This disclosure relates generally to batteries, and more particularly, to cathode active materials for lithium-ion batteries.
A commonly used type of rechargeable battery is a lithium battery, such as a lithium-ion (Li-ion) or lithium-polymer battery. As battery-powered devices become increasingly small and more powerful, batteries powering these devices need to store more energy in a smaller volume. Consequently, use of battery-powered devices may be facilitated by mechanisms for improving the volumetric energy densities of batteries in the devices.
Lithium cobalt oxides and lithium transition metal oxides can be used in cathode active materials for lithium-ion batteries. The lithium transition metal oxides are derivatives of lithium cobalt oxide. The lithium cobalt oxides or lithium transition metal oxides can be in the form of powder.
In lithium-ion batteries, the cathode materials of different compositions tend to react chemically or electrochemically with the liquid electrolyte that consists of a lithium salt (LiPF6) in organic solvents (such as ethylene carbonate, ethyl-methylene carbonate), especially when Li is extracted from the cathodes during charging. This is one of the major reasons for causing short cycle life of the batteries.
Although the lithium-ion cathode may have a crystal structure stabilized for charge and discharge cycling, the lithium-ion cathode is chemically reactive with a liquid electrolyte, which includes a lithium salt (e.g. LiPF6) in an organic solvent (e.g. ethylene carbonate), especially when Li is extracted from the cathode during charging.
A coating, such as aluminum oxide (Al2O3) or aluminum fluoride (AlF3), is typically applied to the cathode particles to prevent dissolution of the transition metals from the cathodes into the electrolyte. However, the aluminum oxide coating often causes energy density loss for the battery. There remains a need to develop coatings for improved battery performance.
In one aspect, the disclosure is directed to a cathode active material comprising a plurality of cathode active compound particles and a coating disposed over each of the cathode active compound particles. The coating can comprise a lithium (Li)-ion conducting oxide containing lanthanum (La) and titanium (Ti). In some variations, the coating comprises a Perovskite La2/3−xLi3xTiO3.
In another aspect, the disclosure is directed to a cathode active material comprising a plurality of cathode active compound particles and a coating disposed over each of the cathode active compound particles. The coating can comprise a lithium (Li) ion conducting oxide containing lithium (Li), lanthanum (La), and Germanium (Ge). The conductivity of the conductive oxide can be controlled by the ratio of La to Li. In some variations, the conducting oxide comprises a Perovskite La2/3−xLi3xGeO3.
The disclosure is directed to a battery cell comprising an anode comprising an anode current collector and a cathode described herein. A separator is disposed between the anode and the cathode.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
The following description is presented to allow any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims. Thus, the disclosure is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
As used herein, all compositions referenced for cathode active materials represent those of as-prepared materials (i.e., “virgin” materials) unless otherwise indicated. Materials of these compositions have not yet been exposed to additional processes, such as de-lithiation and lithiation during, respectively, charging and discharging of a lithium-ion battery.
Overview
The performance of batteries can be improved using coatings that provide improved average voltage and energy retention. These and other needs are addressed by the disclosure herein.
The disclosure provides a combination of surface coating and lithium-ion cathode materials that can demonstrate improved average voltage and cycle retention over a conventional alumina coating. The disclosure provides the use of lithium-ion oxide containing lanthanum and titanium (LLTO) or lithium-ion oxide containing lanthanum and germanium (LLGO) as lithium-ion conducting coatings for lithium substituted-cobalt oxide based cathode materials. Cathode active materials (e.g. substituted LiCoO2 cathode materials) coated with the LLTO or LLGO can provide an increased average voltage and an improved energy retention over the conventional alumina coating.
The stabilization of lithium cobalt oxides (LiCoO2) may require the substitution of elements that mitigate degradation mechanisms, and may allow for more lithium to be extracted and re-inserted reversibly at higher operating voltages and temperatures.
In three recent patent publications, US 2017/0263929 A1, US 2017/0263928 A1, and US 2017/0263917 A1, each entitled “CATHODE ACTIVE MATERIALS FOR LITHIUM-ION BATTERIES,” elemental substitutes for cobalt, such as manganese and aluminum, have been shown to stabilize the crystal structure. Each of the foregoing patent publications is incorporated herein by reference in its entirety.
Enclosures can include, without limitation, pouches such as flexible pouches, rigid containers and the like. Returning to
The stack 102 can also include a set of conductive tabs 106 coupled to the cathode and the anode. The conductive tabs 106 may extend through seals in the pouch (for example, formed using sealing tape 104) to provide terminals for the battery cell 100. The conductive tabs 106 may then be used to electrically couple the battery cell 100 with one or more other battery cells to form a battery pack.
Batteries can be combined in a battery pack in any configuration. For example, the battery pack may be formed by coupling the battery cells in a series, parallel, or a series-and-parallel configuration. Such coupled cells may be enclosed in a hard case to complete the battery pack, or may be embedded within an enclosure of a portable electronic device, such as a laptop computer, tablet computer, mobile phone, personal digital assistant (PDA), digital camera, and/or portable media player.
As mentioned above, the cathode current collector 202 may be aluminum foil, the cathode active material 204 may be a lithium compound, the anode current collector 210 may be copper foil, the anode active material 208 may be carbon, and the separator 206 may include a conducting polymer electrolyte.
The cathode active materials described herein can be used in conjunction with any battery cells or components thereof known in the art. For example, in addition to wound battery cells, the layers may be stacked and/or used to form other types of battery cell structures, such as bi-cell structures. All such battery cell structures are known in the art.
In further variations, a cathode active material comprises a cathode active compound particle and a coating.
The coating can be an oxide material. In some variations, the coating may be a layer of material in contact with a surface of the cathode active compound particle or a reaction layer formed along the surface of the cathode active compound particle. In some variations, the coating can include a lithium-ion conducting oxide containing lanthanum and titanium (LLTO). In some variations, the coating can include a lithium-ion conducting oxide containing lanthanum and germanium (LLGO).
In various embodiments, the performance of batteries including the cathode active material can increase battery capacity and/or reduce the loss of available power in a fully charged battery over time.
The coating can be in any amount known in the art. In some variations, the amount of coating may be less than or equal to 7 wt. % of the total particle. In some variations, the amount of coating may be less than or equal to 5 wt. % of the total particle. In some variations, the amount of coating may be less than or equal to 0.8 wt. % of the total particle. In some variations, the amount of coating may be less than or equal to 0.6 wt. % of the total particle. In some variations, the amount of coating may be less than or equal to 0.4 wt. % of the total particle. In some variations, the amount of coating may be less than or equal to 0.3 wt. % of the total particle. In some variations, the amount of coating may be less than or equal to 0.2 wt. % of the total particle. In some variations, the amount of coating may be less than or equal to 0.1 wt. % of the total particle. In various aspects, the amount can be chosen such that a capacity of the cathode active material is not negatively impacted.
In some variations, the amount of coating may be equal to or greater than 0.02 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.03 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.04 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.05 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.06 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.07 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.08 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.09 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.1 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.2 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.3 wt. % of the total particle. In some variations, the amount of coating may be equal to or greater than 0.4 wt. % of the total particle.
The coating may include multiple layers of coating material. The coating may also be a continuous coating or a discontinuous coating. Non-limiting examples of discontinuous coatings include coatings with voids or cracks and coatings formed of particles with gaps therebetween. Other types of discontinuous coatings are possible.
A coated powder comprising the coated particles described herein can be used as a cathode active material in a lithium-ion battery. Such cathode active materials can tolerate voltages equal to or higher than conventional materials (i.e., relative to a Li/Li+ redox couple) without capacity fade. Capacity fade degrades battery performance and may result from a structural instability of the cathode active material, a side reaction with electrolyte at high voltage, surface instability, dissolution of cathode active material into the electrolyte, or some combination thereof.
In various aspects, the cathode active materials described herein can result in lithium ion batteries that can be charged at high voltages without capacity fade. Without wishing to be held to a specific mechanisms or mode of action, the compounds may impede or retard structural deviations from an α-NaFeO2 crystal structure during charging to at higher voltages.
Batteries having cathode active materials that include the disclosed coatings can show improved the battery performance. For example, the LLTO or LLGO coatings provide for an increased rate capability and stability over cycles.
LLTO Coating
In some variations, the cathode base particles are coated with a layer of LLTO to prevent from chemical and electrochemical reactions of the particle surface with the electrolyte in the battery. The LLTO is a lithium-ion conducting material, such as a Perovskite La2/3−xLi3xTiO3, which allows the electronic and ionic transfer of lithium through its crystal structure.
In some variations, the Lithium-ion conductivity may be controlled by the ratio of La to Li, which controls the tilt of the TiO6 octahedra and the size of the diffusion pathway for lithium.
In some variations, the molar ratio of lithium (Li) to lanthanum (La) is 0.05 for the LLTO coating. In some variations, the molar ratio of Li to La is 0.1 for the LLTO coating. In some variations, the molar ratio of Li to La is 0.2 for the LLTO coating. In some variations, the molar ratio of Li to La is 0.4 for the LLTO coating. In some variations, the molar ratio of Li to La is 0.6 for the LLTO coating. In some variations, the molar ratio of Li to La is 0.8 for the LLTO coating. In some variations, the molar ratio of Li to La is 1 for the LLTO coating.
In some variations, the molar ratio of Li to Ti is 0.03 for the LLTO coating. In some variations, the molar ratio of Li to Ti is 0.06 for the LLTO coating. In some variations, the molar ratio of Li to Ti is 0.13 for the LLTO coating. In some variations, the molar ratio of Li to Ti is 0.24 for the LLTO coating. In some variations, the molar ratio of Li to Ti is 0.33 for the LLTO coating. In some variations, the molar ratio of Li to Ti is 0.42 for the LLTO coating. In some variations, the molar ratio of Li to Ti is 0.5 for the LLTO coating.
In some variations, the coating includes a blend of the LLTO and an electrically conductive material, such as carbon or LLGO among others.
Although the LLTO is not stable as a solid electrolyte, Applicants surprisingly discovered that LLTO can be used as a coating for a cathode active material or cathode base material. The coated cathode base material results in enhanced battery performance compared to Al2O3 coating. Although LLTO is not stable as a solid electrolyte, the LLTO demonstrates enhanced performance as a protective coating for the cathode base material.
In some variations, 200 ppm or more by weight LLTO is coated over the cathode base material. In some variations, 300 ppm or more by weight LLTO is coated over the cathode base material. In some variations, 400 ppm or more by weight LLTO is coated over the cathode base material. In some variations, 500 ppm or more by weight LLTO is coated over the cathode base material. In some variations, 600 ppm or more by weight LLTO is coated over the cathode base material. In some variations, 700 ppm or more by weight LLTO is coated over the cathode base material. In some variations, 800 ppm or more by weight LLTO is coated over the cathode base material. In some variations, 900 ppm or more by weight LLTO is coated over the cathode base material. In some variations, 1000 ppm or more by weight LLTO is coated over the cathode base material.
In some variations, 2000 ppm or more by weight LLTO is coated over the cathode base material. In some variations, 3000 ppm or more by weight LLTO is coated over the cathode base material. In some variations, 4000 ppm or more by weight LLTO is coated over the cathode base material.
In some variations, less than 1% by weight LLTO is coated over the cathode base material. In some variations, less than 0.5% by weight LLTO is coated over the cathode base material. In some variations, less than 0.1% by weight LLTO is coated over the cathode base material. In some variations, less than 0.01% by weight LLTO is coated over the cathode base material.
LLGO Coating
In some variations, the cathode base particles are coated with a layer of LLGO to prevent from chemical and electrochemical reactions of the particle surface with the electrolyte in the battery. The LLGO is a lithium-ion conducting material, such as a Perovskite La2/3−xLi3xGeO3, which allows the electronic and ionic transfer of lithium through its crystal structure.
In some variations, the lithium-ion conductivity may be controlled by the molar ratio of Li to La. In some variations, the molar ratio of Li to La is 0.05 for the LLGO coating. In some variations, the molar ratio of Li to La is 0.1 for the LLTO coating. In some variations, the molar ratio of Li to La is 0.2 for the LLTO coating. In some variations, the molar ratio of Li to La is 0.4 for the LLTO coating. In some variations, the molar ratio of Li to La is 0.6 for the LLTO coating. In some variations, the molar ratio of Li to La is 0.8 for the LLTO coating. In some variations, the molar ratio of Li to La is 1 for the LLTO coating.
In some variations, the molar ratio of Li to Ge is 0.03 for the LLGO coating. In some variations, the molar ratio of Li to Ge is 0.06 for the LLGO coating. In some variations, the molar ratio of Li to Ge is 0.13 for the LLGO coating. In some variations, the molar ratio of Li to Ge is 0.24 for the LLGO coating. In some variations, the molar ratio of Li to Ge is 0.33 for the LLGO coating. In some variations, the molar ratio of Li to Ge is 0.42 for the LLGO coating. In some variations, the molar ratio of Li to Ge is 0.5 for the LLTO coating.
