1. Field of the Invention
This invention is directed to coatings for implantable medical devices, for example stents, containing polycationic peptides such as polymers and/or oligomers of L-arginine.
2. Description of the State of the Art
Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced percutaneously into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially compress against the atherosclerotic plaque of the lesion to remodel the lumen wall. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.
A problem associated with the above procedure includes formation of intimal flaps or torn arterial linings which can collapse and occlude the conduit after the balloon is deflated. Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation. To reduce the partial or total occlusion of the artery by the collapse of arterial lining and to reduce the chance of the development of thrombosis and restenosis, a stent is implanted in the lumen to maintain the vascular patency.
Stents are used not only as a mechanical intervention but also as a vehicle for providing biological therapy. As a mechanical intervention, stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically, stents are: capable of being compressed, so that they can be inserted through small vessels via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in patent literature disclosing stents which have been applied in PTCA procedures include stents illustrated in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to, Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor.
Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects for the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results. One proposed method for medicating stents involves the use of a polymeric carrier coated onto the surface of a stent. A solution which includes a solvent, a polymer dissolved in the solvent, and a therapeutic substance dispersed in the blend is applied to the stent. The solvent is allowed to evaporate, leaving on the stent surface a coating of the polymer and the therapeutic substance impregnated in the polymer.
Local administration of therapeutic agents via stents has shown some favorable results in reducing restenosis. However, development of restenosis remains a persistent problem which has not been significantly alleviated by therapeutic substances which are currently used in the market. Accordingly, there is a great need for better and more effective therapeutic compositions and methods of administering the compositions for the effective treatment of restenosis.
A method for fabricating a coating for an implantable medical device is provided. The method comprises depositing a layer including a polycationic peptide on the device, and depositing a layer including a carboxylated acrylic polymer over the layer including the polycationic peptide.
Examples of a suitable polycationic peptide include poly(L-arginine), poly(D-arginine), poly(D,L-arginine), poly(L-lysine), poly(D-lysine), poly(δ-guanidino-α-aminobutyric acid), and a racemic mixture of poly(L-arginine) and poly(D-arginine). An example of a suitable carboxylated acrylic polymer includes a carboxylated acrylic polymer having a formula
wherein each X, X′, and X″ is independently, a hydrogen atom or an alkyl group; Q is an alkoxy group or 2-amino-2-methyl propane sulfonyl group; Q′ is an unsubstituted or substituted phenyl group or a carboxy group; each R and R′ is, independently a C1 to C12 straight chained or branched aliphatic radical; and x, y, and z are integers, where y ≠0.
A coating for an implantable medical device is provided. The coating comprises a region including a carboxylated acrylic polymer disposed over a region including a polycationic peptide.
According to embodiments of the present invention, a coating for an implantable medical device, such as a stent, can be a sandwiched multi-layer structure. The sandwich structure of the coating according to one embodiment of the present invention is illustrated by FIG. 1. To fabricate the stent coating, the following procedure can be utilized. As a first step, stent 1 is rinsed in i-propyl alcohol, sonicated, and treated by argon plasma using techniques known to those having ordinary skill in the art. As a second step, a primer layer 2 can be optionally formed on the stent surface. To form the primer layer, a polymer can be dissolved in a solvent, or a mixture of solvents, and the resulting polymer solution can be applied on the stent surface, for example, by spraying or immersing the stent in the polymer solution.
Next, a first drug layer 3 can be applied on the stent. To make the drug layer, the drug can be dissolved in a suitable solvent to form a solution. Examples of solvents that can be used to dissolve the drug include water, N,N-dimethylacetamide (DMAC), dimethylsulfoxide (DMSO), methanol and mixtures thereof. Optionally, the drug can be blended with a polymer such as poly(ethylene-co-vinyl alcohol) or poly(ethylene glycol), followed by dissolving the drug-polymer blend in a suitable solvent such as DMAC. The solution containing the drug can be applied on the stent surface or on the primer layer 2, for example, by spraying or immersing the stent in the solution.
As a next step, a first intermediate polymer layer 4 can be formed over the first drug layer 3. To form the first intermediate polymer layer 4, a polymer can be dissolved in a solvent, or a mixture of solvents, and the resulting polymer solution can be applied on the first drug layer 3, for example, by spraying or immersing the stent in the polymer solution.
Steps of forming the drug layer and the intermediate polymer layer can be repeated in an alternating order until a desired amount of the drug is incorporated in the stent coating. For example, a second drug layer 5 can be formed over the first intermediate polymer layer 4, followed by a second intermediate polymer layer 6 and so forth. Typically, in a coating applied on a 13 mm TETRA® stent (available from Guidant Corporation), each drug layer can contain between about 25 and 50 micrograms (μg) of the drug, and each intermediate polymer layer can contain between about 30 and 60 μg of the polymer.
