The present invention is directed to the use of semi-transparent organic photovoltaic devices—cell or modules—as coatings for military aircraft windows, including fighter and troop transport jet cockpits, to provide electricity for mission-critical systems on-board the aircraft.
Modern military aircraft are highly technologically advanced vehicles that must perform a variety of duties under very demanding conditions. Energy efficiency and energy consumption are of minimal concern in such vehicles, but the military is constantly looking to make every surface into an active one, through the use of advanced materials. Despite this, windows in military aircraft remain largely passive, non-functional surfaces. If value could be added to these windows by making them contribute to the overall mission-capability of the aircraft by producing electrical energy, it would be a significant improvement, regardless of cost.
SolarWindow™ is a novel photovoltaic window technology, based upon organic photovoltaics (OPV), that is the subject of several separate patent filings. This technology has numerous benefits, including the ability to generate power yet retain a high level of visible light transmission (VLT) in an attractive window application. To date, however, it has only been considered for a terrestrial application, generally in building-integrated photovoltaics (PV) applications. Very few PV technologies can be made inherently semi-transparent, and thus compatible with window technologies, and the few that can generally have very low VLT and poor aesthetics. For example, semi-transparent amorphous Silicon is generally red in appearance, with low VLT, which would be prohibitive for a military aircraft window application. OPV has a number of other inherent benefits for military aircraft applications including low specific weight (W/g), flexibility, and thickness of the thin films. An important feature is the very low specific weight of OPV, as compared to other PV technologies, and an inherent flexibility that allows unique application to non-planar surfaces, such as fighter and troop transport jet cockpit windows. Furthermore, the tunable nature of the absorption in OPV materials allows customized appearance and performance in semi-transparent window applications, which would allow performance to be optimized for different military aircraft window requirements.
The present invention recognizes that conventional military aircraft windows are generally strictly passive windows, which do not contribute actively to the mission-capability of the aircraft.
These problems and others are addressed by the present invention, a first exemplary embodiment of which comprises a semi-transparent organic photovoltaic device, comprising one or more cells connected in series and/or parallel, applied as a coating to a conventional military aircraft window. The coating can be applied to either the exterior or interior of the aircraft window, depending on the desired properties, but the interior coating likely has significant benefits, including increased protection of the OPV module and easier electrical connections. In this embodiment, the OPV device can either be applied as a completed device onto the window surface using a thin, flexible substrate with pressure-sensitive adhesives, which is described in detail in Applicants' related application, or OPV device can be fabricated directly on the window through standard coating (e.g. spray, slot-die, curtain, gravure, etc.) and processing (e.g., laser scribing) techniques, as know to those skilled in the art of OPV. The OPV or SolarWindow™ device can provide electricity to help power mission-critical systems, while still retaining a high degree of VLT to ensure good visibility. Furthermore, the absorption properties of the OPV module can be selected to optimize the visual transmission properties of the window to match the aircraft's designed use, while still providing power.
Another exemplary embodiment of the invention comprises a semi-transparent OPV module, comprising one or more cells connected in series and/or parallel, applied as a coating to a conventional military fighter or troop transport jet cockpit canopy. Again, the coating may be applied to either the inside or the outside, with the inside having significant advantages, as described previously. In this embodiment, the OPV or SolarWindow™ device can again provide electricity to help power mission-critical systems, while still retaining a high degree of VLT to ensure good visibility. The absorption of the OPV module can be selected to yield optimal visual transmission properties of the window to aid in pilot perception and navigation, while still generating power. Furthermore, while the OPV device can be fabricated directly on the window through the use of complicated three-dimensional coating (e.g. spray, slot-die, curtain, gravure, etc. coating) and processing (e.g. laser scribing) methods, the inherent flexibility of OPV also presents the potential for application of the completed OPV device to the cockpit canopy through the use of thin, flexible substrates and pressure-sensitive adhesives, which is Applicants' related application.
Other features and advantages of the present invention will become apparent to those skilled in the art upon review of the following detailed description and drawings.
These and other aspects and features of embodiments of the present invention will be better understood after a reading of the following detailed description, together with the attached drawings, wherein:
The present invention now is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Referring now to the drawings,
Referring to
The thin flexible substrate is any appropriate substrate material that is highly flexible and transparent, such as very thin polymer foils, including but not limited to polyethyleneterephthalate (PET). On top of this is coated a semi-transparent OPV device, comprising one or more cells connected in series and/or parallel, which is inherently flexible and thus contains no highly crystalline materials. The multi-layered OPV device is coated and processed according to standard methods known to those skilled in the art, such as slot-die coating and laser scribing, which are compatible with high-throughput manufacturing techniques, including high-speed roll-to-roll or sheet-to-sheet production methods. Finally, the OPV device is coated on top with a semitransparent pressure-sensitive adhesive according to methods know to those skilled in the art. The resulting film comprising layers 101-105 can be used to transfer the semitransparent OPV device comprising layers 103-105 onto military aircraft windows to convert them into electricity-generating window surfaces.
Referring to
Referring to
Referring to
Referring to
The present invention has been described herein in terms of several preferred embodiments. However, modifications and additions to these embodiments will become apparent to those of ordinary skill in the art upon a reading of the foregoing description. It is intended that all such modifications and additions comprise a part of the present invention to the extent that they fall within the scope of the several claims appended hereto.
This application claims priority under 35 U.S.C. 119(e) of U.S. Provisional Application No. 61/841,243, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0141PR01), U.S. Provisional Application No. 61/842,355, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0141PR02), U.S. Provisional Application No. 61/841,244, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0142PR01), U.S. Provisional Application No. 61/842,357, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0142PR02), U.S. Provisional Application No. 61/841,247, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0143PR01), U.S. Provisional Application No. 61/842,365, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0143PR02), U.S. Provisional Application No. 61/841,248, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0144PR01), U.S. Provisional Application No. 61/842,372, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0144PR02), U.S. Provisional Application No. 61/842,796, filed on Jul. 3, 2013 (Attorney Docket No. 7006/0145PR01), U.S. Provisional Application No. 61/841,251, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0146PR01), U.S. Provisional Application No. 61/842,375, filed on July 02, 2013 (Attorney Docket No. 7006/0146PR02) and U.S. Provisional Application No. 61/842,803, filed on Jul. 3, 2013 (Attorney Docket No. 7006/0147PR01); the entire contents of all the above identified patent applications are hereby incorporated by reference in their entirety. This application is related to Applicants' co-pending U.S. applications, which are filed concurrently herewith on Jun. 27, 2014, 7006/0142PUS01, 7006/0143PUS01, 7006/0144PUS01, 7006/0145PU501, 7006/0146PUS01 and 7006/0147PUS01; each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61841243 | Jun 2013 | US | |
61842355 | Jul 2013 | US | |
61841244 | Jun 2013 | US | |
61842357 | Jul 2013 | US | |
61841247 | Jun 2013 | US | |
61842365 | Jul 2013 | US | |
61841248 | Jun 2013 | US | |
61842372 | Jul 2013 | US | |
61842796 | Jul 2013 | US | |
61841251 | Jun 2013 | US | |
61842375 | Jul 2013 | US | |
61842803 | Jul 2013 | US |