In some variations, the coating includes a blend of the LLGO and an electrically conductive material, such as carbon, or LLTO among others.
In some variations, 200 ppm or more by weight LLGO is coated over the cathode base material. In some variations, 300 ppm or more by weight LLGO is coated over the cathode base material. In some variations, 400 ppm or more by weight LLGO is coated over the cathode base material. In some variations, 500 ppm or more by weight LLGO is coated over the cathode base material. In some variations, 600 ppm or more by weight LLGO is coated over the cathode base material. In some variations, 700 ppm or more by weight LLGO is coated over the cathode base material. In some variations, 800 ppm or more by weight LLGO is coated over the cathode base material. In some variations, 900 ppm or more by weight LLGO is coated over the cathode base material. In some variations, 1000 ppm or more by weight LLGO is coated over the cathode base material.
In some variations, 2000 ppm or more by weight LLGO is coated over the cathode base material. In some variations, 3000 ppm or more by weight LLGO is coated over the cathode base material. In some variations, 4000 ppm or more by weight LLGO is coated over the cathode base material.
In some variations, less than 1% by weight LLGO is coated over the cathode base material. In some variations, less than 0.5% by weight LLGO is coated over the cathode base material. In some variations, less than 0.1% by weight LLGO is coated over the cathode base material. In some variations, less than 0.01% by weight LLGO is coated over the cathode base material.
The cathode active material for lithium-ion batteries can be in a form of powder, as described above. These cathode active materials assist energy storage by releasing and storing lithium-ions during, respectively, charging and discharging of a lithium-ion battery.
Without wishing to be limited to a specific mechanism or mode of action, the coated powder can provide improved battery performance when the coated powder is used as a cathode active material. The coated powder comprising the disclosed LLTO or LLGO conducting coating described herein provide sharper knee in the potential versus capacity curve than a conventional Al2O3 coating. Batteries comprising the LLTO or LLGO coated powder as a cathode active material have increased average voltage and energy retention.
Cathode Active Compounds
The coating is disposed over cathode active compounds. Specifically, in various aspects, the coating is disposed over cathode active compound particles. The coated cathode active compounds can be used as cathode active materials in lithium-ion batteries.
In some variations, this disclosure is directed to a cathode active precursor compound, or particles (e.g., a powder) comprising the cathode active precursor compound, represented by Formula (Ia):
NiaMnbCocM1dOe (Ia)
In Formula (Ia), M1 is selected from B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ru, Ag, In, La and any combination thereof; 0≤a≤1; 0≤b≤1; 0≤c≤1; a+b+c>0; 0≤d≤0.5; a+b+d>0; and 1≤e≤5. Compounds of Formula (Ia) include at least one of Ni, Mn, or Co (i.e., a+b+c>0). Moreover, the compounds include at least one of Ni, Mn, or M1 (i.e., a+b+d>0).
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (Ib):
Li1+fNiaMnbCocM1dOe (Ib)
It will be appreciated that the lithiated mixed-metal oxides may be prepared using the mixed-metal oxides associated with Formula (Ia), as will be discussed below. In Formula (Tb), M1 is selected from B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ru, Ag, In, La and combinations thereof; −0.1≤f≤1.0; 0≤a≤1; 0≤b≤1; 0≤c≤1; a+b+c>0; 0≤d≤0.5; a+b+d>0; and 1.9≤e≤3. Compounds of Formula (Ib) include at least one of Ni, Mn, or Co (i.e., a+b+c>0). Moreover, the compounds include at least one of Ni, Mn, or M1 (i.e., a+b+d>0). As used herein, all compounds referenced for the lithiated mixed-metal oxides represent those of as-prepared materials (i.e., “virgin” materials) unless otherwise indicated. Such compounds have not yet been exposed to additional chemical processes, such as de-lithiation and lithiation during, respectively, charging and discharging. In some instances, 0≤f≤0.5. In some instances, 1.9≤e≤2.7. In further instances, 1.9≤e≤2.1.
In some instances, 0≤f≤1.0 and d=0. In these instances, no content associated with M1 is present in the particles. Further, in some instances, d=0 and f≥0.20. In some instances, d=0 and f≥0.40. In some instances, d=0 and f≥0.60. In some instances, d=0 and f≥0.80. In some instances, d=0 and f≤0.80. In some instances, d=0 and f≤0.60. In some instances, d=0 and f≤0.40. In some instances, d=0 and f≤0.20. In some instances, d=0 and e≥2.20. In some instances, d=0 and e≥2.40. In some instances, d=0 and e≥2.60. In some instances, d=0 and e≥2.80. In some instances, d=0 and e≤2.80. In some instances, d=0 and e≤2.60. In some instances, d=0 and e≤2.40. In some instances, d=0 and e≤2.20. It will be understood that, in the aforementioned instances, the boundaries of f and e can be combined in any variation as above.
In some instances, M1 can include one or more cations with an average oxidation state of 4+, i.e., M11. M1 also can include more than one cation with a combined oxidation state of 3+, i.e., M11M12. M11 is selected from Ti, Mn, Zr, Mo, and Ru and may be any combination thereof. M12 is selected from Mg, Ca, V, Cr, Fe, Cu, Zn, Al, Sc, Y, Ga, and Zr and may be any combination thereof. A stoichiometric content associated with MM11, i.e., d1, and a stoichiometric content associated with M12, i.e., d2, equals d (i.e., d1+d2=d). In these instances, a+b+c+d1+d2=1. Further, in some instances, d1≥0.1. In some instances, d1≥0.2. In some instances, d1≥0.3. In some instances, d1≥0.4. In some instances, d1≤0.1. In some instances, d1≤0.2. In some instances, d1≤0.3. In some instances, d1≤0.4. It will be understood that, in the aforementioned instances, the boundaries of d1 can be combined in any variation as above.
In some instances, −0.05≤f≤0.10; M1=Al; 0≤d≤0.05; a+b+c=1; 0<a+b<0.5; and 1.95≤e≤2.6. In further instances, 0.01≤d≤0.03. In still further instances, 0.02≤d≤0.03. In instances where d #0 (i.e., aluminum is present), a distribution of aluminum within each particle may be uniform or may be biased to be proximate to a surface of each particle. Other distributions are possible.
In some instances, −0.05≤f≤0.10; d=0; a=0, b+c=1; and 1.9≤e≤2.2. Further, in some instances, 0.0≤f≤0.10. In some instances, 0.0≤f≤0.05. In some instances, 0.01≤f≤0.05 and 0.02≤b≤0.05. In some instances, 0.01≤f≤0.05 and b=0.04.
In some variations, this disclosure is directed to a cathode active precursor compound, or particles (e.g., a powder) comprising the cathode active precursor compound, represented by Formula (IIa):
M2Og (IIa)
wherein M2=Co, Mn, Ni, and any combination thereof; and 0.9≤g≤2.6. In some variations, 0.9≤g≤1.1. In some variations, g=1. In some variations, 1.4≤g≤1.6. In some variations, g=1.5. In some variations, 1.9≤g≤2.1. In some variations, g=2. In some variations, 2.4≤g≤2.6. In some variations, g=2.5.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (IIb):
LihM2Og (IIb)
wherein M2=Co, Mn, Ni, and any combination thereof, 0.95≤h≤2, and 2≤g≤3. In some variations, 1≤h≤2. In some variations, 1.20≤h. In some variations, 1.40≤h. In some variations, 1.60≤h. In some variations, 1.80≤h. In some variations, h≤1.8. In some variations, h≤1.6. In some variations, h≤1.4. In some variations, h≤1.2. In some variations, h≤1.8. Further, in some variations, 2.2<g. In some variations, 2.4<g. In some variations, 2.6≤g. In some variations, 2.8≤g. In some variations, g≤2.8. In some variations, g≤2.6. In some variations, g≤2.4. In some variations, g≤2.2. It will be understood that the boundaries of h and g can be combined in any variation as above.
In some variations, this disclosure is directed to a cathode active precursor compound, or particles (e.g., a powder) comprising the cathode active precursor compound, represented by Formula (IIIa):
M3iM41−iOj (IIIa)
wherein M3 is selected from Ti, Mn, Zr, Mo, Ru, and any combination thereof; M4 is selected from B, Na, Mg, Ti, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, Mo, and any combination thereof; 0≤i≤1; and 0.9≤j≤2.6. In some variations, M3 has an average oxidation state of 4+ (i.e., tetravalent). In some variations, M4 has an average oxidation state of 3+ (i.e., trivalent). In some variations, 0≤i≤1. In specific variations, M3 is Mn. In specific variations, M4 is Co. In specific variations, M4 is a combination of Co and Mn. In further variations, a proportion of Co is greater than a proportion of Mn in the combination of Co and Mn.
In some variations, 1.4≤j≤2.1. In some variations, 1.5≤j≤2.0. In some variations, 1.6≤j≤1.9. In some variations, 0.9≤j≤1.1. In some variations, j=1. In some variations, 1.4≤j≤1.6. In some variations, j=1.5. In some variations, 1.9≤j≤2.1. In some variations, j=2. In some variations, 2.4≤j≤2.6. In some variations, j=2.5.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (IIIb):
(i)[Li2M3O3]·(1−i)[LiM4O2] (IIIb)
wherein M3 is one or more cations with an average oxidation state of 4+ (i.e., tetravalent), M4 is one or more cations with an average oxidation state of 3+ (i.e., trivalent), and 0≤i≤1. In some variations, M3 is selected from Ti, Mn, Zr. Mo, Ru, and a combination thereof. In specific variations, M3 is Mn. In some variations, M4 is selected from B, Na, Mg, Ti, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, Mo and a combination thereof. In specific variations, M4 is Co. In specific variations, M4 is a combination of Co and Mn. In further variations, a proportion of Co is greater than a proportion of Mn in the combination of Co and Mn. In variations where M4 includes cobalt, cobalt may be a predominant transition-metal constituent.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (IIIc):
(i)[Li2M3O3]·(1−i)[Li1−kM4O2] (IIIc)
wherein M3 is one or more cations with an average oxidation state of 4+ (i.e., tetravalent), M4 is one or more cations, 0≤i≤1, and 0≤k≤1. In some variations, M3 is selected from Ti, Mn, Zr, Mo, Ru, and a combination thereof. In specific variations, M1 is Mn. In some variations, M4 is selected from B, Na, Mg, Ti, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, Mo, and any combination thereof. In specific variations, M4 is Co. In specific variations, M4 is a combination of Co and Mn. In further variations, a proportion of Co is greater than a proportion of Mn in the combination of Co and Mn. In variations where M4 includes cobalt, cobalt may be a predominant transition-metal constituent which allows high voltage, and high volumetric energy density for cathode active materials employed in lithium-ion batteries.
In some variations, 0≤k≤0.16. In some variations, 0≤k≤0.14. In some variations, 0≤k≤0.12. In some variations, 0≤k≤0.10. In some variations, 0≤k≤0.08. In some variations, 0≤k≤0.06. In some variations, 0≤k≤0.04. In some variations, 0≤k≤0.02. In some variations, k=0.15. In some variations, k=0.14. In some variations, k=0.13. In some variations, k=0.12. In some variations, k=0.11. In some variations, k=0.10. In some variations, k=0.09. In some variations, k=0.08. In some variations, k=0.07. In some variations, k=0.06. In some variations, k=0.05. In some variations, k=0.04. In some variations, k=0.03. In some variations, k=0.02. In some variations, k=0.01.
In some variations, this disclosure is directed to a cathode active precursor compound, or particles (e.g., a powder) comprising the cathode active precursor compound, represented by Formula (IVa):
Co1−lM5lAlmOn (IVa)
wherein M5 is B, Na, Mn, Ni, Mg, Ti, Ca, V, Cr, Fe, Cu, Zn, Al, Sc, Y, Ga, Zr, Mo, Ru, and any combination thereof; 0<l<0.50; 0≤m≤0.05; and 0.9≤n≤2.6. In some variations, M5 is Mn, Ni, and any combination thereof.
In some variations, 1.4≤n≤2.1. In some variations, 1.5≤n≤2.0. In some variations, 1.6≤n≤1.9. In some variations, 0.9≤n≤1.1. In some variations, n=1. In some variations, 1.4≤n≤1.6. In some variations, n=1.5. In some variations, 1.9≤n≤2.1. In some variations, n=2. In some variations, 2.4≤n≤2.6. In some variations, n=2.5.
In some variations, 0.01≤m≤0.03. In some variations, 0.001≤m≤0.005. In some variations, 0.002≤m≤0.004. In some variations, m=0.003. In some variations, 0.02≤m≤0.03. In variations of Formula (IVa) where m≠0 (i.e., aluminum is present), a distribution of aluminum within the particle may be uniform or may be biased to be proximate to a surface of the particle. Other distributions of aluminum are possible. In some variations, Al is at least 500 ppm. In some variations, Al is at least 750 ppm. In some variations, Al is at least 900 ppm. In some variations, Al is less than or equal to 2000 ppm. In some variations, Al is less than or equal to 1500 ppm. In some variations, Al is less than or equal to 1250 ppm. In some variations, Al is approximately 1000 ppm. In an optional alternative, the compound can be expressed as Co1−lM5lOn and Al expressed in ppm.