Finally, a topcoat layer 7 can be optionally formed as the outermost layer of the stent coating. To form the topcoat layer 7, a polymer can be dissolved in a solvent, or a mixture of solvents, and the resulting polymer solution can be applied, for example, by spraying or immersing the stent in the polymer solution.
One example of a drug or therapeutic substance that can be used is a polycationic peptide or a mixture of several polycationic peptides. Representative examples of suitable polycationic peptides include poly(L-arginine), poly(D-arginine), poly(D,L-arginine), poly(L-lysine), poly(D-lysine), poly(δ-guanidino-α-aminobutyric acid), racemic mixtures of poly(L-arginine) and poly(D-arginine), chitosan, and mixtures thereof.
L-arginine, also known as R, Arg, or 2-amino-5-guanidinovaleric acid, is an amino acid having a formula
Polymers and/or oligomers of L-, D-, and D, L-arginine that can be used are referred to as “PArg” and comprise a plurality of repeating monomeric amino acid units connected with peptide bonds, each unit including a 1-guanidinopropyl radical having the structure —CH2—CH2—CH2—NH—C(NH2)═NH. Consequently, PArg has a general formula
where “p” is an integer that can be within a range of 5 and 1,000, e.g., between 6 and 20. For example, a heptamer (R7) (p=7), or a nonamer (R9) (p=9), can be used.
The terms “polymers and/or oligomers of D-, L-, and/or D, L-arginine,” “poly(L-arginine),” “poly(D-arginine),” “poly(D,L-arginine),” and “PArg” used in the present application are intended to include L-, D-, and/or D,L-arginine in both its polymeric and oligomeric form.
Poly(ethylene-co-vinyl alcohol) (EVAL) is one example of a polymer that can be used for fabricating the optional primer layer and the optional topcoat layer 7. EVAL has the general formula —[CH2—CH2]m—[CH2—CH(OH)]n— and is a product of hydrolysis of ethylene-vinyl acetate copolymers. EVAL may also include a terpolymer having up to about 5 molar % of units derived from styrene, propylene and other suitable unsaturated monomers. A brand of copolymer of ethylene and vinyl alcohol distributed commercially under the trade name EVAL by EVAL Company of America (EVALCA) of Houston, Tex. can be used.
Representative examples of other polymers suitable for fabricating the optional primer layer and the optional topcoat layer include polyacrylates (such as poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(ethyl methacrylate-co-butyl methacrylate), poly(2-hydroxyethyl methacrylate), poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) and poly(butyl methacrylate-co-2-hydroxyethyl methacrylate)), poly(hydroxyvalerate), poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(glycerol-sebacate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyalkylene oxalates, polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), copolymers of vinyl monomers with each other and olefins (such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers), polyamides (such as Nylon 66 and polycaprolactam), alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose and fluorinated polymers and/or copolymers, for example, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-hexafluoro propene) (PVDF-HFP), and blends of polyacrylates and fluorinated polymers and/or copolymers.
To make intermediate polymer layers, carboxylated acrylic polymers or blends thereof can be used. Examples of suitable carboxylated acrylic polymers include polymers with a general formula
wherein:
The term “carboxylated acrylic polymers” is defined to encompass homopolymers, copolymers and terpolymers. If both x =0 and z =0, the polymer of formula (II) is a homopolymer, for example, poly(acrylic acid). If x≠0 and z≠0, or x≠0 and z≠0, the polymer of formula (II) is a copolymer, and if x≠0 and z≠0, the polymer of formula (II) is a terpolymer. The carboxylic acrylic polymers represented by formula (II) can be obtained by common synthetic methods known to those having ordinary skill in the art of polymer chemistry, for example, by radical or ionic polymerization or copolymerization of acrylic monomers in bulk, solution, suspension, or emulsion.
The carboxylic acrylic polymers represented by formula (II) can include copolymers with heparin. Such acrylate-heparin copolymers have additional units derived from heparin and can be obtained by copolymerization of acrylic monomers with heparin. The conditions of the process of copolymerization can be determined by those having ordinary skill in the art. Optionally, the carboxylic acrylic polymers represented by formula (II) can be also physically blended with a sulfonated acrylic polymer, for example, with poly(acrylamidomethyl propane sulfonic acid) (AMPS), or with heparin. AMPS has a general formula (III):
When PArg comes in contact with a carboxylated acrylic polymer of an intermediate polymer layer, the guanidino groups (—NH—C(NH2)═NH) and terminal amino groups of PArg will form ionic association with the carboxyl groups of the acrylic acid component of the carboxylated acrylic polymer. As a result, the intermediate polymer layer will immobilize the PArg molecules, thus retarding the release of PArg.
Typical polymers described by formula (II) can be summarized as shown in Table 1.
