles adapted to be placed on a top surface of the substrate; a matrix material bonded to the top surface; the matrix material partially surrounds the grit particles, wherein the grit particles extend above the matrix material relative to the top surface; and a film of oxidant resistant coating applied over the plurality of grit particles and the matrix material.
In another and alternative embodiment, the grit particles extend above the matrix material relative to the top surface.
In another and alternative embodiment, the grit particles are flush with the matrix material relative to the top surface.
In another and alternative embodiment, the grit particles comprise a hard ceramic phase.
In another and alternative embodiment, the matrix material comprises a matrix formed from at least one of Ni, Co and MCrAlY, wherein M is Ni or Co, pure Ni and a cobalt chrome carbide material.
In another and alternative embodiment, the film of oxidant resistant coating comprises an oxide coating.
In another and alternative embodiment, the film of oxidant resistant coating is selected from the group consisting of an aluminum oxide, a zirconium oxide, titanium aluminum nitride, a mixture of aluminum and zirconium oxide, zirconium toughened aluminum oxide.
In another and alternative embodiment, an adhesion layer is coupled to the top surface, wherein the adhesion layer is configured to adhere the grit particles to the top surface.
In accordance with the present disclosure, there is provided a turbine engine component configured for a gas path of at most 1750 degrees Fahrenheit comprising an airfoil having a tip; a composite abrasive coating bonded to the tip; the composite abrasive coating comprising an adhesion layer bonded to the tip; a layer of grit particles bonded to the adhesion layer; a matrix material coupled to the adhesion layer and connected to the grit particles; and a film of oxidant resistant coating applied over the plurality of grit particles and the matrix material.
In another and alternative embodiment, the first grit particles extend above the matrix material relative to the tip; or wherein the first grit particles are flush with the matrix material relative to the tip; or wherein the first grit particles are below the first grit particles relative to the tip; and combinations thereof.
In another and alternative embodiment, the airfoil is a portion of the component configured for a gas path of at most 1750 degrees Fahrenheit.
In another and alternative embodiment, the film of oxidant resistant coating is selected from the group consisting of an aluminum oxide, a zirconium oxide, titanium aluminum nitride, a mixture of aluminum and zirconium oxide, zirconium toughened aluminum oxide.
In another and alternative embodiment, the film of oxidant resistant coating has a thickness from 0.0002 inch−0.002 inch.
In another and alternative embodiment, the film of oxidant resistant coating is configured to protect the matrix material from oxidation.
In another and alternative embodiment, the component is a high pressure compressor.
In accordance with the present disclosure, there is provided a process for coating a turbine engine airfoil with an abrasive, the process comprising applying an adhesion layer onto a tip of the airfoil, wherein the airfoil is configured to operate in a gas path having a maximum temperature of 1750 degrees Fahrenheit; adhering a plurality of grit particles to the adhesion layer, wherein spaces are formed between the grit particles; applying a matrix material to the adhesion layer and connecting to the grit particles; applying a film of oxidant resistant coating over the plurality of grit particles and the matrix material.
In another and alternative embodiment, the film of oxidant resistant coating has a thickness from 0.0002 inch−0.002 inch.
In another and alternative embodiment, the film of oxidant resistant coating is selected from the group consisting of an aluminum oxide, a zirconium oxide, titanium aluminum nitride, a mixture of aluminum and zirconium oxide, zirconium toughened aluminum oxide.
In another and alternative embodiment, the first grit particles extend above the matrix material relative to the tip; or wherein the first grit particles are flush with the matrix material relative to the tip; or wherein the first grit particles are below the first grit particles relative to the tip; and combinations thereof.
In another and alternative embodiment, the turbine engine airfoil is part of a component in a high pressure compressor.
Other details of the coating system are set forth in the following detailed description and the accompanying drawings wherein like reference numerals depict like elements.
Referring now to
The grit 18 can be sized as a coarse grit. In an exemplary embodiment the grit 18 can be sized from about 40 to about 1000 microns. The first grit 18 is embedded in a layer matrix composite or simply matrix layer 20. The matrix layer 20 comprises a suitable oxidation-resistant alloy matrix. In an exemplary embodiment the first grit 18 can extend above the matrix material 20 relative to the tip 14 or the first grit particles can be flush with the matrix material relative to said tip or the first grit particles can be below the first grit particles relative to the tip; and combinations thereof.
In an exemplary embodiment the matrix layer 20 comprises a matrix formed from Ni, Co, or MCrAlY, the M standing for either Ni or Co or both. In an exemplary embodiment, the matrix layer 20 can comprise pure nickel, nickel alloy, copper, copper alloy, cobalt, cobalt alloy, chrome, a cobalt chrome carbide material or other alloys.
A second grit 22 can be interspersed between the first grit 18. The second grit 22 is a smaller sized particle than the larger first grit material 18. Second grit 22 are placed within the matrix layer 20 in one or more layers. The resulting blade tip 14 with abrasive coating 16 is particularly well suited for rubbing metal as well as ceramic abradable seals (not shown).
Referring to
The abrasive coating 16 can include an adhesion layer or simply a base layer 24 bonded to a top surface 26 of the blade tip 14. The adhesion layer 24 is configured to adhere the grit particles to the top surface 26. The adhesion layer 24 can be the same material as the matrix layer 20. The adhesion layer 24 can be from about 1 to about 100 microns in thickness. In an exemplary embodiment, the adhesion layer 24 can be from about 25 to about 50 microns in thickness. The adhesion layer 24 can be optionally applied, so that the matrix layer 20 is bonded to the top surface 26 of the tip 14.