In some variations, 0.9≤n≤1.1. In some variations, n=1. In some variations, 1.4≤n≤1.6. In some variations, n=1.5. In some variations, 1.9≤n≤2.1. In some variations, n=2. In some variations, 2.4≤n≤2.6. In some variations, n=2.5. In some variations, 1.4≤n≤2.1. In some variations, 1.5≤n≤2.0. In some variations, 1.6≤n≤1.9.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (IVb):
LioCo1−lM5lAlmOn (IVb)
wherein M5 is B, Na, Mn, Ni, Mg, Ti, Ca, V, Cr, Fe, Cu, Zn, Al, Sc, Y, Ga, Zr, Mo, Ru, and any combination thereof; 0.95≤σ≤1.10; 0<l<0.50; 0≤m≤0.05; and 1.95≤n≤2.60. In some variations, M5 is Mn, Ni, and any combination thereof.
In some variations, 0.01≤m≤0.03. In some variations, 0.001≤m≤0.005. In some variations, 0.002≤m≤0.004. In some variations, m=0.003. In some variations, 0.02≤m≤0.03. In variations of Formula (IVb) where m≠0 (i.e., aluminum is present), a distribution of aluminum within the particle may be uniform or may be biased to be proximate to a surface of the particle. Other distributions of aluminum are possible. In some variations, Al is at least 500 ppm. In some variations, Al is at least 750 ppm. In some variations, Al is at least 900 ppm. In some variations, Al is less than or equal to 2000 ppm. In some variations, Al is less than or equal to 1500 ppm. In some variations, Al is less than or equal to 1250 ppm. In some variations, Al is approximately 1000 ppm. In additional variations of Formula (IVb), 1.02≤σ≤1.05 and 0.02≤l≤0.05. In further variations of Formula (4b), 1.03≤σ≤1.05 and l=0.04. It will be recognized that the components as described above can be in any combination. In some instances, when Al is expressed in ppm, in one aspect, the compound can be represented as LioCo1−lM5lOn and the amount of Al can be represented as Al in at least a quantity in ppm, as described herein.
The various compounds of Formulae (IIb), (IIIb), (IIIc), and (IVb) can include Mn4+. Without wishing to be limited to any theory or mode of action, incorporating Mn4+ can improve a stability of oxide under high voltage charging (e.g., 4.5V) and can also help maintain an R
In some variations, this disclosure is directed to a cathode active precursor compound, or particles (e.g., a powder) comprising the cathode active precursor compound, represented by Formula (Va):
Co1−pMnpM6qOr (Va)
wherein M6 is at least one element selected from the group consisting of B, Na, Mg, Ti, Ca, V, Cr, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, and Mo; 0<p≤0.30; 0≤q≤0.10; and 0.9≤r≤2.6. In some variations, q=0. In some variations, M6 is Al.
In some variations, 1.4≤r≤2.1. In some variations, 1.5≤r≤2.0. In some variations, 1.6≤r≤1.9. In some variations, 0.9≤r≤1.1. In some variations, r=1. In some variations, 1.4≤r≤1.6. In some variations, r=1.5. In some variations, 1.9≤r≤2.1. In some variations, n=r. In some variations, 2.4≤r≤2.6. In some variations, r=2.5.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (Vb):
LisCo1−pMnpOr (Vb)
wherein 0.95≤s≤1.10, 0≤p≤0.10, and 1.90≤r≤2.20. In some variations, 0≤p≤0.10. In some variations, 0.98≤s≤1.01. In some variations of Formula (Vb), 0.98≤s≤1.01 and p=0.03. In some variations of Formula (Vb), 1.00≤s≤1.05. In some variations, the disclosure is directed to a compound represented by Formula (Vb), wherein 0.95≤s≤1.05 and 0.02≤p≤0.05. In a further aspect, the disclosure is directed to a compound represented by Formula (Vb), wherein 0.95≤s≤1.05 and p=0.04. In some variations, p=0.03. In further variations of Formula (Vb), 1.01≤s≤1.05 and 0.02≤p≤0.05. In still further variations of Formula (Vb), 1.01≤s≤1.05 and p=0.04. In some variations of Formula (Vb), 1.00≤s≤1.10. In other variations of Formula (Vb), 1.00≤s≤1.05. In a further aspect, the disclosure is directed to a compound represented by Formula (Vb), wherein 0.98≤s≤1.01, p=0.03, and r=2.
It will be appreciated that s represents a molar ratio of lithium content to total transition-metal content (i.e., total content of Co and Mn). In various aspects, increasing lithium content can increase capacity, improve stability, increase gravimetric density of particles comprising the compound, increase particle density, and/or increase particle strength of the cathode active material. In various aspects, decreasing lithium content can increase capacity, improve stability, increase gravimetric density of particles comprising the compound, increase particle density, and/or increase particle strength of the cathode active material.
In some variations, the compound of Formula (Vb) may be represented as a solid solution of two phases, i.e., a solid solution of Li2MnO3 and LiCoO2. In these variations, the compound may be described according to Formula (Vc):
(p)[Li2MnO3]·(1−p)[LiCoO2] (Vc)
where Mn is a cation with an average oxidation state of 4+ (i.e., tetravalent) and Co is a cation with an average oxidation state of 3+(i.e., trivalent). A more compact notation for Formula (Vc) is given below:
Li1+pCo1−pMnpO2+p (Vd)
In Formula (Vd), p can describe both Mn and Co. Due to differing valences between Mn and Co, the inclusion of Mn may influence a lithium content and an oxygen content of the compound.
Referring back to Formula (Vb), ‘p’ can be 0≤p≤0.10. In such variations, the lithium content can be from 1 to 1.10 (i.e., 1+p), and the oxygen content can be from 2 to 2.10 (i.e., 2+p). However, the compounds disclosed herein have lithium contents and oxygen contents that may vary independently of p. For example, and without limitation, the lithium and oxygen contents may vary from stoichiometric values due to synthesis conditions deliberately selected by those skilled in the art. As such, subscripts in Formulas (Vc) and (Vd) are not intended as limiting on Formula (Vb), i.e., s is not necessarily equal to 1+p, and r is not necessarily equal 2+p. It will be appreciated that one or both of the lithium content and the oxygen content of compounds represented by Formula (Vb) can be under-stoichiometric (i.e., s<1+p; r<2+p) or over-stoichiometric (i.e., s>1+l; r>2+p) relative to the stoichiometric values of Formula (Vd).
In some variations, the compound of Formula (Vb) may be represented as a solid solution of two phases, i.e., a solid solution of Li2MnO3 and LiCoO2. In these variations, the compound may be described according to Formula (Ve):
(t)[Li2MnO3]·(1−t)[Li(1−u)Co(1−u)MnuO2] (Ve)
where Mn is a cation with an average oxidation state of 4+ (i.e., tetravalent) and Co is a cation with an average oxidation state of 3+(i.e., trivalent). A unified notation for Formula (Ve) is given below:
Li1+t−u−tuCo(1−t)(1−u)Mn(t+u−tu)O2+t (Vf)
In Formula (Vf), t and u can describe both Mn and Co. Without wishing to be held to a particular mechanism or mode of action, because of differing valences between Mn and Co, inclusion of Mn may influence lithium content and oxygen content of the compound.
Comparing Formulas (Vb) and (Vf) shows s=1+t−u−tu, p=t+u−tu, r=2+t. In compounds represented by Formula V(f), the lithium content can be any range described herein for Formula (Vb). In some variations, Li can be from 0.95 to 1.10. In some variations, oxygen content can be from 2 to 2.20.
In other variations, this disclosure is directed to a compound, or particles (e.g., a powder) comprising a compound, represented by Formula (Vg):
LisCo1−p−qMnpM6qOr (Vg)
wherein 0.95≤s≤1.30, 0≤p≤0.30, 0≤q≤0.10, and 1.98≤r≤2.04, and M6 is at least one element selected from the group consisting of B, Na, Mg, Ti, Ca, V, Cr, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, and Mo. The compound of Formula (Vg) is single phase. The compound can have a trigonal R
In other variations, this disclosure is directed to a compound, or particles (e.g., a powder) comprising a compound, represented by Formula (Vh):
LisCo1−p−qMnpAlqOr (Vh)
wherein 0.95≤s≤1.30, 0≤p≤0.30, 0≤q≤0.10, and 1.98≤r≤2.04. In some variations, 0.96≤s≤1.04, 0<p≤0.10, 0≤q≤0.10, and 1.98≤r≤2.04. In some variations, the compounds represented by Formula (Vh) have 0.98≤s≤1.01, 0.02≤p≤0.04, and 0≤q≤0.03. The compound of Formula (Vh) is a single phase. The compound can have trigonal R
In some variations, this disclosure is directed to a cathode active precursor compound, or particles (e.g., a powder) comprising the cathode active precursor compound, represented by Formula (VIa):
(ν)[M7O2]·(1−ν)[Co1−σM8σO2] (VIa)
wherein M7 is one or more elements with an average oxidation state of 4+ (i.e., tetravalent); M8 is one or more monovalent, divalent, trivalent, and tetravalent elements; 0.01≤ν<1.00, and 0≤σ≤0.05. In some variations, M7 is selected from Mn, Ti, Zr, Ru, and a combination thereof. In some variations, M8 is selected from B, Na, Mg, Ti, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, Mo and a combination thereof. In some variations, M7 is Mn. In some variations, M8 is Al.
In some embodiments, 0.01≤ν≤0.50. In some embodiments, 0.01≤ν≤0.50. In some embodiments, 0.01≤ν≤0.30. In some embodiments, 0.01≤ν≤0.10. In some embodiments, 0.01≤ν≤0.05. In some variations, 0≤σ≤0.05. In some variations, 0≤σ≤0.03. In some variations, 0≤σ≤0.02. In some variations, 0≤σ≤0.01. In some variations, 0.01≤ν<0.05, and 0<σ≤0.05.
In some variations, Al is at least 500 ppm. In some variations, Al is at least 750 ppm. In some variations, Al is at least 900 ppm. In some variations, Al is less than or equal to 2000 ppm. In some variations, Al is less than or equal to 1500 ppm. In some variations, Al is less than or equal to 1250 ppm. In some variations, Al is less than or equal to 1000 ppm. In some variations, Al is less than or equal to 900 ppm. In some variations, Al is less than or equal to 800 ppm. In some variations, Al is less than or equal to 700 ppm. In some variations, Al is less than or equal to 600 ppm. In some instances, when M8 (e.g., Al) is expressed in ppm, in optional variations, the compound can be represented as (ν)[[Li2M7O3] (1−ν)[LiαCowO2] and the amount of M8 can be represented as M8 in at least a quantity in ppm, as otherwise described above. In some embodiments, 0.5≤w≤1. In some embodiments, 0.8≤w≤1. In some embodiments, 0.96≤w≤1. In some embodiments, 0.99≤w≤1. In some embodiments, w is 1.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by (VIb):
(ν)[Li2M7O3]·(1−ν)[LiαCo1−σM8σO2] (VIb)
wherein M7 is one or more elements with an average oxidation state of 4+ (i.e., tetravalent); M8 is one or more monovalent, divalent, trivalent, and tetravalent elements; 0.95≤α≤1.05; 0.01≤ν<1.00, and 0.5≤w≤1, and 0≤σ≤0.05. In some variations, 0.95≤α<0.99. In some variations, M7 is selected from Mn, Ti, Zr, Ru, and a combination thereof. In some variations, M8 is selected from B, Na, Mg, Ti, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, Mo and a combination thereof. In some variations, M7 is Mn. In some variations, M8 is Al.
In some embodiments, 0.01≤ν≤0.50. In some embodiments, 0.01≤ν≤0.50. In some embodiments, 0.01≤ν≤0.30. In some embodiments, 0.01≤ν≤0.10. In some embodiments, 0.01≤ν≤0.05. In some variations, 0≤σ≤0.05. In some variations, 0<σ≤0.03. In some variations, 0≤σ≤0.02. In some variations, 0≤σ≤0.01. In some variations, 0.95≤α≤1.05, 0.01≤ν<0.05, 0.96≤w<1, and 0<σ≤0.05. In some variations, 0.95≤α<0.99.
