Coatings for implantable medical devices

Information

  • Patent Grant
  • 7919075
  • Patent Number
    7,919,075
  • Date Filed
    Wednesday, March 20, 2002
    22 years ago
  • Date Issued
    Tuesday, April 5, 2011
    13 years ago
Abstract
Polymer coatings for medical devices are disclosed. The polymers can include at least one unit derived from ethylene and at least one vinyl unit or acrylic unit. The coatings can have a biologically compatible compound conjugated to, or blended with, the polymer.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to the field of medical devices, more particularly, to coatings for devices such as stents.


2. Description of the Background


In the field of medical technology, there is frequently a necessity to administer drugs locally. To provide an efficacious concentration to the treatment site, systemic administration of medication often produces adverse or toxic side effect for the patient. Local delivery is a preferred method in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Thus, local delivery produces fewer side effects and achieves more effective results.


One commonly applied technique for local delivery of a drug is through the use of a polymeric matrix. A polymer impregnated with a drug can be formed into particles or can be coated on implantable medical devices such as stents. Subsequent to the implantation of the particle or the device, the drug slowly elutes from the polymer. A variety of well known polymers have suitable biocompatible properties which allow the polymers to serve as a suitable host for local drug delivery. A selected group of these polymers can also form a film layer or a coating for implantable devices such as stents. One example of a polymer that serves the dual function of being very biocompatible and capable of forming a coating for devices is a copolymer of ethylene and vinyl alcohol, also known as poly(ethylene-co-vinyl alcohol) or EVOH. Poly(ethylene-co-vinyl alcohol) is also known under the trade name EVAL and is distributed commercially by Aldrich Chemical Company of Milwaukee, Wis. EVAL is also manufactured by EVAL Company of America of Lisle, Ill. Other polymers which can be used to coat stents include a copolymer of ethylene with acrylic acid (EAA) and a copolymer of ethylene with glycidyl methacrylate (EGMA).


EVAL is a product of hydrolysis of ethylene-vinyl acetate copolymers. EVAL may also be a terpolymer and may include up to 5% (molar) units derived from styrene, propylene and other suitable unsaturated monomers. EVAL can be described as being hydrophobic and thus is essentially insensitive to moisture. EAA and EGMA, likewise, are hydrophobic and relatively impermeable to gases. The ethylene fragments of EVAL, EAA and EGMA provide hydrophobicity and barrier properties, while functional fragments of each copolymer (hydroxyl groups, carboxyl groups, and glycidyl groups, respectively) provide at least limited solubility in organic solvents.


While EVAL, EAA and EGMA are inert and biocompatible polymers which are quite suitable for use as a drug delivery matrix, and more particularly when used in conjunction with medical devices, some of the properties of these polymers can be improved. In particular, the polymers are prone to protein fouling, which may significantly inhibit the polymers' life time in vivo efficacy.


There is a need for polymeric carriers suitable for the delivery of drugs, and more particularly for coating medical devices used as a means for drug delivery. Suitable characteristics of the polymeric materials should be significantly impermeable to oxygen, high degree of hydrophobicity and long term biocompatibility with minimum protein fouling effects.


SUMMARY

In accordance to one embodiment of the invention, a coating for a medical device, such as a stent, is provided. The coating comprises a biologically compatible compound conjugated to a polymer having the formula




embedded image



wherein R1 is selected from a group consisting of hydroxyl, carboxyl and an ester group and R2 is selected from a group consisting of hydrogen and an alkyl. The ester group can be a glycidyl group and the alkyl group can be methyl. The biologically compatible compound can be a poly(alkylene glycol)-based compound, a superoxide dismutase compound, a diazenium diolate, or hyaluronic acid. The poly(alkylene glycol)-based compound can be poly(ethylene glycol). In one embodiment, the poly(ethylene glycol) is conjugated to a protein or to a polysaccharide, such as albumin, hyaluronic acid, heparin, heparin derivatives containing a hydrophobic counter-ion or chitosan.


The poly(alkylene glycol)-based compound can contain functional groups such as isocyanate, epoxy, amino, terminal hydroxyl, carboxyl or alkoxy groups. The diazenium diolate can be 1,3-propanediamine, N-{4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl}-diazen-1-ium-1,2-diolate or 1-{N-methyl-N-[6-(N-methylammonio)hexyl]amino}diazen-1-ium-1,2-diolate. The superoxide dismutase compound can be manganese(II)dichloro-aminoethylthiolated pentaazatetracyclohexacosatriene. The coating can further include a therapeutic substance, for example, actinomycin D, taxol, estradiol, rapamycin or structural derivatives or functional analogs thereof.


In accordance with another embodiment of the invention, a method of fabricating a medical device, such as a stent, is provided, comprising forming a coating on the device, the coating comprising a biologically compatible compound conjugated to a polymer having the formula




embedded image



wherein R1 is selected from a group consisting of hydroxyl, carboxyl and an ester group and R2 is selected from a group consisting of hydrogen and an alkyl.