As pointed out above, to fabricate the primer layer, the intermediate polymer layers and the topcoat layer, the polymers are dissolved in a solvent or a combination of solvents. Representative examples of some suitable solvents include DMAC, N,N-dimethylformamide(DMF), tethrahydrofurane (THF), cyclohexanone, xylene, toluene, acetone, i-propanol, methyl ethyl ketone, propylene glycol monomethyl ether, methyl butyl ketone, ethyl acetate, n-butyl acetate, and dioxane. Some solvent mixtures can be used as well. Representative examples of the mixtures include:
FLUX REMOVER AMS is trade name of a solvent manufactured by Tech Spray, Inc. of Amarillo, Tex. comprising about 93.7% of a mixture of 3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,3-dichloro-1,1,2,2,3-pentafluoropropane, and the balance of the mixture contains methanol, and trace amounts of nitromethane. Those having ordinary skill in the art will select a solvent or mixture of solvents suitable for a particular polymer being dissolved.
The polycationic peptides can be introduced to form the drug layer alone or blended with other active agent(s). Generally speaking, the active agent can include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. For example, the active agent could be designed to inhibit the activity of vascular smooth muscle cells. It can be directed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells to inhibit restenosis. The drug may include small molecule drugs, peptides, proteins, oligonucleotides, and the like.
Examples of drugs include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich of Milwaukee, Wis., or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The active agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. TAXOTERE®, from Aventis S.A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. ADRIAMYCIN® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. MUTAMYCIN® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as ANGIOMAX™ (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. CAPOTEN® and CAPOZIDE® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. PRINIVIL® and PRINZIDE® from Merck & Co., Inc., Whitehouse Station, N.J.); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name MEVACOR® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide-releasing compounds. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, tacrolimus, dexamethasone, and rapamycin and structural derivatives or functional analogs thereof, such as 40-O-(2-hydroxy)ethyl-rapamycin (known by the trade name of everolimus available from Novartis), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin.
The coatings and methods of the present invention have been described with reference to a stent, such as a balloon expandable or self-expandable stent. The use of the coating is not limited to stents, however, and the coating can also be used with a variety of other medical devices. Examples of the implantable medical device, that can be used in conjunction with the embodiments of this invention include stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt-chromium alloys (e.g., ELGILOY), stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, tantalum-based alloys, nickel-titanium alloy, platinum, platinum-based alloys such as, e.g., platinum-iridium alloy, iridium, gold, magnesium, titanium, titanium-based alloys, zirconium-based alloys, or combinations thereof. Devices made: from bioabsorbable or biostable polymers can also be used with the embodiments of the present invention.
“MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co. of Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.
Embodiments of the present invention can be further illustrated by the following examples.
The outer surface of a bare 13 mm TETRA® stent (available from Guidant Corporation) was thoroughly cleaned by sonication in isopropyl alcohol (applying ultrasound frequency to the stent immersed into the isopropyl alcohol bath) followed by treatment by an argon plasma using techniques and equipment known to those having ordinary skill in the art.
A solution of poly(butyl methacrylate) PBMA in a blend of organic solvents (solution I) was prepared by mixing the following components:
A first composition was prepared by mixing the following components:
Overall, the first composition contained about 2 mass % of PBMA, about 19 mass % of methylethylketone, about 15 mass % of methylisobutylketone, about 14 mass % of toluene, about 10 mass % of cyclohexanone, and the balance, xylene.
The first composition was applied onto the surface of the stent by spraying and dried to form a primer layer. A spray coater was used, having a 0.014 fan nozzle maintained at about 60° C. with a feed pressure of about 0.2 atm (about 3 psi) and an atomization pressure of about 1.3 atm (about 20 psi). The primer was baked at about 140° C. for about 2 hours, yielding a dry primer layer. The total amount of solids of the primer layer was about 40 μg. “Solids” means the amount of the dry residue deposited on the stent after all volatile organic compounds (e.g., the solvent) have been removed.
A second composition was prepared by mixing the following components:
The second composition was applied onto the dried primer layer to form a first drug layer, using the same spraying technique and equipment as those used for applying the primer layer, followed by drying. The total amount of solids of the first drug layer was about 30 μg.
A solution of P(BMA-AA) copolymer in a blend of organic solvents (solution II) was prepared, by mixing the following components:
A third composition was prepared by mixing the following components:
Overall, the third composition contained about 2 mass % of P(BMA-AA) polymer, about 34 mass % of methylisobutylketone, about 24 mass % of toluene, about 15 mass % of cyclohexanone, and the balance, xylene.
The third composition was applied onto the dried first drug layer to form a first intermediate layer. The same spraying technique and equipment as those used for applying the primer layer and the first drug layer were used, followed by drying, e.g., by baking as described above. The total amount of solids of the first intermediate layer was about 40 μg.