In an exemplary embodiment the first grit particles 18 extend above the matrix material 20 relative to the top surface 26. In an exemplary embodiment the first grit particles 18 are flush with the matrix material 20 relative to the top surface 26.
A film of oxidant resistant coating 28 can be applied over the grit particles 18, 22 and the matrix material 20. The film of oxidant resistant coating 28 can comprise an oxide coating. In an exemplary embodiment, the film of oxidant resistant coating 28 can be selected from the group consisting of an aluminum oxide, a nitride coating, a titanium aluminum nitride, a zirconium oxide, a mixture of aluminum and zirconium oxide, zirconium toughened aluminum oxide, and the like. The film of oxidant resistant coating 28 has a thickness from 0.0002 inch−0.002 inch. The film of oxidant resistant coating 28 is configured to protect said matrix material from oxidation/corrosion by acting as a barrier for oxygen diffusion to the matrix layer 20 and/or grit 18, 22 of the abrasive coating 16. The film of oxidant resistant coating 28 can also prevent corrosive species from coming into contact with the abrasive coating 16.
The film of oxidant resistant coating 28 can be applied using a cathodic-arc physical vapor deposition (PVD) or variations thereof.
The component 10 can include a component in a gas path 30 exposed to a maximum temperature of 1750 degrees Fahrenheit. In an exemplary embodiment the component can be a high pressure compressor.
The addition of the film of oxidant resistant coating to the abrasive coating provides the advantage of retaining cutting ability for the abrasive tip system against an abradable air seal, maintaining the optimum clearance between the blade and the air seal. The improved capacity to resist oxidation/corrosion for the blade tip abrasive coating will provide the advantage of improved durability of the blade tips that may currently merely provide marginal durability.
There has been provided a coating system. While the coating system has been described in the context of specific embodiments thereof, other unforeseen alternatives, modifications, and variations may become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations which fall within the broad scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4610698 | Eaton | Sep 1986 | A |
4680199 | Vontell | Jul 1987 | A |
4689242 | Pike | Aug 1987 | A |
4741973 | Condit | May 1988 | A |
4744725 | Matarese | May 1988 | A |
5059095 | Kushner | Oct 1991 | A |
5453329 | Everett et al. | Sep 1995 | A |
5932356 | Sileo | Aug 1999 | A |
5935407 | Nenov | Aug 1999 | A |
5952110 | Schell | Sep 1999 | A |
6057047 | Maloney | May 2000 | A |
6190124 | Freling | Feb 2001 | B1 |
6194086 | Nenov | Feb 2001 | B1 |
6468040 | Grylls | Oct 2002 | B1 |
6532657 | Weimer et al. | Mar 2003 | B1 |
6833203 | Bose | Dec 2004 | B2 |
7510370 | Strangman | Mar 2009 | B2 |
7718280 | Wilson | May 2010 | B2 |
9957826 | Novikov | May 2018 | B2 |
20030008764 | Wang | Jan 2003 | A1 |
20040023020 | Bose et al. | Feb 2004 | A1 |
20040208749 | Torigoe et al. | Oct 2004 | A1 |
20050035086 | Chen | Feb 2005 | A1 |
20070099011 | Wilson | May 2007 | A1 |
20080166225 | Strangman | Jul 2008 | A1 |
20090311552 | Manier | Dec 2009 | A1 |
20120099972 | Guo | Apr 2012 | A1 |
20130149163 | Parkos, Jr. | Jun 2013 | A1 |
20130154194 | Van Saun | Jun 2013 | A1 |
20150118060 | Kumar | Apr 2015 | A1 |
20150354397 | Novikov | Dec 2015 | A1 |
20160069184 | Ribic et al. | Mar 2016 | A1 |
20160069195 | Hewitt | Mar 2016 | A1 |
20160160661 | Balbach | Jun 2016 | A1 |
20160199930 | Yarbrough | Jul 2016 | A1 |
20160341051 | Hewitt | Nov 2016 | A1 |
20180347390 | Wilson et al. | Dec 2018 | A1 |
20200024971 | Seymour et al. | Jan 2020 | A1 |
20200025016 | Seymour et al. | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
0573928 | Dec 1993 | EP |
1408197 | Apr 2004 | EP |
3056679 | Aug 2016 | EP |
3088559 | Nov 2016 | EP |
3239465 | Nov 2017 | EP |
2529854 | Mar 2016 | GB |
2007115551 | Oct 2007 | WO |
Entry |
---|
U.S. Office Action dated Nov. 18, 2019 for corresponding U.S. Appl. No. 16/039,907. |
European Search Report dated Dec. 18, 2019 for corresponding European Patent Application 19187387.6. |
European Search Report dated Apr. 1, 2020 for corresponding European Patent Application 19185773.9. |
European Search Report dated Mar. 31, 2020 for corresponding European Patent Application 19185794.5. |
U.S. Final Office Action dated Jun. 3, 2020 for corresponding U.S. Appl. No. 16/039,907. |
Non-Final Office Action dated Jul. 6, 2020 issued for correspnding U.S. Appl. No. 16/039,901. |
Number | Date | Country | |
---|---|---|---|
20200024971 A1 | Jan 2020 | US |