In some variations, M8 (e.g., Al) is at least 500 ppm. In some variations, M8 (e.g., Al) is at least 750 ppm. In some variations, M8 (e.g., Al) is at least 900 ppm. In some variations, M8 (e.g., Al) is less than or equal to 2000 ppm. In some variations, M8 (e.g., Al) is less than or equal to 1500 ppm. In some variations, M8 (e.g., Al) is less than or equal to 1250 ppm. In some variations, M8 (e.g., Al) is less than or equal to 1000 ppm. In some variations, M8 (e.g., Al) is less than or equal to 900 ppm. In some variations, M8 (e.g., Al) is less than or equal to 800 ppm. In some variations, M, (e.g., Al) is less than or equal to 700 ppm. In some variations, M8 (e.g., Al) is less than or equal to 600 ppm. In some instances, when M8 (e.g., Al) is expressed in ppm, the compound can be represented as (ν)[Li2M7O3]·(1−ν)[LiαCowO2] and the amount of M8 can be represented as M8 in at least a quantity in ppm, as otherwise described above. In some variations, 0.5≤w≤1. In some variations, 0.8≤w≤1. In some variations, 0.96≤w≤1. In some variations, 0.99≤w≤1. In some variations, w is 1.
In some variations, the disclosure is directed to a cathode active material for lithium ion batteries that includes a lithium nickel oxide (LiNiO2) having one or more tetravalent metals selected from Mn, Ti, Zr, Ge, Sn, and Te and/or one or more divalent metals selected from Mg, Be, Ca, Sr, Ba, Fe, Ni, Cu, and Zn. In these materials, the trivalent Ni ion can serve as host to supply the capacity. Without wishing to be limited to any theory or mode of action, a tetravalent ion such as Mn4+, and a divalent ion such as Mg2+, can stabilize the structure and help Ni ion stay trivalent for typical layer LiNiO2 oxide.
The lithium nickel oxide may also include a stabilizer component, Li2MeO3, in which Me is one or more elements selected from Mn, Ti, Ru, and Zr. Without wishing to be limited to any theory or mode of action, Li2MeO3 can stabilize a layered crystal structure and improve a reversible capability of the lithium nickel oxide in a voltage window of a lithium-ion cell. Representative examples of Me include Mn, Ti, Ru, Zr, and any combination thereof.
In some variations, this disclosure is directed to a cathode active precursor compound, or particles (e.g., a powder) comprising the cathode active precursor compound, represented by Formula (VIIa):
NixM9yM10zOa (VIIa)
where M9 is selected from Mn, Ti, Zr, Ge, Sn, Te, and any combination thereof; M10 is selected from Mg, Be, Ca, Sr, Ba, Fe, Ni, Cu, Zn, and any combination thereof; 0.7<x<1; 0≤y≤0.3; 0<z<0.3; x+y+z=1; and 0.9≤α≤2.6. In some variations of Formula (VIIa), M9 is Mn and M10 is Mg. In some variations of Formula (VIIa), 0.05≤y≤0.3 and 0.05<z<0.3.
In some variations, 1.4≤α≤2.1. In some variations, 1.5≤α≤2.0. In some variations, 1.6≤α≤1.9. In some variations, 0.9≤α≤1.1. In some variations, α=1. In some variations, 1.4≤α≤1.6. In some variations, α=1.5. In some variations, 1.9≤α≤2.1. In some variations, α=2. In some variations, 2.4≤α≤2.6. In some variations, α=2.5.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (VIIb):
LiβNixM9yM10zO2 (VIIb)
where M9 is selected from Mn, Ti, Zr, Ge, Sn, Te, and a combination thereof; M10 is selected from Mg, Be, Ca, Sr, Ba, Fe, Ni, Cu, Zn, and a combination thereof; 0.9<β<1.1; 0.7<x<1; 0≤y≤0.3; 0<z<0.3; and x+y+z=1. In some variations of Formula (VIIb), 0.05≤y≤0.3 and 0.05<z<0.3.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (VIIc):
LiβNixMnyMgzO2 (VIIc)
where 0.9<β<1.1; 0.7<x<1; 0≤y≤0.3; 0<z<0.3; and x+y+z=1. In some variations of Formula (VIIc), 0.05≤y≤0.3 and 0.05<z<0.3.
In compounds of Formula (VIIc), a valence of Mg remains 2+ and a valence of Mn remains 4+. Again, without wishing to be held to a particular theory or mode of action, the valence of Mg remains 2+ to stabilize a layered crystal structure and improve electrochemical performance of the cathode active materials represented by Formula (VIIc). As compared to known cathode formulae, the amount of Ni2+ can be reduced to achieve charge balance. Unlike Ni2+, which can transition electronically to Ni3+, Mg2+ represents a stable divalent ion in the cathode active material. Thus, in order to maintain an average transition-metal valence of 3+, a presence of Mg2+ in the cathode active material biases Ni away from Ni2+ to Ni3+. Such bias towards Ni3+ decreases the availability of Ni2+ to occupy a Li+ site, which decreases performance of the cathode active material.
In some variations, Ni is an active transition metal at a higher stoichiometric amount than in conventional materials. In further variations, the active transition metal of Ni is trivalent in the material (i.e., 3+). During an electrochemical charge/discharge process in a cell, the redox couple between Ni3+/Ni4+ influences a capacity of the cell.
The compounds of Formulae (VIIb) and (VIIc) as disclosed herein have properties that are surprisingly improved over properties of known compositions.
In some variations, this disclosure is directed to a cathode active precursor compound, or particles (e.g., a powder) comprising the cathode active precursor compound, represented by Formula (VIIIa):
M11γNi(1−γ) δM12(1−γ) δM13(1−γ) δOη (VIIIa)
where M11 is selected from Mn, Ti, Ru, Zr, and any combination thereof; M12 is selected from Mn, Ti, Zr, Ge, Sn, Te, and any combination thereof; M13 is selected from Mg, Be, Ca, Sr, Ba, Fe, Ni, Cu, Zn, and any combination thereof; 0≤y≤0.3; 0.7<δ<1; 0<ε<0.3; 0<ζ<0.3; δ+ε+ζ=1; and 0.9≤η≤2.6.
In some variations of Formula (VIIIa), 0.05<ε<0.3 and 0.05<ζ<0.3. In some variations, 1.4≤η≤2.1. In some variations, 1.5≤η≤2.0. In some variations, 1.6≤η≤1.9. In some variations, 0.9≤η≤1.1. In some variations, η=1. In some variations, 1.4≤η≤1.6. In some variations, η=1.5. In some variations, 1.9≤η≤2.1. In some variations, η=2. In some variations, 2.4≤η≤2.6. In some variations, η=2.5.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (VIIIb):
γLi2M11O3·(1−γ)LiθNiδM12εM13ζO2 (VIIIb)
In Formula (VIIIb), LiθNiδM12εM13ζO2 serves as the active component and Li2M11O3 serves as the stabilizer component. The compound of Formula (VIIIb) corresponds to integrated or composite oxide material. A ratio of the components is governed by γ, which ranges according to 0≤y≤0.3. For the Li2M11O3 stabilizer component, M11 is selected from Mn, Ti, Ru, Zr, and any combination thereof. For the LiθNiδM12εM13ζO2 active component, M12 is selected from Mn, Ti, Zr, Ge, Sn, Te, and any combination thereof; M13 is selected from Mg, Be, Ca, Sr, Ba, Fe, Ni, Cu, Zn, and any combination thereof; 0.9<θ<1.1; 0.7<δ<1; 0<ε<0.3; 0<ζ<0.3; and δ+ε+ζ=1. In some variations of Formula (VIIIb), 0.05<ε<0.3 and 0.05<ζ<0.3.
In some variations, this disclosure is directed to a cathode active precursor compound, or particles (e.g., a powder) comprising the cathode active precursor compound, represented by Formula (IXa):
(ν)[M7O2]·(1−ν)[Co1−σM8σO2] (IXa)
wherein M7 is one or more elements with an average oxidation state of 4+ (i.e., tetravalent); M8 is one or more monovalent, divalent, trivalent, and tetravalent elements; 0.01≤ν≤1.00, and 0.5 € and 0≤σ≤0.05. In some variations, M7 is selected from Mn, Ti, Zr, Ru, and a combination thereof. In some variations, M8 is selected from B, Na, Mg, Ti, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, Mo and a combination thereof. In some variations, M7 is Mn. In some variations, M8 is Al.
In some embodiments, 0.01≤ν≤0.50. In some embodiments, 0.01≤ν≤0.50. In some embodiments, 0.01≤ν≤0.30. In some embodiments, 0.01≤ν≤0.10. In some embodiments, 0.01≤ν≤0.05. In some variations, 0≤σ≤0.05. In some variations, 0<σ≤0.05. In some variations, 0<σ≤0.03. In some variations, 0<σ≤0.02. In some variations, 0<σ≤0.01. In some variations, 0.01≤ν≤0.05 and 0<σ≤0.05.
In some variations, Al is at least 500 ppm. In some variations, Al is at least 750 ppm. In some variations, Al is at least 900 ppm. In some variations, Al is less than or equal to 2000 ppm. In some variations, Al is less than or equal to 1500 ppm. In some variations, Al is less than or equal to 1250 ppm. In some variations, Al is less than or equal to 1000 ppm. In some variations, Al is less than or equal to 900 ppm. In some variations, Al is less than or equal to 800 ppm. In some variations, Al is less than or equal to 700 ppm. In some variations, Al is less than or equal to 600 ppm. In some instances, when M8 (e.g., Al) is expressed in ppm, in optional variations, the compound can be represented as (ν)[Li2M7O3]·(1−ν)[LiαCowO2] and the amount of M8 can be represented as M8 in at least a quantity in ppm, as otherwise described above. In some embodiments, 0.5≤w≤1. In some embodiments, 0.8≤w≤1. In some embodiments, 0.96≤w≤1. In some embodiments, 0.99≤w≤1. In some embodiments, w is 1.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (IXb):
(ν)[Li2M7O3]·(1−ν)[LiαCo1−σM8σO2] (IXb)
wherein M7 is one or more elements with an average oxidation state of 4+ (i.e., tetravalent); M8 is one or more monovalent, divalent, trivalent, and tetravalent elements; 0.95≤α≤1.05; 0.01≤ν<1.00, and 0.5≤w≤1, and 0≤σ≤0.05. In some variations, 0.95≤α≤0.99. In some variations, M7 is selected from Mn, Ti, Zr, Ru, and a combination thereof. In some variations, M7 is selected from Mn, Ti, Zr, and Ru. In some variations, M8 is selected from La, Ge, B, Na, Mg, Ti, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, Mo and a combination thereof. In some variations, M8 is selected from B, Na, Mg, Ti, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, Mo and a combination thereof. In some variations, M8 is selected from B, Na, Mg, Ti, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, and Mo. In some variations, M7 is Mn. In some variations, M8 is Al.
In some embodiments, 0.01≤ν≤0.50. In some embodiments, 0.01≤ν≤0.50. In some embodiments, 0.01≤ν≤0.30. In some embodiments, 0.01≤ν≤0.10. In some embodiments, 0.01≤ν≤0.05. In some variations, 0≤σ≤0.05. In some variations, 0<σ≤0.05. In some variations, 0<σ≤0.03. In some variations, 0<σ≤0.02. In some variations, 0<σ≤0.01. In some variations, 0.95≤α≤1.05, 0.01≤ν<0.05, 0.96≤w<1, and 0<σ≤0.05. In some variations, 0.95≤α≤0.99.
In some variations, M8 (e.g., Al) is at least 500 ppm. In some variations, M8 (e.g., Al) is at least 750 ppm. In some variations, M8 (e.g., Al) is at least 900 ppm. In some variations, M8 (e.g., Al) is less than or equal to 2000 ppm. In some variations, M8 (e.g., Al) is less than or equal to 1500 ppm. In some variations, M8 (e.g., Al) is less than or equal to 1250 ppm. In some variations, M8 (e.g., Al) is less than or equal to 1000 ppm. In some variations, M8 (e.g., Al) is less than or equal to 900 ppm. In some variations, M8 (e.g., Al) is less than or equal to 800 ppm. In some variations, M8 (e.g., Al) is less than or equal to 700 ppm. In some variations, M8 (e.g., Al) is less than or equal to 600 ppm. In some instances, when M8 (e.g., Al) is expressed in ppm, the compound can be represented as (ν)[Li2M7O3]·(1−ν)[LiαCowO2] and the amount of M8 can be represented as M8 in at least a quantity in ppm, as otherwise described above. In some variations, 0.5≤w≤1. In some variations, 0.8≤w≤1. In some variations, 0.96≤w≤1. In some variations, 0.99≤w≤1. In some variations, w is 1.