A fourth composition was prepared by mixing the following components:
The fourth composition was applied onto the dried first intermediate layer to form a second drug layer, using the same spraying technique and equipment as those used for applying the first drug layer, followed by drying. The total amount of solids of the second drug layer was about 30 μg.
A fifth composition identical to the third composition described above and containing the same grade of the P(BMA-AA) copolymer was applied onto the dried second drug layer to form a second intermediate layer. The same spraying technique and equipment as those used for applying the first intermediate layer were used, followed by drying (e.g., baking) as described above. The total amount of solids of the second intermediate layer was about 40 μg.
A sixth composition identical to the fourth composition was prepared and applied onto the second intermediate layer to form a third drug layer. The third drug layer was dried as described above and a seventh composition identical to the third and the fifth compositions described above, containing the same grade of the P(BMA-AA) copolymer was applied onto the dried third drug layer to form a third intermediate layer.
An eighth composition was prepared by mixing the following components:
Overall, the sixth composition contained about 2 mass % of PBMA, about 19 mass % of methylethylketone, about 15 mass % of methylisobutylketone, about 14 mass % of toluene, about 10 mass % of cyclohexanone, and the balance, xylene.
The sixth composition was applied onto the dried third intermediate layer to form a topcoat layer. The same spraying technique and equipment as those used for applying the primer layer were used, followed by drying, e.g., by baking as described above. The total amount of solids of the topcoat layer was about 200 μg.
Stents coated as described above were tested for cumulative amount of the drug released. The stents were immersed in a phosphate buffered saline solution having 1 mass % of sodium dodecyl sulfate. A sample of the solution was taken every 24 hours and analyzed chromatographically (by HPLC) for the amount of R7 released. As seen from the release profile shown by
The stent was coated with a primer layer and a first drug layer as described in Example 1. A solution of P(BMA-AA) copolymer in a blend of organic solvents (solution III) was prepared, by mixing the following components:
A first composition was prepared by mixing the following components:
Overall, the first composition contained about 2 mass % of P(BMA-AA) polymer, about 38 mass % of DMAC, about 25 mass % of methylisobutylketone, about 25 mass % of methylethylketone, and the balance, xylene.
The first composition was applied onto the dried first drug layer to form a first intermediate layer. The total amount of solids of the first intermediate layer was about 40 μg. The second drug layer was then formed on the first intermediate layer as described in Example 1.
The process of forming the first drug layer and the first intermediate layer was repeated twice to form the second drug layer, the second intermediate layer, the third drug layer, and the third intermediate layer.
The topcoat layer was then formed on the third intermediate layer as described in Example 1.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2072303 | Herrmann et al. | Mar 1937 | A |
2386454 | Frosch et al. | Oct 1945 | A |
3773737 | Goodman et al. | Nov 1973 | A |
3835175 | Carpino et al. | Sep 1974 | A |
3849514 | Gray, Jr. et al. | Nov 1974 | A |
4226243 | Shalaby et al. | Oct 1980 | A |
4329383 | Joh | May 1982 | A |
4343931 | Barrows | Aug 1982 | A |
4529792 | Barrows | Jul 1985 | A |
4611051 | Hayes et al. | Sep 1986 | A |
