The present invention is directed to the use of semi-transparent organic photovoltaic devices—cell or modules—as coatings for commercial aircraft windows, including cockpits, to provide electricity for mission-critical systems as well as maintenance loads on-board the aircraft.
Modern commercial aircraft are becoming increasingly technologically advanced vehicles that must operate effectively under demanding conditions. Energy efficiency and energy consumption are of increasing importance in such vehicles, as airlines and society become more concerned with both the economics and the climate impact of air travel.
The present invention recognizes that one way to increase energy efficiency is to incorporate renewable energy sources, but of the traditional renewable energy sources, photovoltaics (PV) is the only one that makes sense for aircraft. Electricity from PV could be used to help power mission-critical systems and/or maintenance loads on-board commercial aircraft to offset the energy needs of the many electrical systems present in modern aircraft. Traditional inorganic PV makes little sense for aircraft applications for a number of reasons, however, including excessive weight and potentially bulky structures that could increase wind resistance, both of which would reduce fuel efficiency, and poor aesthetics.
Organic PV (OPV) has a number of features that makes it potentially attractive for application in commercial aircraft including low specific weight (W/g), flexibility, and thickness of the thin films. The most important of these features is the very low specific weight of OPV, as compared to other PV technologies, which could minimize any impact on fuel efficiency. While OPV could potentially be applied to any external surface of a commercial aircraft, these surfaces must meet specific performance characteristics, and electrical wiring to utilize the power might prove complicated. If OPV could be placed on the inside of the aircraft, it would simplify the application and wiring of the devices, and reduce the exposure of the OPV materials to harsh environmental and flight conditions. Of course, the only place inside of the aircraft with significant solar light exposure is the windows. Traditional inorganic PV is generally opaque, which would eliminate the window effect, and the few inorganic PV technologies that can be made semitransparent suffer from numerous drawbacks, including high specific weight, high costs, low visible light transmission (VLT) and poor aesthetics.
SolarWindow™ is a novel PV window technology, based upon organic photovoltaics (OPV), that is the subject of several separate patent filings. This technology has numerous benefits, including the ability to generate power yet retain a high level of VLT in an attractive window application. To date, however, it has only been considered for terrestrial applications, generally in building-integrated PV applications. In addition to the very low specific weight (W/g), OPV is inherently flexible and thin, which potentially allows unique application methods for non-planar surfaces, such as cockpit and fuselage windows. Furthermore, the tunable nature of light absorption in OPV materials allows customized appearance and performance in semi-transparent window applications, which would allow performance and aesthetics to be optimized for different windows inside a commercial aircraft (e.g. cockpit vs. passenger windows).
The present invention recognizes that conventional commercial aircraft windows are strictly passive windows, which do not contribute in any way to help increase energy efficiency of the aircraft.
These problems and others are addressed by the present invention, a first exemplary embodiment of which comprises a semi-transparent organic photovoltaic module, comprising one or more cells connected in series and/or parallel, applied as a coating to a conventional commercial aircraft window. The coating can be applied to either the exterior or interior of the aircraft window, depending on the desired properties, but the interior coating likely has significant benefits, including increased protection of the OPV module and easier electrical connections. In this embodiment, the OPV device can either be applied as a completed device onto the window surface using a thin, flexible substrate with pressure-sensitive adhesives, which is described in detail Applicants' related applications, or OPV device can be fabricated directly on the window through standard coating (e.g. spray, slot-die, curtain, gravure, etc.) and processing (e.g. laser scribing) techniques, as known to those skilled in the art of OPV. The OPV or SolarWindow™ device can provide electricity to help power mission-critical systems and/or maintenance loads on-board the aircraft, while still retaining a high degree of VLT and attractive aesthetics to ensure good visibility and passenger comfort.
Another exemplary embodiment of the invention comprises a semi-transparent organic photovoltaic device, comprising one or more cells connected in series and/or parallel, applied as a coating to a conventional commercial aircraft cockpit or fuselage window. Again, the coating may be applied to either the inside or the outside, with the inside having significant advantages, as described previously. In this embodiment, the OPV or SolarWindow™ device can again provide electricity to help power mission-critical systems and/or maintenance loads, while still retaining a high degree of VLT to ensure good visibility. The absorption of the OPV module can be selected to yield optimal visual transmission properties of the window to aid in pilot perception, while still generating power. Furthermore, while the OPV device can be fabricated directly on the window through the use of complicated three-dimensional coating (spray, slot-die, curtain, gravure, etc.) and processing (e.g. laser scribing) methods, the inherent flexibility of OPV also presents the potential for application of the completed OPV module to the cockpit canopy and fuselage windows through the use of thin, flexible substrates and pressure-sensitive adhesives, which is described in Applicants' related applications.
Other features and advantages of the present invention will become apparent to those skilled in the art upon review of the following detailed description and drawings.
These and other aspects and features of embodiments of the present invention will be better understood after a reading of the following detailed description, together with the attached drawings, wherein:
The present invention now is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Referring now to the drawings,
Referring to
Referring to
Referring to
Referring to
Referring to
The present invention has been described herein in terms of several preferred embodiments. However, modifications and additions to these embodiments will become apparent to those of ordinary skill in the art upon a reading of the foregoing description. It is intended that all such modifications and additions comprise a part of the present invention to the extent that they fall within the scope of the several claims appended hereto.
This application claims priority under 35 U.S.C. 119(e) of U.S. Provisional Application No. 61/841,243, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0141PR01), U.S. Provisional Application No. 61/842,355, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0141PR02), U.S. Provisional Application No. 61/841,244, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0142PR01), U.S. Provisional Application No. 61/842,357, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0142PR02), U.S. Provisional Application No. 61/841,247, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0143PR01), U.S. Provisional Application No. 61/842,365, filed on Jul. 02, 2013 (Attorney Docket No. 7006/0143PR02), U.S. Provisional Application No. 61/841,248, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0144PR01), U.S. Provisional Application No. 61/842,372, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0144PR02), U.S. Provisional Application No. 61/842,796, filed on Jul. 3, 2013 (Attorney Docket No. 7006/0145PR01), U.S. Provisional Application No. 61/841,251, filed on Jun. 28, 2013 (Attorney Docket No. 7006/0146PR01), U.S. Provisional Application No. 61/842,375, filed on Jul. 2, 2013 (Attorney Docket No. 7006/0146PR02) and U.S. Provisional Application No. 61/842,803, filed on Jul. 3, 2013 (Attorney Docket No. 7006/0147PR01); the entire contents of all the above identified patent applications are hereby incorporated by reference in their entirety. This application is related to Applicants' co-pending U.S. applications, which are filed concurrently herewith on Jun. 27, 2014, 7006/0141PUS01, 7006/0142PUS01, 7006/0144PUS01, 7006/0145PUS01, 7006/0146PUS01 and 7006/0147PUS01; each of which is incorporated herein by reference in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 61841243 | Jun 2013 | US | |
| 61842355 | Jul 2013 | US | |
| 61841244 | Jun 2013 | US | |
| 61842357 | Jul 2013 | US | |
| 61841247 | Jun 2013 | US | |
| 61842365 | Jul 2013 | US | |
| 61841248 | Jun 2013 | US | |
| 61842372 | Jul 2013 | US | |
| 61842796 | Jul 2013 | US | |
| 61841251 | Jun 2013 | US | |
| 61842375 | Jul 2013 | US | |
| 61842803 | Jul 2013 | US |