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (X):
LiαCo1−x−yMyMnxOδ (X)
wherein 0.95≤α≤1.05, 0<x≤0.30, 0≤y≤0.10, and 1.98≤δ≤2.04, and M is at least one element selected from the group consisting of La, Ge, B, Na, Mg, Ti, Ca, V, Cr, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, and Mo. In some variations, 0.95≤α≤1.30. In some variations, M, is selected from Na, Mg, Ti, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Sc, Y, Ga, Zr, Ru, Mo and a combination thereof. The compound of Formula (VII) is single phase. The compound can have a trigonal R
In some variations, this disclosure is directed to a cathode active compound, or particles (e.g., a powder) comprising the cathode active compound, represented by Formula (XI):
LiαCo1−x−yAlyMnxOδ (XI)
wherein 0.95≤α≤1.05, 0<x≤0.30, 0≤y≤0.10, and 1.98≤δ≤2.04. In some variations, 0.96≤α≤1.04, 0<x≤0.10, 0≤y≤0.10, and 1.98≤δ≤2.04. In some variations, 0.95≤α≤1.30. In some variations, the compounds represented by Formula (XI) have 0.98≤α≤1.01, 0.02≤x≤0.04, 0≤y≤0.03, and 1.98≤δ≤2.04. The compound of Formula (XI) is a single phase. The compound can have trigonal R
In other instances, the compounds represented by Formulae (X) and (XI), in any combination of variables described above, have 0.95≤α. In some instances, α≤1.05. In some instances, α≤1.04. In some instances, α≤1.03. In some instances, α≤1.02. In some instances, α≤1.01. In some instances, α≤1.00. In some instances, α≤0.99. In some instances, α≤0.98. In some instances, 0.95≤α≤0.99. In some instances, 0.95≤α≤1.00. In some instances, 0.95≤α≤1.01. In some instances, 0.95≤α≤1.02. In some instances, 0.95≤α≤1.03. In some instances, 0.95≤α≤1.04. In some instances, 0.95≤α≤1.05. In some instances, the compounds represented by Formulae (X) and (XI) have α>1+x. In some instances, the compounds represented by Formulae (X) and (XI) have α>1+x. In some instances, α<1+x. As such, α in Formulae (X) and (XI) can deviate from α=1+x, which may be associated with a solid-solution between Li2MnO3 and (1−x)LiCo1−yMyO2. This solid solution can be represented by xLi2MnO3·(1−x)LiCo1−yO2, and xLi2MnO3·(1−x)Li1−yCo1−yO2, or in compact notation, Li1+xCo1−x−y+xyM(1−x)*yMnxO2+x or Li1+x−y+xyCo1−x−y+xyM(1−x)*yMnxO2+x.
Methods of Making the Cathode Active Material
The disclosure is further directed to methods of making the cathode active material. The coatings of oxide mixtures or complex oxides are prepared by mixing a cathode active compound particles with a solution mixture that contains the precursors of the metals that are found in the coatings. After drying, the mixture is calcined at elevated temperatures to decompose the precursors into oxides or to promote formation of the complex oxides on the cathode active compound material. The coated cathode active material is then tested as cathode in coin cells that use a Li foil anode, a separator, and flooded electrolyte solution.
In certain variations, a wet impregnation method was used to form an oxide (e.g. Al2O3, LLTO, or LLGO) coating over a base cathode material. A predetermined amount of base powder (e.g. Li(Co0.97Mn0.03)O2 or Li1.00(Co0.99Mn0.01)O2) was weighed out into a glass beaker.
In some variations, to form an Al2O3 coating, an amount of aluminum (Al) precursor needed for the desired amount of coating (e.g., 0.5 wt. %) was calculated based on the weighed amount of base powder. The aluminum precursor included various aluminum salts such as aluminum nitrate, aluminum acetate, or other aluminum salts soluble in water or alcohol. The aluminum precursor was dissolved in a small amount of water or alcohol to form a first clear solution. A desired amount of lithium precursor was calculated using a molar ratio of Li to Al between 0.25 and 1.05. The lithium precursor included lithium hydroxide, lithium nitrate, lithium acetate, or other lithium salts, which are soluble in water or alcohol. The desired amount of lithium precursor was dissolved in a small amount of water or alcohol to form a second clear solution. The first and second clear solutions were mixed together. This mixed solution was then added drop-wise to the base powder while stirring. The volume of solution added was such that the base powder became incipiently wet but not watery (i.e., exhibited a damp consistency). After drying at an elevated temperature (e.g. 50 to 80° C.), the dried base powder was then heat-treated to an elevated temperature (e.g. 500° C.) for a period of time (e.g. 4 hours) in stagnant air. The pH of the first clear solution (i.e., the aluminum solution) can also be varied to improve coating properties such as coating density and uniformity.
In certain variations, to form a LLTO coating, lithium precursor including lithium salts, and lanthanum precursor including lanthanum salts, and titanium precursor including titanium salts are used to form the solution. These salts are soluble in water or alcohol to form a solution. A desired amount of lithium precursor was calculated using a molar ratio of Li to La between 0.25 and 0.30. A desired amount of lithium precursor was calculated using a molar ratio of Li to Ti between 0.15 and 0.19.
In certain variations, to form the LLGO coating, lithium precursor including lithium salts, and lanthanum precursor including lanthanum salts, and germanium precursor including lanthanum salts are used to form the solution. These salts are soluble in water or alcohol to form a solution. A desired amount of lithium precursor was calculated using a molar ratio of Li to La between 0.25 and 0.30. A desired amount of lithium precursor was calculated using a molar ratio of Li to Ge between 0.15 and 0.19.
Cathode Disk
In some variations, cathode disks can be formed from the coated powder. A ball mill may be used to grind powder into finer powder. The density of the cathode disk may increase by reducing the size of the powder.
The porosity of the cathode may affect the performance of an electrochemical cell. A hydraulic press may be used to compact powder to obtain a cathode disk of desired thickness and density during cold pressing. For example, the coated cathode active material was placed in a die that can be compressed up to 5000 lbs. The press includes two plates that are hydraulically forced together to create a pressure.
In some variations, the coated powder including coated particles may be blended with an electrically conductive powder (e.g. carbon), organic binder, and solvent to form a pourable slurry. This slurry may be disposed on an aluminum foil and dried, forming a disk or laminate. The laminate can be subsequently roll-calendared to compact the particulate layer to a high specific density. During calendaring, the coated particles are packed together. The coated particles are sufficient strong to avoid being crushed. It is important to avoid forming crushed particles, because crushed particles can create new active unprotected surfaces that may interact with the electrolyte during cell operation. The finished laminate is assembled together with a separator and anode layers and saturated with an electrolyte solution to form a lithium-ion cell.
Testing Methods
The cathode disks were assembled into button or coin cell batteries with a Li disk anode, a Celgard 2325 separator (25 μm thick), and the electrolyte consisting of 1.2 M LiPF6 in ethyl carbonate (EC) and ethyl methyl carbonate (EMC) (EC:EMC=3:7 w/w). This ½ cell configuration is used to evaluate the capacity, average voltage, volumetric energy density and energy retention of the cathode material. Galvanostatic charge/discharge cycling was conducted in the 3.0-4.5 V range at 25° C. The test procedure includes three formation cycles at a˜C/5 rate with the 1 C capacity assumed to be 185 mAh/g, followed by aging cycles at a C/5 rate with the 1 C capacity calculated based on the third cycle discharge capacity. The batteries are aged for 30 to 50 cycles.
An electrochemical tester (e.g. Macoor 4200) provides a user with a variety of options in testing of batteries. Multiple channels can be plugged into the electrochemical tester to allow for multiple batteries to be tested simultaneously. These tests allow the user to measure parameters of the batteries, such as voltage, current, impedance, and capacity, to fully understand the effectiveness of the electrochemical cell being tested. The tester can be attached to a computer to obtain digital testing values.
The following examples are for illustration purposes only. It will be apparent to those skilled in the art that many modifications, both to materials and methods, may be practiced without departing from the scope of the disclosure. Following are examples demonstrating the use of LLTO and LLGO coatings on Mn-substituted LiCoO2 electrode materials.
A 3 mol % manganese substituted LiCoO2 cathode powder, having the composition represented by Li1.00(Co0.97Mn0.03)O2, was synthesized using a co-precipitation process to produce a hydroxide precursor, followed by calcination with lithium carbonate (Li2CO3). The powder material was then coated with 500 ppm by weight (0.05 wt %) LLTO using the following process. In the coating process, lithium precursor included lithium salt such as lithium nitrate, lanthanum precursor including lanthanum salt such as lanthanum nitrate, and titanium precursor including titanium salt such as titanium tetra-isopropoxide, were mixed together in isopropanol and ultra-sonicated for 10 minutes to form a solution. The solution was mixed with the Li1.00(Co0.97Mn0.03)O2 cathode powder in a wet-impregnation process. The powder includes particles. The liquid was enough to wet and coat the particles of the powder, while keeping a powder consistency. The mixture was then dried overnight at an elevated temperature (e.g. 95° C.) and calcined at an elevated temperature (e.g. 400° C.) for a period of time (e.g. 4 hours) in air. A LLTO coated Li1.00(Co0.97Mn0.03)O2 powder including coated particles was then formed. The LLTO coating may be a Perovskite La2/3−xLi3xTiO3, where 0≤x≤⅔.
A cathode laminate was made from the coated powder as outlined above and used in the assembly of a coin cell with a Li-chip as an anode. The coin cell was cycled between voltages of 3.0 V and 4.5 V at a rate of C/5 (where C/5 (/h) is the discharge (or charge) rate at which a fully charged (or discharged) battery will be completely discharged (or charged) in 5 h.) The electrochemical performance of the cathode formed of the LLTO coated cathode active material is illustrated as a series of voltage-capacity curves after various charge/discharge cycles in
A comparative sample was made using the same core powder, but coated with 300 ppm Al2O3 by a wet-impregnation process. An aluminum nitrate solution was formed. The aluminum nitrate solution was mixed with the core powder to form a mixture. The mixture was then dried overnight at an elevated temperature (e.g. 95° C.) and calcined at an elevated temperature (e.g. 450° C.) for a period of time (e.g. 4 hours) in air. The voltage vs discharge curves for the Al2O3 coated Li1.00(Co0.97Mn0.03)O2 material after various charge/discharge cycles are illustrated in
As shown in
When the average voltage increases from 4.0 V to 4.1 V and good retention persists, this average voltage increase of 0.1 V may add 16% to the energy stored in the battery.
A 1 mol % manganese substituted LiCoO2 cathode powder, having a composition represented by Li1.00(Co0.99Mn0.01)O2, was synthesized using a co-precipitation process to produce a hydroxide precursor, followed by calcination with lithium carbonate (Li2CO3). The cathode powder Li1.00(Co0.99Mn0.01)O2 was then coated with 500 ppm by weight (0.05 wt %) LLTO using the following process. In the coating process, lithium precursor included lithium salt such as lithium nitrate, lanthanum precursor including lanthanum salt such as lanthanum nitrate, and titanium precursor including titanium salt such as titanium tetra-isopropoxide, were mixed together in isopropanol and ultra-sonicated for 10 minutes to form a solution. The solution was then mixed with the cathode powder Li1.00(Co0.99Mn0.01)O2 in a wet-impregnation process. The powder includes particles. The liquid was wet enough to coat the particles to form a mixture, but keep a powder consistency. The mixture was then dried at 95° C. for 12 hours and calcined at 450° C. for 4 hours in air. A LLTO coated Li1.00(Co0.99Mn0.01)O2 powder including coated particles was then formed. The LLTO coating may be a Perovskite La2/3−xLi3xTiO3, where 0≤x≤⅔.
A cathode laminate was made from the coated powder as outlined above and used in the assembly of a coin cell with a Li chip as an anode. The cells were cycled for charge and discharge between voltages of 3.0 V and 4.5 V at a rate of C/5.
The electrochemical performance of the cathode is illustrated as a series of voltage-capacity curves (also referred to discharge curves) after various charge/discharge cycles in
As shown, the cathode formed of the LLTO coated Li1.00(Co0.99Mn0.01)O2 material also demonstrates an average voltage of 4.03 V higher than that of 4.01 V for the cathode formed of the Al2O3 coated Li1.00(Co0.97Mn0.03)O2, and a discharge capacity of 188 mAh/g at cycle 5, similar to a discharge capacity of 188 mAh/g for the Al2O3 coated Li1.00(Co0.99Mn0.01)O2 cathode at cycle 5.
In some variations, the conductivity of the base material may also change the rate capability. Compared
A 1 mol % manganese substituted LiCoO2 cathode powder, having the composition: Li1.00(Co0.99Mn0.01)O2, was synthesized using a co-precipitation process to produce a hydroxide precursor followed by calcination with lithium carbonate (Li2CO3). The powder was then coated with 500 ppm by weight (0.05 wt %) LLGO using the following process. In the coating process, lithium precursor included lithium salt such as lithium nitrate, lanthanum precursor including lanthanum salt such as lanthanum nitrate, and titanium precursor including germanium salt such as germanium ethoxide, were mixed together in isopropanol and ultra-sonicated for 10 minutes to form a solution. The solution was mixed with the cathode powder in a wet-impregnation process. The powder includes particles. The liquid was wet enough to coat the particles to form a mixture, but keep a powder consistency. The mixture was then dried at 95° C. for 12 hours and calcined at 450° C. for 4 hours in air. A LLGO coated Li1.00(Co0.99Mn0.01)O2 powder including coated particles was then formed. The LLGO coating may be a Perovskite La2/3−xLi3xGeO3, like the Perovskite La2/3−xLi3xTiO3, where 0≤x≤⅔.