4656242 | Swan et al. | Apr 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4882168 | Casey et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4908404 | Benedict et al. | Mar 1990 | A |
4917309 | Zander et al. | Apr 1990 | A |
4931287 | Bae et al. | Jun 1990 | A |
4941870 | Okada et al. | Jul 1990 | A |
4977901 | Ofstead | Dec 1990 | A |
5019096 | Fox, Jr. et al. | May 1991 | A |
5025001 | Loscalzo et al. | Jun 1991 | A |
5100992 | Cohn et al. | Mar 1992 | A |
5112457 | Marchant | May 1992 | A |
5129980 | Sissons | Jul 1992 | A |
5133742 | Pinchuk | Jul 1992 | A |
5147981 | Buet et al. | Sep 1992 | A |
5155137 | Keefer et al. | Oct 1992 | A |
5163952 | Froix | Nov 1992 | A |
5165919 | Sasaki et al. | Nov 1992 | A |
5187183 | Loscalzo et al. | Feb 1993 | A |
5202129 | Samejima et al. | Apr 1993 | A |
5258020 | Froix | Nov 1993 | A |
5272012 | Opolski | Dec 1993 | A |
5292516 | Viegas et al. | Mar 1994 | A |
5298260 | Viegas et al. | Mar 1994 | A |
5300295 | Viegas et al. | Apr 1994 | A |
5306501 | Viegas et al. | Apr 1994 | A |
5306786 | Moens et al. | Apr 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5330768 | Park et al. | Jul 1994 | A |
5356890 | Loscalzo et al. | Oct 1994 | A |
5366997 | Keefer et al. | Nov 1994 | A |
5380299 | Fearnot et al. | Jan 1995 | A |
5395326 | Haber et al. | Mar 1995 | A |
5405919 | Keefer et al. | Apr 1995 | A |
5424077 | Lajoie | Jun 1995 | A |
5428070 | Cooke et al. | Jun 1995 | A |
5447724 | Helmus et al. | Sep 1995 | A |
5455040 | Marchant | Oct 1995 | A |
5462990 | Hubbell et al. | Oct 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5482720 | Murphy et al. | Jan 1996 | A |
5485496 | Lee et al. | Jan 1996 | A |
5516881 | Lee et al. | May 1996 | A |
5536723 | Loscalzo et al. | Jul 1996 | A |
5543099 | Zhang et al. | Aug 1996 | A |
5569463 | Helmus et al. | Oct 1996 | A |
5578073 | Haimovich et al. | Nov 1996 | A |
5584877 | Miyake et al. | Dec 1996 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607467 | Froix | Mar 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5610241 | Lee et al. | Mar 1997 | A |
5616338 | Fox, Jr. et al. | Apr 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5639441 | Sievers et al. | Jun 1997 | A |
5644020 | Timmermann et al. | Jul 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5650442 | Mitchell et al. | Jul 1997 | A |
5658995 | Kohn et al. | Aug 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5670558 | Onishi et al. | Sep 1997 | A |
5674242 | Phan et al. | Oct 1997 | A |
5679400 | Tuch | Oct 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5702754 | Zhong | Dec 1997 | A |
5711958 | Cohn et al. | Jan 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5721131 | Rudolph et al. | Feb 1998 | A |
5723219 | Kolluri et al. | Mar 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5746998 | Torchilin et al. | May 1998 | A |
5759205 | Valentini | Jun 1998 | A |
5776184 | Tuch | Jul 1998 | A |
5783657 | Pavlin et al. | Jul 1998 | A |
5788979 | Alt et al. | Aug 1998 | A |
5800392 | Racchini | Sep 1998 | A |
5804318 | Pinchuk et al. | Sep 1998 | A |
5820917 | Tuch | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5837008 | Berg et al. | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5849859 | Acemoglu | Dec 1998 | A |
5851508 | Greff et al. | Dec 1998 | A |
5852058 | Cooke et al. | Dec 1998 | A |
5854376 | Higashi | Dec 1998 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5861168 | Cooke et al. | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5869127 | Zhong | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5874165 | Drumheller | Feb 1999 | A |
5876433 | Lunn | Mar 1999 | A |
5877224 | Brocchini et al. | Mar 1999 | A |
5879713 | Roth et al. | Mar 1999 | A |
