The present invention is directed to the use of organic photovoltaic devices—cell or modules—as coatings for commercial aircraft fuselage, wing, tail, and strut surfaces, to provide electricity for mission-critical systems and/or maintenance loads on-board the aircraft.
Modern commercial aircraft are becoming increasingly technologically advanced vehicles that must operate effectively under demanding conditions. Energy efficiency and energy consumption are of increasing importance in such vehicles, as airlines and society become more concerned with both the economics and the climate impact of air travel.
The present invention recognizes that one way to increase energy efficiency is to incorporate renewable energy sources, but of the traditional renewable energy sources, photovoltaics (PV) is the only one that makes sense for aircraft. Electricity from PV could be used to help power mission-critical systems and/or maintenance loads on-board commercial aircraft to offset the energy needs of the many electrical systems present in modern aircraft. Traditional inorganic PV makes little sense for aircraft applications for a number of reasons, however, including excessive weight and potentially bulky structures that could increase wind resistance, both of which would reduce fuel efficiency, and poor aesthetics.
Organic PV (OPV) has a number of features that makes it potentially attractive for application in commercial aircraft including low specific weight (W/g), flexibility, and thickness of the thin films. An important feature is the very low specific weight of OPV, as compared to other PV technologies, which could minimize any impact on fuel efficiency. Additionally, because OPV is inherently flexible, this device architecture potentially allows unique application methods for non-planar surfaces, such as curved fuselage surfaces. Furthermore, the tunable nature of the absorption in OPV materials allows for customized surface appearances, which can be desirable for power production, and aesthetic and branding reasons.
The present invention recognizes that conventional commercial aircraft surfaces, such as fuselage, wing, tail, and strut surfaces (hereafter referred to simply as fuselage surfaces), are generally large passive surfaces that do not contribute in any way to help increase energy efficiency of the aircraft.
These problems and others are addressed by the present invention, a first exemplary embodiment of which comprises an OPV device, comprising one or more cells connected in series and/or parallel, applied as a film to conventional commercial aircraft surfaces. In this embodiment, the OPV coating is applied as a completed device onto the aircraft surface using a thin, flexible substrate with pressure-sensitive adhesives, which is described in detail in Applicants' related applications. In such a fashion, the OPV device can be fabricated in a high-throughput manner via roll-to-roll or sheet-to-sheet manufacturing processes onto a flexible planar substrate (with backing material, if necessary) that is then applied to both planar and curved aircraft surfaces. The OPV device can then be wired into the electrical systems via small connection terminals in, or below, the aircraft surface, and any necessary power electronics, such as inverters, batteries, and the like can be located inside the aircraft body. The top surface of the OPV device-coated aircraft is then protected via a hard clear-coat, (e.g. a clear epoxy coating), to protect the OPV device from physical damage and environmental stresses, and from moisture and oxygen ingress, ensuring a superior lifetime. In such a way, the surfaces of the aircraft can be turned into electricity-generating surfaces to help power mission-critical systems and/or maintenance loads, while adding minimal weight, and resulting in a smooth, hard, low-drag surface, to minimize any loss of fuel efficiency. Furthermore, by selecting appropriate OPV material absorption properties, the surface visual effect can be customized for specific levels of power production, and aesthetic or branding reasons, while still generating power.
Another exemplary embodiment of the invention comprises an OPV device—comprising one or more cells connected in series and/or parallel—fabricated directly on the conventional aircraft surfaces, before assembly of the aircraft. In this embodiment, the surfaces are coated via one or more of a number of coating techniques, such techniques as: spray, curtain, slot-die, gravure, etc. depending on the curvature of the aircraft surface requiring OPV. Spray and curtain coating can be utilized for curved surfaces, while slot-die and gravure coating can be used for planar surfaces. First, an insulating layer is deposited to allow isolation of the individual cells from each other and from the metal aircraft surfaces, to prevent electrification of the entire aircraft body. Then, the rest of the OPV device is deposited as usual via the appropriate coating and patterning techniques, as know to those skilled in the art of OPV, to produce a completed device directly on the aircraft surface. Again, wiring is accomplished via small terminals on, or below, the aircraft surface, and a hard top-coat, such as an epoxy, is applied to provide a hard, low-drag surface that protects the OPV device. Such completed OPV-coated aircraft surface panels can then be assembled directly on the aircraft body, with wiring and any necessary power electronics such as inverters and batteries placed inside the aircraft body, to produce a commercial aircraft with electricity-producing surfaces to help power mission-critical systems and/or maintenance loads on-board, increasing energy efficiency of the aircraft.
Other features and advantages of the present invention will become apparent to those skilled in the art upon review of the following detailed description and drawings.
These and other aspects and features of embodiments of the present invention will be better understood after a reading of the following detailed description, together with the attached drawings, wherein:
The present invention now is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Referring now to the drawings,
Referring to
Referring to
Referring to
Referring to
Referring to
The present invention has been described herein in terms of several preferred embodiments. However, modifications and additions to these embodiments will become apparent to those of ordinary skill in the art upon a reading of the foregoing description. It is intended that all such modifications and additions comprise a part of the present invention to the extent that they fall within the scope of the several claims appended hereto.
This application claims priority under 35 U.S.C. 119(e) of U.S. Provisional Application No. 61/841,243, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0141PR01), U.S. Provisional Application No. 61/842,355, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0141PR02), U.S. Provisional Application No. 61/841,244, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0142PR01), U.S. Provisional Application No. 61/842,357, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0142PR02), U.S. Provisional Application No. 61/841,247, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0143PR01), U.S. Provisional Application No. 61/842,365, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0143PR02), U.S. Provisional Application No. 61/841,248, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0144PR01), U.S. Provisional Application No. 61/842,372, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0144PR02), U.S. Provisional Application No. 61/842,796, filed on Jul. 3, 2013 (Attorney Docket No. 7006/0145PR01), U.S. Provisional Application No. 61/841,251, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0146PR01), U.S. Provisional Application No. 61/842,375, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0146PR02) and U.S. Provisional Application No. 61/842,803, filed on Jul. 3, 2013 (Attorney Docket No. 7006/0147PR01); the entire contents of all the above identified patent applications are hereby incorporated by reference in their entirety. This application is related to Applicants' co-pending U.S. applications, which are filed concurrently herewith on Jun. 27, 2014, 7006/0141PUS01, 7006/0142PUS01, 7006/0143PUS01, 7006/0145PUS01, 7006/0146PUS01 and 7006/0147PUS01; each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61841243 | Jun 2013 | US | |
61842355 | Jul 2013 | US | |
61841244 | Jun 2013 | US | |
61842357 | Jul 2013 | US | |
61841247 | Jun 2013 | US | |
61842365 | Jul 2013 | US | |
61841248 | Jun 2013 | US | |
61842372 | Jul 2013 | US | |
61842796 | Jul 2013 | US | |
61841251 | Jun 2013 | US | |
61842375 | Jul 2013 | US | |
61842803 | Jul 2013 | US |