A cathode laminate was made from the coated powder as outlined above and used in the assembly of a coin cell with a Li chip as an anode. The cells were cycled between voltages of 3.0 V and 4.5 V at a rate of C/5.
The electrochemical performance of the cathode is illustrated as a series of voltage vs. discharge capacity after charge/discharge cycles in
The LLGO coated Li1.00(Co0.99Mn0.01)O2 cathode also shows an average voltage of 4.04, which is higher than an average voltage of 4.01 V for the Al2O3 coated Li1.00(Co0.99Mn0.01)O2 cathode. The LLGO coated Li1.00(Co0.99Mn0.01)O2 cathode also provides a discharge capacity 189 at cycle 5, which is higher than 188 mAh/g for the Al2O3 coated Li1.00(Co0.99Mn0.01)O2 cathode at cycle 5. Other possible oxides can be found in the paper: ACS Appl. Mater. Interfaces 2015, 7, 23685-2369. These are Li1.3Ti1.7Al0.3(PO4)3 (LATP), Li1.5Al0.5Ge1.5(PO4)3 (LAGP). The basis for choosing candidate coating materials is based on having a high oxidation potential >3.7 V.
The coatings, powder, and cathode active materials can be used in batteries as described herein. The materials can be used in electronic devices. An electronic device herein can refer to any electronic device known in the art, including a portable electronic device. For example, the electronic device can be a telephone, such as a cell phone, and a land-line phone, or any communication device, such as a smart phone, including, for example an iPhone®, an electronic email sending/receiving device. The electronic device can also be an entertainment device, including a portable DVD player, conventional DVD player, Blue-Ray disk player, video game console, music player, such as a portable music player (e.g., iPod®), etc. The electronic device can be a part of a display, such as a digital display, a TV monitor, an electronic-book reader, a portable web-browser (e.g., iPad®), watch (e.g., AppleWatch), or a computer monitor. The electronic device can also be a part of a device that provides control, such as controlling the streaming of images, videos, sounds (e.g., Apple TV®), or it can be a remote control for an electronic device. Moreover, the electronic device can be a part of a computer or its accessories, such as the hard drive tower housing or casing, laptop housing, laptop keyboard, laptop track pad, desktop keyboard, mouse, and speaker. The battery and battery packs can also be applied to a device such as a watch or a clock. The components powered by a battery or battery pack can include, but are not limited to, microprocessors, computer readable storage media, in-put and/or out-put devices such as a keyboard, track pad, touch-screen, mouse, speaker, and the like.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This patent application is a divisional of U.S. application Ser. No. 16/531,883, entitled “COATINGS FOR CATHODE ACTIVE MATERIALS,” filed Aug. 5, 2019, which claims the benefit under 35 U.S.C. § 119 (e) of U.S. Patent Application Ser. No. 62/765,116, entitled “COATINGS FOR CATHODE ACTIVE MATERIALS,” filed on Aug. 17, 2018. The above-identified applications are incorporated herein by reference in their entireties.
This invention was made with U.S. government support under WFO Proposal No. 85F59. This invention was made under a CRADA 1500801 between Apple Inc. and Argonne National Laboratory operated for the United States Department of Energy. The U.S. government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5744262 | Cheng et al. | Apr 1998 | A |
5993998 | Yasuda | Nov 1999 | A |
6007947 | Mayer | Dec 1999 | A |
6077496 | Ito et al. | Jun 2000 | A |
6677082 | Thackeray et al. | Jan 2004 | B2 |
6680143 | Thackeray et al. | Jan 2004 | B2 |
6878487 | Cho et al. | Apr 2005 | B2 |
7135252 | Thackeray et al. | Nov 2006 | B2 |
7205072 | Kang et al. | Apr 2007 | B2 |
7235193 | Park et al. | Jun 2007 | B2 |
7238450 | Howard et al. | Jul 2007 | B2 |
7314682 | Thackeray et al. | Jan 2008 | B2 |
7314684 | Kang et al. | Jan 2008 | B2 |
7435402 | Kang et al. | Oct 2008 | B2 |
7468223 | Thackeray et al. | Dec 2008 | B2 |
7655361 | Kim et al. | Feb 2010 | B2 |
7691535 | Shiozaki et al. | Apr 2010 | B2 |
7732096 | Thackeray et al. | Jun 2010 | B2 |
7754384 | Patoux et al. | Jul 2010 | B2 |
7897674 | Zaghib et al. | Mar 2011 | B2 |
7923149 | Hwang et al. | Apr 2011 | B2 |
8148011 | Thackeray et al. | Apr 2012 | B2 |
8187746 | Chen et al. | May 2012 | B2 |
8206852 | Chang et al. | Jun 2012 | B2 |
8277683 | Deng et al. | Oct 2012 | B2 |
8337727 | Chen et al. | Dec 2012 | B2 |
8343663 | Jung et al. | Jan 2013 | B2 |
8383077 | Thackeray et al. | Feb 2013 | B2 |
8535832 | Karthikeyan et al. | Sep 2013 | B2 |
8801960 | Ueda et al. | Aug 2014 | B2 |
8802290 | Li et al. | Aug 2014 | B2 |
9166222 | Amiruddin et al. | Oct 2015 | B2 |
9716265 | Dai et al. | Jul 2017 | B2 |
9843041 | Lopez et al. | Dec 2017 | B2 |
10084187 | Dai et al. | Sep 2018 | B2 |
10128494 | Dai et al. | Nov 2018 | B2 |
10141572 | Wu et al. | Nov 2018 | B2 |
10164256 | Wu et al. | Dec 2018 | B2 |
10297821 | Dai et al. | May 2019 | B2 |
10297823 | Dai et al. | May 2019 | B2 |
10347909 | Dai et al. | Jul 2019 | B2 |
10593941 | Dai et al. | Mar 2020 | B2 |
10597307 | Dai et al. | Mar 2020 | B2 |
10615413 | Dai et al. | Apr 2020 | B2 |
20020061444 | Kweon et al. | May 2002 | A1 |
20020114995 | Thackeray et al. | Aug 2002 | A1 |
20020136954 | M. Thackeray et al. | Sep 2002 | A1 |
20020182504 | Imachi et al. | Dec 2002 | A1 |
20020192565 | Ueda et al. | Dec 2002 | A1 |
20030013017 | Nagayama et al. | Jan 2003 | A1 |
20030039886 | Zhang et al. | Feb 2003 | A1 |
20030054250 | Kweon et al. | Mar 2003 | A1 |
20030073002 | Imachi et al. | Apr 2003 | A1 |
20030082445 | Smith et al. | May 2003 | A1 |
20030087155 | Cho et al. | May 2003 | A1 |
20030134200 | Tanaka et al. | Jul 2003 | A1 |
20040029008 | Winterberg et al. | Feb 2004 | A1 |
20040191633 | Johnson et al. | Sep 2004 | A1 |
20040201948 | Hosoya et al. | Oct 2004 | A1 |
20040213729 | Suhara et al. | Oct 2004 | A1 |
20040253516 | Yuasa et al. | Dec 2004 | A1 |
20040258836 | Besenhard et al. | Dec 2004 | A1 |
20050026040 | Thackeray et al. | Feb 2005 | A1 |
20050074675 | Nishijima et al. | Apr 2005 | A1 |
20050130042 | Liu et al. | Jun 2005 | A1 |
20050136329 | Howard et al. | Jun 2005 | A1 |
20050181279 | Hosoya | Aug 2005 | A1 |
20050265909 | Kajiya et al. | Dec 2005 | A1 |
20050271948 | Kang et al. | Dec 2005 | A1 |
20060024584 | Kim et al. | Feb 2006 | A1 |
20060068293 | Kim et al. | Mar 2006 | A1 |
20060081818 | Ito et al. | Apr 2006 | A1 |
20060088767 | Li et al. | Apr 2006 | A1 |
20060099508 | Thackeray et al. | May 2006 | A1 |
20060159994 | Dahn et al. | Jul 2006 | A1 |
20060177739 | Endo et al. | Aug 2006 | A1 |
20060194118 | Yew et al. | Aug 2006 | A1 |
20060240326 | Lee et al. | Oct 2006 | A1 |
20070048619 | Inda | Mar 2007 | A1 |
20070117014 | Saito et al. | May 2007 | A1 |
20070122705 | Paulsen et al. | May 2007 | A1 |
20070141469 | Tokunaga et al. | Jun 2007 | A1 |
20070172739 | Visco et al. | Jul 2007 | A1 |
20070202407 | Eberman et al. | Aug 2007 | A1 |
20070264573 | Yamada et al. | Nov 2007 | A1 |
20070292761 | Park et al. | Dec 2007 | A1 |
20080057401 | Mori et al. | Mar 2008 | A1 |
20080090150 | Nakura | Apr 2008 | A1 |
20080118836 | Hwang et al. | May 2008 | A1 |
20080118847 | Jung et al. | May 2008 | A1 |
20080131778 | Watanabe et al. | Jun 2008 | A1 |
20080131781 | Yong et al. | Jun 2008 | A1 |
20080160415 | Wakita et al. | Jul 2008 | A1 |
20080241053 | Suhara et al. | Oct 2008 | A1 |
20080268339 | Suzuki | Oct 2008 | A1 |
20080280205 | Jiang et al. | Nov 2008 | A1 |
20080311473 | Sasaoka et al. | Dec 2008 | A1 |
20080318131 | Watanabe et al. | Dec 2008 | A1 |
20090087744 | Jiang | Apr 2009 | A1 |
20090092903 | Johnson et al. | Apr 2009 | A1 |
20090146115 | Xiao et al. | Jun 2009 | A1 |
20090200510 | Watanabe et al. | Aug 2009 | A1 |
20090202905 | Morita et al. | Aug 2009 | A1 |
20090239148 | Jiang | Sep 2009 | A1 |
20100055567 | Nakai et al. | Mar 2010 | A1 |
20100086853 | Venkatachalam et al. | Apr 2010 | A1 |
20100086854 | Kumar et al. | Apr 2010 | A1 |
20100151332 | Lopez et al. | Jun 2010 | A1 |
20100173197 | Li et al. | Jul 2010 | A1 |
20100304225 | Pascaly et al. | Dec 2010 | A1 |
20110014518 | Nakai et al. | Jan 2011 | A1 |
20110017529 | Durney | Jan 2011 | A1 |
20110031437 | Nagase et al. | Feb 2011 | A1 |
20110052981 | Lopez et al. | Mar 2011 | A1 |
20110052989 | Venkatachalam et al. | Mar 2011 | A1 |
20110053001 | Babic et al. | Mar 2011 | A1 |
20110065006 | Ogasa | Mar 2011 | A1 |
20110076556 | Karthikeyan et al. | Mar 2011 | A1 |
20110076564 | Yu et al. | Mar 2011 | A1 |
20110081578 | Chang et al. | Apr 2011 | A1 |
20110089369 | Patoux et al. | Apr 2011 | A1 |
20110111294 | Lopez et al. | May 2011 | A1 |
20110111298 | Lopez et al. | May 2011 | A1 |
20110121240 | Amine et al. | May 2011 | A1 |
20110136019 | Amiruddin et al. | Jun 2011 | A1 |
20110143174 | Kim et al. | Jun 2011 | A1 |
20110165463 | Chang et al. | Jul 2011 | A1 |
20110165474 | Im et al. | Jul 2011 | A1 |
20110171371 | Li et al. | Jul 2011 | A1 |
20110171539 | Patoux et al. | Jul 2011 | A1 |
20110200864 | Dai | Aug 2011 | A1 |
20110200880 | Yu | Aug 2011 | A1 |
20110223492 | Sakitani et al. | Sep 2011 | A1 |
20110244331 | Karthikeyan et al. | Oct 2011 | A1 |
20110269018 | Kono et al. | Nov 2011 | A1 |
20110291044 | Wang et al. | Dec 2011 | A1 |
20110294006 | Amine et al. | Dec 2011 | A1 |
20110294019 | Amine et al. | Dec 2011 | A1 |
20120015250 | Teng et al. | Jan 2012 | A1 |
20120028134 | Kim et al. | Feb 2012 | A1 |
20120040247 | Manivannan et al. | Feb 2012 | A1 |
20120168696 | Huang et al. | Jul 2012 | A1 |
20120196176 | He et al. | Aug 2012 | A1 |
20120258369 | Yokoyama et al. | Oct 2012 | A1 |
20120282522 | Axelbaum et al. | Nov 2012 | A1 |
20120295155 | Deng et al. | Nov 2012 | A1 |
20130004826 | Li et al. | Jan 2013 | A1 |
20130011738 | Zhou | Jan 2013 | A1 |
20130101893 | Dai et al. | Apr 2013 | A1 |
20130149604 | Fujiki et al. | Jun 2013 | A1 |
20130252107 | Lee et al. | Sep 2013 | A1 |
20130260249 | Choi | Oct 2013 | A1 |
20130344391 | Yushin et al. | Dec 2013 | A1 |