5891459 | Cooke et al. | Apr 1999 | A |
5902875 | Roby et al. | May 1999 | A |
5905168 | Dos Santos et al. | May 1999 | A |
5910564 | Gruning et al. | Jun 1999 | A |
5914387 | Roby et al. | Jun 1999 | A |
5919893 | Roby et al. | Jul 1999 | A |
5925720 | Kataoka et al. | Jul 1999 | A |
5932299 | Katoot | Aug 1999 | A |
5945452 | Cooke et al. | Aug 1999 | A |
5955508 | Lorens et al. | Sep 1999 | A |
5958385 | Tondeur et al. | Sep 1999 | A |
5962138 | Kolluri et al. | Oct 1999 | A |
5971954 | Conway et al. | Oct 1999 | A |
5980928 | Terry | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5997517 | Whitbourne | Dec 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6011125 | Lohmeijer et al. | Jan 2000 | A |
6015541 | Greff et al. | Jan 2000 | A |
6033582 | Lee et al. | Mar 2000 | A |
6034204 | Mohr et al. | Mar 2000 | A |
6042875 | Ding et al. | Mar 2000 | A |
6051576 | Ashton et al. | Apr 2000 | A |
6051648 | Rhee et al. | Apr 2000 | A |
6054553 | Groth et al. | Apr 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6060451 | DiMaio et al. | May 2000 | A |
6060518 | Kabanov et al. | May 2000 | A |
6060534 | Ronan et al. | May 2000 | A |
6063432 | Maxwell et al. | May 2000 | A |
6077543 | Gordon et al. | Jun 2000 | A |
6080488 | Hostettler et al. | Jun 2000 | A |
6095134 | Sievers et al. | Aug 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6110483 | Whitbourne et al. | Aug 2000 | A |
6113629 | Ken | Sep 2000 | A |
6117872 | Maxwell et al. | Sep 2000 | A |
6120491 | Kohn et al. | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120788 | Barrows | Sep 2000 | A |
6120904 | Hostettler et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6136333 | Cohn et al. | Oct 2000 | A |
6143354 | Koulik et al. | Nov 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6159978 | Myers et al. | Dec 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6172167 | Stapert et al. | Jan 2001 | B1 |
6177523 | Reich et al. | Jan 2001 | B1 |
6180632 | Myers et al. | Jan 2001 | B1 |
6183783 | Benoit et al. | Feb 2001 | B1 |
6203551 | Wu | Mar 2001 | B1 |
6211249 | Cohn et al. | Apr 2001 | B1 |
6214901 | Chudzik et al. | Apr 2001 | B1 |
6228346 | Zhang et al. | May 2001 | B1 |
6231600 | Zhong | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6245753 | Byun et al. | Jun 2001 | B1 |
6245760 | He et al. | Jun 2001 | B1 |
6248129 | Froix | Jun 2001 | B1 |
6251136 | Guruwaiya et al. | Jun 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6258121 | Yang et al. | Jul 2001 | B1 |
6258371 | Koulik et al. | Jul 2001 | B1 |
6262034 | Mathiowitz et al. | Jul 2001 | B1 |
6270788 | Koulik et al. | Aug 2001 | B1 |
6277449 | Kolluri et al. | Aug 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6283949 | Roorda | Sep 2001 | B1 |
6284305 | Ding et al. | Sep 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6306166 | Barry et al. | Oct 2001 | B1 |
6306176 | Whitbourne | Oct 2001 | B1 |
6306993 | Rothbard et al. | Oct 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
6335029 | Kamath et al. | Jan 2002 | B1 |
6344035 | Chudzik et al. | Feb 2002 | B1 |
6346110 | Wu | Feb 2002 | B1 |
6358556 | Ding et al. | Mar 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6387379 | Goldberg et al. | May 2002 | B1 |
6419692 | Yang et al. | Jul 2002 | B1 |
6451373 | Hossainy et al. | Sep 2002 | B1 |
6482834 | Spada et al. | Nov 2002 | B1 |
6494862 | Ray et al. | Dec 2002 | B1 |
6503538 | Chu et al. | Jan 2003 | B1 |
6503556 | Harish et al. | Jan 2003 | B1 |
6503954 | Bhat et al. | Jan 2003 | B1 |
6506437 | Harish et al. | Jan 2003 | B1 |
6524347 | Myers et al. | Feb 2003 | B1 |
6527801 | Dutta | Mar 2003 | B1 |
6527863 | Pacetti et al. | Mar 2003 | B1 |
6528526 | Myers et al. | Mar 2003 | B1 |
6530950 | Alvarado et al. | Mar 2003 | B1 |