20140087065 | Li et al. | Mar 2014 | A1 |
20140087254 | Li et al. | Mar 2014 | A1 |
20140087256 | Li et al. | Mar 2014 | A1 |
20140087261 | Li et al. | Mar 2014 | A1 |
20140141331 | Lee et al. | May 2014 | A1 |
20140158932 | Sun et al. | Jun 2014 | A1 |
20140175329 | De et al. | Jun 2014 | A1 |
20140193693 | Hoshina et al. | Jul 2014 | A1 |
20140234715 | Fasching et al. | Aug 2014 | A1 |
20140272563 | Dai et al. | Sep 2014 | A1 |
20140272590 | Zhang et al. | Sep 2014 | A1 |
20150010819 | Lee et al. | Jan 2015 | A1 |
20150024275 | Ishida et al. | Jan 2015 | A1 |
20150140421 | Ihara et al. | May 2015 | A1 |
20150171423 | Kim et al. | Jun 2015 | A1 |
20150180024 | Nose | Jun 2015 | A1 |
20150243971 | Cho et al. | Aug 2015 | A1 |
20150243984 | Kase et al. | Aug 2015 | A1 |
20150303519 | Hanazaki | Oct 2015 | A1 |
20150311522 | Fang et al. | Oct 2015 | A1 |
20160006025 | Sun | Jan 2016 | A1 |
20160036043 | Dai et al. | Feb 2016 | A1 |
20160133929 | Hah et al. | May 2016 | A1 |
20160156032 | Lee et al. | Jun 2016 | A1 |
20160260965 | Wu et al. | Sep 2016 | A1 |
20160293941 | Yamasaki et al. | Oct 2016 | A1 |
20160315315 | Olken et al. | Oct 2016 | A1 |
20160336584 | Park et al. | Nov 2016 | A1 |
20160351973 | Albano et al. | Dec 2016 | A1 |
20170018767 | Park et al. | Jan 2017 | A1 |
20170092949 | Dai et al. | Mar 2017 | A1 |
20170133678 | Ozoemena et al. | May 2017 | A1 |
20170155145 | Kusachi et al. | Jun 2017 | A1 |
20170187071 | Wang et al. | Jun 2017 | A1 |
20170187072 | Wang et al. | Jun 2017 | A1 |
20170214045 | Dai et al. | Jul 2017 | A1 |
20170263917 | Dai et al. | Sep 2017 | A1 |
20170263928 | Dai et al. | Sep 2017 | A1 |
20170263929 | Wu et al. | Sep 2017 | A1 |
20170279162 | Vissers et al. | Sep 2017 | A1 |
20170346082 | Dai et al. | Nov 2017 | A1 |
20180062156 | Wu et al. | Mar 2018 | A1 |
20180062170 | Lopez et al. | Mar 2018 | A1 |
20180079655 | Dai et al. | Mar 2018 | A1 |
20180083277 | Dai et al. | Mar 2018 | A1 |
20180083278 | Dai et al. | Mar 2018 | A1 |
20180114983 | Dai et al. | Apr 2018 | A9 |
20180114984 | Wu et al. | Apr 2018 | A9 |
20180123117 | Dai et al. | May 2018 | A9 |
20180215629 | Honma et al. | Aug 2018 | A1 |
20180257947 | Dai et al. | Sep 2018 | A9 |
20180294522 | Dai et al. | Oct 2018 | A1 |
20180331360 | Meng et al. | Nov 2018 | A1 |
20180351173 | Dai et al. | Dec 2018 | A1 |
20190027747 | Dai et al. | Jan 2019 | A9 |
20190051893 | Zhang et al. | Feb 2019 | A1 |
20190067686 | Dai et al. | Feb 2019 | A1 |
20190074514 | Wu et al. | Mar 2019 | A1 |
20200035991 | Wang et al. | Jan 2020 | A1 |
20200044242 | Wang et al. | Feb 2020 | A1 |
20200075951 | Dai et al. | Mar 2020 | A1 |
20200189930 | Dai et al. | Jun 2020 | A1 |
20200259208 | Yamamoto | Aug 2020 | A1 |
20200266435 | Dai et al. | Aug 2020 | A1 |
20200358093 | Oshita et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
1588675 | Mar 2005 | CN |
1702891 | Nov 2005 | CN |
1770514 | May 2006 | CN |
101083321 | Dec 2007 | CN |
101088918 | Dec 2007 | CN |
101150190 | Mar 2008 | CN |
101223660 | Jul 2008 | CN |
101284681 | Oct 2008 | CN |
101304090 | Nov 2008 | CN |
101510603 | Aug 2009 | CN |
101694877 | Apr 2010 | CN |
101734728 | Jun 2010 | CN |
101789499 | Jul 2010 | CN |
102110808 | Jun 2011 | CN |
102195094 | Sep 2011 | CN |
102299299 | Dec 2011 | CN |
102332585 | Jan 2012 | CN |
102368548 | Mar 2012 | CN |
102386381 | Mar 2012 | CN |
102439765 | May 2012 | CN |
102479947 | May 2012 | CN |
102484249 | May 2012 | CN |
102544575 | Jul 2012 | CN |
102646831 | Aug 2012 | CN |
102683666 | Sep 2012 | CN |
102723459 | Oct 2012 | CN |
102751481 | Oct 2012 | CN |
102881891 | Jan 2013 | CN |
103151520 | Jun 2013 | CN |
103296249 | Sep 2013 | CN |
103560250 | Feb 2014 | CN |
103606674 | Feb 2014 | CN |
103682311 | Mar 2014 | CN |
103872302 | Jun 2014 | CN |
103872315 | Jun 2014 | CN |
103972493 | Aug 2014 | CN |
104022280 | Sep 2014 | CN |
104201323 | Dec 2014 | CN |
104300138 | Jan 2015 | CN |
104466099 | Mar 2015 | CN |
104577128 | Apr 2015 | CN |
104685677 | Jun 2015 | CN |
104868122 | Aug 2015 | CN |
104966833 | Oct 2015 | CN |
105161710 | Dec 2015 | CN |
105895909 | Aug 2016 | CN |
106450211 | Feb 2017 | CN |
10352063 | Jun 2005 | DE |
04-267053 | Sep 1992 | JP |
10-087327 | Apr 1998 | JP |
2001-167763 | Jun 2001 | JP |
2001-319652 | Nov 2001 | JP |
2002-201028 | Jul 2002 | JP |
2004-047180 | Feb 2004 | JP |
2005-101003 | Apr 2005 | JP |
2005-149867 | Jun 2005 | JP |
2005-289700 | Oct 2005 | JP |
2005-302507 | Oct 2005 | JP |
2006-173137 | Jun 2006 | JP |
2006-344509 | Dec 2006 | JP |
2007-091502 | Apr 2007 | JP |
2007-517368 | Jun 2007 | JP |
2007-173113 | Jul 2007 | JP |
2009-004311 | Jan 2009 | JP |
2009-217981 | Sep 2009 | JP |
2010-541166 | Dec 2010 | JP |
2011-105594 | Jun 2011 | JP |
2011-113869 | Jun 2011 | JP |
2013-180917 | Sep 2013 | JP |
5369568 | Dec 2013 | JP |
2015-213038 | Nov 2015 | JP |
2016-517615 | Jun 2016 | JP |
2017-191738 | Oct 2017 | JP |
10-2002-0063501 | Aug 2002 | KR |
10-2005-0121727 | Dec 2005 | KR |
10-2014-0073856 | Jun 2014 | KR |
10-2014-0108615 | Sep 2014 | KR |
10-2016-0010313 | Jan 2016 | KR |
10-1731473 | Apr 2017 | KR |
201126798 | Aug 2011 | TW |
201311545 | Mar 2013 | TW |
201342695 | Oct 2013 | TW |
0349216 | Jun 2003 | WO |
0381698 | Oct 2003 | WO |
2004045015 | May 2004 | WO |
2004102700 | Nov 2004 | WO |
2004107480 | Dec 2004 | WO |
2008069351 | Jun 2008 | WO |
2009120515 | Oct 2009 | WO |
2010011569 | Jan 2010 | WO |
2010139404 | Dec 2010 | WO |
2011020073 | Feb 2011 | WO |
2011054441 | May 2011 | WO |
2013048048 | Apr 2013 | WO |
2014014913 | Jan 2014 | WO |
2014119165 | Aug 2014 | WO |
2016143572 | Sep 2016 | WO |
2019211366 | Nov 2019 | WO |
Entry |
---|
Machine Translation of CN104685677A (Jun. 15, 2024) (Year: 2024). |
“Award Details,” SBIR/STTR, www.sbir.gov/sbirsearch/detail/233700, accessed Sep. 8, 2011. |
Abu-Lebdeh et al., High-Voltage Electrolytes Based on Adiponitrile for Li-Ion Batteries, Journal of the Electrochemical Society, 2009, vol. 156, No. 1, pp. A60-A65. |
Amiruddin et al.; “Electrochemical Characterization of Cathode Material (Li[Ni0.8Co0.1 Mn0.1]O2 as Core and Li[Ni0.5-0.5xCoxMn0.5-0.5x]O2 as shell)for Lithium-Ion Batteries”; ECS Meeting Abstracts; Electrochemical Society; No. 240; 2007; one page. |
Arunkumar et al., “Chemical and structural instability of the chemically delithiated (1-z) Li[Li1/3Mn2/3O2 (z) Li[Co1-yNiy]O2 (0=y=1 and O=z=1) solid solution cathodes,”Journal of Materials Chemistry, 2008, vol. 18, pp. 190-198. |
Ben Kamel et al, “Local Structure and electrochemistry of LiNiyMnyCo1-2y)O2 electrode materials for Li-ion batteries,” Ionics, 2008, vol. 14, No. 2, pp. 89-97. |
Bentaleb et al., “On the LiNi0.2Mn0.2Co0.6O2 positive electrode material,” Journal of Power Sources, 2010, vol. 195, No. 5, pp. 1510-1515. |
Cerion Power, “Our Power Business,” www.cerionenterprises.com/companies_and_applications/power, accessed Sep. 8, 2011. |
Chen et al., “Role of surface coating on cathode materials for lithium-ion batteries,” Journal of Materials Chemistry, 2010, 20, 7606-7612. |
Cho et al., “Exploring Lithium Deficiency in Layered Oxide Cathode for Li-Ion Battery,” Advanced Sustainable Systems, 2017, 1700026, 10 pages. |
Cho et al., “LiCoO2 Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase,” 2001, Journal of The Electrochemical Society, vol. 148, No. 10, pp. A1110-A1115. |
Choi et al., “M27 AI NMR Chemical Shifts in Oxide Crystals: A First-Principles Study,” J. Phys. Chem. C, 2009, 113 (9), pp. 3869-3873. |
David Howell, US Department of Energy, “Vehicle Technologies Program,” 2011 Annual Merit Review and Peer Evaluation Meeting, Presentation, May 9-13, 2011. |
Davison et al., “Low Cost, Novel Methods for Fabricating All-Solid-State Lithium Ion Batteries,” A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute, Apr. 23, 2012, 126 pages. |
Dou et al., “Synthesis and electrochemical properties of layered LiNi0.5-xMn0.5-xCo2xO2 for lithium-ion battery from nickel manganese cobalt precursor,” J Solid State Electrochem, (2011), vol. 15, pp. 399-404. |
ETV Motors, “High5ive advanced high-voltage cells,” www.etvemotors.com/advanced-battery.htm, accessed Sep. 8, 2011. |
Fergus et al., “Recent Developments in Cathode Materials for Lithium Ion Batteries,” Journal of Power Sources, Vo. 195, No. 4, 23010, pp. 939-954. |
Fey et al., Preparation and electrochemical properties of high-voltage cathode maters, LiMyNi0.5-yMn1.5O4 (M=Fe, Cu, Al, Mg; y=0.0-0.4), Journal of Power Sources, 2003, vol. 115, pp. 332-345. |
Franger et al., “Chemistry and Electrochemistry of Low-Temperature Manganese Oxides as Lithium Intercalation Compounds,” Journal of The Electrochemical Society, 2000, vol. 147, No. 9, pp. 3226-3230. |
Ghosh et al., “Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number,” Journal of the Electrochemical Society, 2010, vol. 157, No. 7, pp. A846-A849. |
Gille G. et al., “Cathode Materials for Rechargeable Batteries-Preparation, Structure-Property Relationships and Performance,” Solid State Ionics, Vo. 148, No. 3-4, 2002, pp. 269-282. |
Giordano et al., “Metal Nitride and Metal Carbide Nanoparticles by a Soft Urea Pathway,” Chem. Mater., 2009, vol. 21, pp. 5136-5144. |
Han et al., “Understanding the Role of Temperature and Cathode Composition on Interface and Bulk: Optimizing Aluminum Oxide Coatings for Li-Ion Cathodes,” ACS Appl. Mater. Interfaces, 2017, 9 (17), pp. 14769-14778. |
Hu et al., “Enhanced electrochemical performance of LiMn204 cathode with a Li0.34La0.51TiO3-caoted layer,” RSC Advances, 2015. vol. 5, pp. 17592-17600. |
Hu et al., “Ni, Mn—Co doped High-Voltage LiCo02 Cathode Material for Lithium Ion Batteries,” Chinese Journal of Inorganic Chemistry, 2015, vol. 31, Issue 1, pp. 159-165. |
Huang et al., “Lithium cobalt phosphate: a high voltage lithium ion cathode material,” Valence Technologies. |
Jin et al., “Observation of Bulk Superconductivity in NaxCo0-2 yH2O and NaxCoO-2-yD2O Powder and Single Crystals,” Phys Rev Lett, 2008, vol. 91, Issue 21, id. 217001, 4 pages. |
Jow et al., “High Voltage Electrolytes for Li-ion Batteries,” U.S. Research Laboratory, Presentation, May 2011. |
Ju et al., “LiCo1-xAlx02 (O=x=0.05) cathode powders prepared from the nanosized Co1-xAlxOy precursor powders,” Materials Chemistry and Physics, 112 (2008), pp. 536-541. |
Jung et al., “Enhanced Stability of LiCo02 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition,” 2010, Journal of The Electrochemical Society, vol. 157, No. 1, pp. A75-A81. |
Kawai et al., “High-voltage lithium cathode materials,” Journal of Power Sources, 1999, vols. 81-82, abstract only. |
Kim et al., “Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2-zFz as lithium intercalation material,” Journal of Power Sources, 2005, vol. 146, pp. 602-605. |
Kim et al., “Improvement of High-Voltage Cycling Behavior of Surface-Modified Li[Ni1/3Co1/3Mn1/3]O2 Cathodes by Fluorine Substitution for Li-Ion Batteries,” J. Electrochem. Soc., 2005, vol. 152, issue 9, pp. A1707-A1713. |
Kobayashi et al., “Study on the Crystal and Electronic Structures of the Layered Li2Mo3—LiMo2 Materials in Li De-Intercalation Process,” Photon Factory Activity Report, 2012, vol. 29, No. 2011, 1 pp. |
Koyama et al., “First principles study of dopant solubility and defect chemistry in Li CoO2,” J. Mater. Chem A., 2014, vol. 2, pp. 11235-11245. |
Iddir et al., “Stability of Li- and Mn-Rich Layered-Oxide Cathodes within the First-Charge Voltage Plateau,” Journal of the Electrochemical Society, 2016, vol. 163, No. 8, pp. A1784-A1789. |
Lee et al., “Characteristics of LiCo02 and Its Precursor Synthesized by a Uniform Precipitation Method,” Electrochemical and Solid-State Letters, 2010, vol. 13, No. 7, pp. A81-A84. |
Lee et al., “Solid-state NMR Studies of Al-doped and Al2O3-coated LiCoO2,” Electrochimica Acta, Nov. 30, 2004, vol. 50, Issues 2-3, pp. 491-494. |
Lee et al., “Surface modification of LiNi0.5Mn1 .5O4 cathodes with ZnAl204 by a sol-gel method for lithium ion batteries,” Electrochimica Acta, 2014, vol. 115, pp. 326-331. |
Lee et al., “The Effect of Coating Thickness on the Electrochemical Properties of a Li—La—Ti—O-coated Li[Ni0.3Co0.4Mn0.3]O2 Cathode,” Bull. Korean Chem. Soc., 2010, vol. 31, No. 11, pp. 3233-3237. |
Lee et al., “The Effects of Li—La—Ti—O Coating on the Properties of Li[Ni0.3Co0.4Mn0.3]02 Cathode Material,” Journal of the Korean Institute of Electrical and Electronic Material Engineers, Oct. 2009, vol. 22, No. 10, pp. 890-896. |
Levasseur et al., “Evidence for structural defects in on-stoichiometric HT-LiCoO2: electrochemical, electronic properties and ?LI NMR studies,” Solid State Ionics, 128 (2000), 00. 11-24. |
Li et al., “Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15AI0.05O2,” Electrochimica Acta, 2015, vol. 174, pp. 1122-1130. |
Li, “Layered Oxides Li1+xM1-x02 (M=Ni, Mn, Co, Al) as Cathode Materials for Rechargeable Lithium Ion Batteries,” Dissertation, Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering in the Graduate School of Binghamton University State University of New York, Jul. 22, 2011, Published by UMI Dissertation Publishing, UMI No. 3474185, 158 pages. |
Liu et al., “Investigation the electrochemical performance of Li1.2Ni0.2Mn0.602 cathode material with ZnAl204 coating for lithium ion batteries,” Journal of Alloys and Compounds, 2016, vol. 685, pp. 523-532. |
Lu et al., “Layered Li[NixCo1-2 xMnx]O2 Cathode Materials for Lithium-Ion Batteries,” Electrochemical and Solid-State Letters, 2001, vol. 4, No. 12, pp. A200-A203. |
Lucht, University of Rhode Island, “Development of Electrolytes for Lithium-ion Batteries,” Presentation, May 11, 2001. |
Manthiram Lab Highlights, “Passivation of Spinel Cathode Surface through Self-Segregation of Iron,” May 7, 2010. |
Menetrier et al., “The insulator-metal transition upon lithium deintercalation from LiCo02: electronic properties and Li-7 NMR Study,” Journal of Materials Chemistry, 1999, vol. 9, No. 5, pp. 1135-1140. |
Myung et al., “Functionality of Oxide Coating for Li[Li0.05Ni0.4Co0.15Mn0.4])2 as Positive Electrode Materials for Lithium-Ion Secondary Batteries,” J. Phys. Chem. C, 2007, vol. 111, pp. 4061-4067. |
Myung et al., “Role of Alumina Coating on Li—Ni—Co—Mn—O Particles as Positive Electrode Material for Lithium-Ion Batteries,” Chem. Mater., 2005, vol. 17, pp. 3695-3704. |
Nam et al. “Ammonia-free coprecipitation synthesis of a Ni—Co—Mn hydroxide precursor for high-performance battery cathode materials,” Green Chemistry, 2015. vol. 17, pp. 1127. |
Patoux et al., “Layered Manganese Oxide Intergrowth Electrodes for Rechargeable Lithium Batteries. 2. Substitution with Al,” Chem. Mater., 2005, vol. 17, pp. 1044-1054. |
Periasamy et al., “High Voltage and High Capacity Characteristics of LiNi1/3Co1/3Mn1/302 Cathodes for Lithium Battery Applications,” Int. J. Electrochecm Soc., vol. 2, 2007, pp. 689-699. |
Qian et al., “Lithium Lanthanum Titanium Oxides: A Fast Ionic Conductive Coating for Lithium-Ion Battery Cathodes,” Chemistry of Materials, 2012, 24 (14), pp. 2744-2751. |
Reddy et al., “Effects of LLTO coating on high temperature cycle life performance of LiMn2O4 cathode material,” Abstract #382, 2012, The Electrochemical Society, 2 pages. |
Robertson et al., “Layered LixMn1-yCo yO2 Intercalation Electrodes-Influence of Ion Exchange on Capacity and Structure upon Cycling,” Chem. Mater., 2001, vol. 13, pp. 2380-2386. |
Rodrigues et al., “A novel coprecipitation method towards the synthesis of NiXMnXCo(1-2X)(OH)2 for the preparation of lithium metal oxides,” J Solid State Electrochem, 2012, vol. 16, pp. 1121-1132. |
Rouse et al., “Electrochemical Studies of Single Crystals of Lithiated Nickel Oxide,” Journal of The Electrochemical Society, Feb. 1966, vol. 113, No. 2, pp. 184-190. |
Saadoune et al., “LiNi0.1Mn0.1Co0.8O2 electrode material: Structural changes upon lithium electrochemical extraction,” Electrochimica Acta, 2010, vol. 55, No. 18, pp. 5180-5185. |
Seong-Min Bak et al, “Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy,” ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 22594-22601. |
Shinova et al., “Cationic distribution and electrochemical performance of LiCo1/3Ni1/3Mn1/3O2 electrodes for lithium-ion batteries,” 2008, Solid State Ionics, vol. 179, pp. 2198-2208. |
Stoyanova et al., “High-Frequency Electron Paramagnetic Resonance Analysis of the Oxidation State and Local Structure of Ni and Mn Ions in Ni,Mn-Codoped LiCoO2,” Inorganic Chemistry, 2010, vol. 49, No. 4, pp. 1932-1941. |
Sullivan, “Safe High Voltage Cathode Materials for Pulsed Power Applications,” Navy STTR FY2011A—Topic N11A-T035, www.navy.sbir.com/n11_A/navst11-035.htm, accessed Sep. 8, 2011. |
Sun et al., “The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries,” Adv. Mater., 2012, vol. 24, pp. 1192-1196. |
Tang et al., “Synthesis and characterization of LiFeP04 coating with aluminum doped zinc oxide,” Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 451-455. |
Wang et al., “Effect of surface fluorine substitution on high voltage electrochemical performances of layered LiNi0.5Co0.2Mn0.3O2 cathode materials,” Applied Surface Science, 2016, vol. 371, pp. 172-179. |
Wang et al., “Synthesis of Li2MnO3-stabilized LiCoO2 cathode material by spray-drying method and its high voltage performance,” Journal of Alloys and Compounds, 2015, vol. 626, pp. 228-233. |
Wenbin, Luo, “Effect of Al, Mg and Mn—Mg Doping on the Structure, Electrochemistry and Thermal Stability of LiCoO2 and LiNi1/3Mn1/3Co1/3O2,” China Doctoral Dissertations Full-text Database Engineering Technology Part II, Nov. 15, 2010. (Translation provided by Multiling). |
Wolfenstine et al., US Army RDECOM, “High Cycle Life Cathode for High Voltage (5V) Lithium Ion Batteries.” |
Wu et al., “Effect of Al3+ and F− Doping on the Irreversible Oxygen Loss from Layered Li[Li0. 17Mn0.58Ni0.25]O2 Cathodes,” Electrochemical and Solid-State Letters, 2007, vol. 10, No. 6, pp. A151-A154. |
Xie et al., “An improved continuous co-precipitation method to synthesize LiNi0.80Co0.15Al0.05O2 cathode material,” Journal of Alloys and Compounds, 2016, vol. 666, pp. 84-87. |
Xinran, Cui, “Preparation and Properties of Al(3+) Doped Lithium-rich Layered Cathode Material Li[Co0.3Li0.23Mn0.47]O2,” China Doctoral Dissertations Full-text Database Engineering Technology Part II, Oct. 15, 2012. (Translation provided by Multiling). |
Xu, US Army RDECOM, “Electrolyte for Next Generation 5V Li-Ion Batteries.” |
Yue et al., “The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.202 cathode materials by low temperature fluorine substitution,” Electrochimica Acta, 2013, vol. 95, pp. 112-118. |
Yuping et al.; “Lithium Ion Batteries—Applications and Practices”; Chapter 5 Cobalt Lithium Oxide Cathode Materials; Chemical Industry Press; Jan. 2012; 4 pages. |
Zeng et al, “Investigation of the Structural Changes in Li[NiyMnyCo(1-2y]O-2 (y=0.05) upon Electrochemical Lithium Deintercalation,” Chemistry of Materials, 2010, vol. 22, No. 3, pp. 1209-1219. |
Zeng et al., “Cation ordering in Li[NixMnxCo(1-2x)]O-2-layered cathode materials: A nuclear magnetic resonance (NMR), pair distribution function, X-ray absorption spectroscopy, and electrochemical study,” Chemistry of Materials, 2007, vol. 19. No. 25, pp. 6277-6289. |
Zhang et al, Argonne National Laboratory, Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, “High Voltage Electrolyte for Lithium Batteries,” Presentation, Jun. 9-13, 2011. |
Zhao et al., “Progress of Research on the Li-rich Cathode Materials xli2Mn03(1-x)LiMO2(M+Co, Fe, Ni1/2Mn1/2 . . . ) for Li-ion Batteries,” Journal of Inorganic Materials, vol. 26(7), pp. 673-679, Jul. 2011. |
Deng et al.; “Safety influences of the Al and Ti elements modified LiCoO2 materials on LiCoO2/graphite batteries under the abusive conditions”; Electrochimica Acta; vol. 295; 2019; p. 703-709. |
“Cathode”; https://web.archive.org/web/20180309000906/http://lithiumionbattery.org:80/activities/cathode; Li-ion Battery; copyright 2017; accessed Jul. 12, 2023; 4 pages. |
Number | Date | Country | |
---|---|---|---|
20230361283 A1 | Nov 2023 | US |
Number | Date | Country | |
---|---|---|---|
62765116 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16531883 | Aug 2019 | US |
Child | 18348766 | US |