6530951 | Bates et al. | Mar 2003 | B1 |
6540776 | Sanders Millare et al. | Apr 2003 | B1 |
6544223 | Kokish | Apr 2003 | B1 |
6544543 | Mandrusov et al. | Apr 2003 | B1 |
6544582 | Yoe | Apr 2003 | B1 |
6555157 | Hossainy | Apr 2003 | B1 |
6558733 | Hossainy et al. | May 2003 | B1 |
6565659 | Pacetti et al. | May 2003 | B1 |
6572644 | Moein | Jun 2003 | B1 |
6585755 | Jackson et al. | Jul 2003 | B1 |
6585765 | Hossainy et al. | Jul 2003 | B1 |
6585926 | Mirzaee | Jul 2003 | B1 |
6605154 | Villareal | Aug 2003 | B1 |
6616765 | Wu et al. | Sep 2003 | B1 |
6623448 | Slater | Sep 2003 | B1 |
6625486 | Lundkvist et al. | Sep 2003 | B1 |
6645135 | Bhat | Nov 2003 | B1 |
6645195 | Bhat et al. | Nov 2003 | B1 |
6656216 | Hossainy et al. | Dec 2003 | B1 |
6656506 | Wu et al. | Dec 2003 | B1 |
6660034 | Mandrusov et al. | Dec 2003 | B1 |
6663662 | Pacetti et al. | Dec 2003 | B1 |
6663880 | Roorda et al. | Dec 2003 | B1 |
6666880 | Chiu et al. | Dec 2003 | B1 |
6673154 | Pacetti et al. | Jan 2004 | B1 |
6673385 | Ding et al. | Jan 2004 | B1 |
6689099 | Mirzaee | Feb 2004 | B1 |
6695920 | Pacetti et al. | Feb 2004 | B1 |
6706013 | Bhat et al. | Mar 2004 | B1 |
6709514 | Hossainy | Mar 2004 | B1 |
6712845 | Hossainy | Mar 2004 | B1 |
6713119 | Hossainy et al. | Mar 2004 | B1 |
6716444 | Castro et al. | Apr 2004 | B1 |
6723120 | Yan | Apr 2004 | B1 |
6733768 | Hossainy et al. | May 2004 | B1 |
6740040 | Mandrusov et al. | May 2004 | B1 |
6743462 | Pacetti | Jun 2004 | B1 |
6749626 | Bhat et al. | Jun 2004 | B1 |
6753071 | Pacetti | Jun 2004 | B1 |
6758859 | Dang et al. | Jul 2004 | B1 |
6759054 | Chen et al. | Jul 2004 | B1 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
20010007083 | Roorda | Jul 2001 | A1 |
20010014717 | Hossainy et al. | Aug 2001 | A1 |
20010018469 | Chen et al. | Aug 2001 | A1 |
20010020011 | Mathiowitz et al. | Sep 2001 | A1 |
20010029351 | Falotico et al. | Oct 2001 | A1 |
20010037145 | Guruwaiya et al. | Nov 2001 | A1 |
20010051608 | Mathiowitz et al. | Dec 2001 | A1 |
20020005206 | Falotico et al. | Jan 2002 | A1 |
20020007213 | Falotico et al. | Jan 2002 | A1 |
20020007214 | Falotico | Jan 2002 | A1 |
20020007215 | Falotico et al. | Jan 2002 | A1 |
20020009604 | Zamora et al. | Jan 2002 | A1 |
20020016625 | Falotico et al. | Feb 2002 | A1 |
20020032414 | Ragheb et al. | Mar 2002 | A1 |
20020032434 | Chudzik et al. | Mar 2002 | A1 |
20020051730 | Bodnar et al. | May 2002 | A1 |
20020071822 | Uhrich | Jun 2002 | A1 |
20020077693 | Barclay t al. | Jun 2002 | A1 |
20020082679 | Sirhan et al. | Jun 2002 | A1 |
20020087123 | Hossainy et al. | Jul 2002 | A1 |
20020091433 | Ding et al. | Jul 2002 | A1 |
20020094440 | Llanos et al. | Jul 2002 | A1 |
20020111590 | Davila et al. | Aug 2002 | A1 |
20020120326 | Michal | Aug 2002 | A1 |
20020123801 | Pacetti et al. | Sep 2002 | A1 |
20020142039 | Claude | Oct 2002 | A1 |
20020155212 | Hossainy | Oct 2002 | A1 |
20020165608 | Llanos et al. | Nov 2002 | A1 |
20020176849 | Slepian | Nov 2002 | A1 |
20020183581 | Yoe et al. | Dec 2002 | A1 |
20020188037 | Chudzik et al. | Dec 2002 | A1 |
20020188277 | Roorda et al. | Dec 2002 | A1 |
20030004141 | Brown | Jan 2003 | A1 |
20030028243 | Bates et al. | Feb 2003 | A1 |
20030028244 | Bates et al. | Feb 2003 | A1 |
20030031780 | Chudzik et al. | Feb 2003 | A1 |
20030032767 | Tada et al. | Feb 2003 | A1 |
20030036794 | Ragheb et al. | Feb 2003 | A1 |
20030039689 | Chen et al. | Feb 2003 | A1 |
20030040712 | Ray et al. | Feb 2003 | A1 |
20030040790 | Furst | Feb 2003 | A1 |
20030059520 | Chen et al. | Mar 2003 | A1 |
20030060877 | Falotico et al. | Mar 2003 | A1 |
20030065377 | Davila et al. | Apr 2003 | A1 |
20030072868 | Harish et al. | Apr 2003 | A1 |
20030073961 | Happ | Apr 2003 | A1 |
20030083646 | Sirhan et al. | May 2003 | A1 |
20030083739 | Cafferata | May 2003 | A1 |
20030097088 | Pacetti | May 2003 | A1 |
20030097173 | Dutta | May 2003 | A1 |
20030099712 | Jayaraman | May 2003 | A1 |
20030105518 | Dutta | Jun 2003 | A1 |
20030113439 | Pacetti et al. | Jun 2003 | A1 |
20030150380 | Yoe | Aug 2003 | A1 |
20030157241 | Hossainy et al. | Aug 2003 | A1 |
20030158517 | Kokish | Aug 2003 | A1 |
20030190406 | Hossainy et al. | Oct 2003 | A1 |
20030207020 | Villareal | Nov 2003 | A1 |
20030211230 | Pacetti et al. | Nov 2003 | A1 |
20040018296 | Castro et al. | Jan 2004 | A1 |
20040029952 | Chen et al. | Feb 2004 | A1 |
20040047978 | Hossainy et al. | Mar 2004 | A1 |
20040047980 | Pacetti et al. | Mar 2004 | A1 |
20040052858 | Wu et al. | Mar 2004 | A1 |
20040052859 | Wu et al. | Mar 2004 | A1 |
20040054104 | Pacetti | Mar 2004 | A1 |
20040060508 | Pacetti et al. | Apr 2004 | A1 |
20040062853 | Pacetti et al. | Apr 2004 | A1 |
20040063805 | Pacetti et al. | Apr 2004 | A1 |
20040071861 | Mandrusov et al. | Apr 2004 | A1 |
20040072922 | Hossainy et al. | Apr 2004 | A1 |
20040073298 | Hossainy | Apr 2004 | A1 |
20040086542 | Hossainy et al. | May 2004 | A1 |
20040086550 | Roorda et al. | May 2004 | A1 |
20040096504 | Michal | May 2004 | A1 |
20040098117 | Hossainy et al. | May 2004 | A1 |
Number | Date | Country |
---|---|---|
42 24 401 | Jan 1994 | DE |
0 301 856 | Feb 1989 | EP |
0 396 429 | Nov 1990 | EP |
0 514 406 | Nov 1992 | EP |
0 604 022 | Jun 1994 | EP |
0 623 354 | Nov 1994 | EP |
0 665 023 | Aug 1995 | EP |
0 6656 023 | Aug 1995 | EP |
0 677 332 | Oct 1995 | EP |
0 701 802 | Mar 1996 | EP |
0 716 836 | Jun 1996 | EP |
0 809 999 | Dec 1997 | EP |
0 832 655 | Apr 1998 | EP |
0 850 651 | Jul 1998 | EP |
0 879 595 | Nov 1998 | EP |
0 910 584 | Apr 1999 | EP |
0 923 953 | Jun 1999 | EP |
0 953 320 | Nov 1999 | EP |
0 970 711 | Jan 2000 | EP |
0 982 041 | Mar 2000 | EP |
1 023 879 | Aug 2000 | EP |
1 192 957 | Apr 2002 | EP |
1273 314 | Jan 2003 | EP |
2001-190687 | Jul 2001 | JP |
872531 | Oct 1981 | RU |
876663 | Oct 1981 | RU |
905228 | Feb 1982 | RU |
790725 | Feb 1983 | RU |
1016314 | May 1983 | RU |
811750 | Sep 1983 | RU |
1293518 | Feb 1987 | RU |
WO 9112846 | Sep 1991 | WO |
WO 9409760 | May 1994 | WO |
WO 9428721 | Dec 1994 | WO |
WO 9510989 | Apr 1995 | WO |
WO 9524929 | Sep 1995 | WO |
WO 9640174 | Dec 1996 | WO |
WO 9710011 | Mar 1997 | WO |
WO 9716983 | May 1997 | WO |
WO 9745105 | Dec 1997 | WO |
WO 9746590 | Dec 1997 | WO |
WO 9806389 | Feb 1998 | WO |
WO 9808463 | Mar 1998 | WO |
WO 9817331 | Apr 1998 | WO |
WO 9832398 | Jul 1998 | WO |
WO 9836784 | Aug 1998 | WO |
WO 9849199 | Nov 1998 | WO |
WO 9900070 | Jan 1999 | WO |
WO 9901118 | Jan 1999 | WO |
WO 9938546 | Aug 1999 | WO |
WO 9959433 | Nov 1999 | WO |
WO 9963981 | Dec 1999 | WO |
WO 9966921 | Dec 1999 | WO |
WO 0002599 | Jan 2000 | WO |
WO 0012147 | Mar 2000 | WO |
WO 0018446 | Apr 2000 | WO |
WO 0046395 | Aug 2000 | WO |
WO 0064506 | Nov 2000 | WO |
WO 0074701 | Dec 2000 | WO |
WO 0101890 | Jan 2001 | WO |
WO 0108684 | Feb 2001 | WO |
WO 0113957 | Mar 2001 | WO |
WO 0115751 | Mar 2001 | WO |
WO 0117577 | Mar 2001 | WO |
WO 0145763 | Jun 2001 | WO |
WO 0149338 | Jul 2001 | WO |
WO 0151027 | Jul 2001 | WO |
WO 0162297 | Aug 2001 | WO |
WO 0174414 | Oct 2001 | WO |
WO 0203890 | Jan 2002 | WO |
WO 0226162 | Apr 2002 | WO |
WO 02056790 | Jul 2002 | WO |
WO 02058753 | Aug 2002 | WO |
WO 02102283 | Dec 2002 | WO |
WO 03000308 | Jan 2003 | WO |
WO 03022323 | Mar 2003 | WO |
WO 03028780 | Apr 2003 | WO |
WO 03039612 | May 2003 | WO |
WO 03037223 | Aug 2003 | WO |
WO 03080147 | Oct 2003 | WO |
WO 03082368 | Oct 2003 | WO |
WO 04000383 | Dec 2003 | WO |
WO 04009145 | Jan 2004 | WO |