DETAILED DESCRIPTION

This invention provides for modification of polymers to be used for the local delivery of therapeutic substances or drugs. The polymers can also be used as coatings for implantable medical devices such as stents. These polymers are also referred to herein as “modified polymers,” “polymers to be modified,” or “polymers subject to modification.”


The polymers can be characterized by the presence of a polyolefin backbone, pendant on which are alkyl, hydroxyl, and/or carboxyl groups. EVAL is one example of a polymer that can be modified according to this invention. Other examples of polymers that can be modified include a copolymer of ethylene with acrylic acid (EAA) and a copolymer of ethylene with glycidyl methacrylate (EGMA). EVAL, EAA, and EGMA have relatively high oxygen-barrier properties and resistively to water vapor; however, the polymers' long-term biocompatibility is somewhat limited due to protein fouling effects. Modification of the polymers by covalent conjugation to biologically active materials will enhance the polymers' in vivo behavior, thus providing better long-term results.


EVAL, EAA and EGMA can be modified by biologically active compounds, hereinafter also referred to as “modifiers” or “modifying compounds.” Modification can be accomplished by covalent conjugation of the polymer to one or more modifiers. The functional groups of the polymers, such as the hydroxyl groups in EVAL, the carboxyl groups in EAA, and the glycidyl groups in EGMA, can be used as the target sites for the conjugation. The modification of the polymer can be conducted directly on the stent or the polymer can be modified first, and the modified product can then applied to the stent.


In one embodiment, the modifiers include poly(ethylene glycol) (PEG) and PEG's functionalized derivatives. More particularly, representative examples include PEG, PEG-isocyanate, PEG-epoxide, and amino-terminated PEG. In accordance with another embodiment of the invention, the modifier can be an intracellular enzyme, for example, oxidoreductases containing seven-coordinate complexes of manganese, which is also known as superoxide dismutase mimics (SODm). In yet another embodiment, the modifier can include diazenium diolate type nitric oxide donors. In yet another embodiment, the modifier can include hyaluronic acids. In yet another embodiment of the invention, the modifying compound(s) can be conjugated to proteins or polysaccharides followed by cold-blending of the conjugates with the matrix polymer such as EVAL.


A therapeutic substance or a drug can be incorporated in the modified polymer. The therapeutic substance can include any compound that exerts a therapeutic or prophylactic effect for the patient. The substance can be for inhibiting the migration and/or proliferation of smooth muscle cells or for the treatment of restenosis and can include small molecule drugs, peptides, proteins, oligonucleotides, or DNA. Examples of the drugs include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof. Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The substance can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel, docetaxel, methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride, and mitomycin. Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin. Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril, cilazapril or lisinopril, calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (ω-3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents 1 which may be appropriate include alpha-interferon, genetically engineered epithelial cells, rapamycin, rapamycin derivatives and analogs, and dexamethasone.


The coating of the present invention can be used in conjunction with a balloon-expandable or self-expandable stent. The application of the coating is not limited to stents and the coating can also be used with a variety of other medical devices. Examples of other implantable medical device include stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, axius coronary shunts and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt-chromium alloys (e.g., ELGILOY), stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, tantalum-based alloys, nickel-titanium alloy, platinum, platinum-based alloys such as, e.g., platinum-iridium alloy, iridium, gold, magnesium, titanium, titanium-based alloys, zirconium-based alloys, or combinations thereof. Devices made from bioabsorbable or biostable polymers can also be used with the embodiments of the present invention. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel chromium and molybdenum, available from Standard Press Steel Co. of Jenkintown, Pa.

  • “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum.
  • “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.


The following examples illustrate various embodiments for the modified polymers.


1. Modification of EVAL


In one embodiment of the invention, EVAL (—[CH2—CH2]m—[CH2—CH(OH)]n—) manufactured by EVALCA Corp., Lisle, Ill., has an m:n ratio of 44:56. Those having ordinary skill in the art will understand that EVAL with higher or lower ethylene content can be modified by the same methods as those discussed below. In accordance with some of the embodiments of this invention, EVAL is modified as shown in the following examples.


EXAMPLE 1
Modifier: poly(ethylene glycol)

Poly((ethylene glycol) (PEG) is a highly biologically compatible product. Due to the presence of hydroxyl groups, PEG is capable of entering reactions of condensation with EVAL. The reaction may need to be catalyzed by a suitable acidic or basic catalyst. PEG can be in an oligomeric or polymeric form and can have a molecular weight within a range of between about 500 and about 30,000 Daltons. The conditions under which this reaction is conducted can be determined by one having ordinary skill in the art. EVAL can be firmly bonded to the biologically compatible PEG. Thus, EVAL is modified by PEG and the modified EVAL can have an enhanced long-term biocompatibility.


EXAMPLE 2
Modifier: poly(ethylene glycol)-isocyanate

Poly(ethylene glycol)-isocyanate (hereinafter, PEG-ISO) is a PEG based product having the isocyanate fragments —N═C═O. An example of a PEG-ISO suitable as a modifier for EVAL is a methoxylated PEG-ISO. The PEG-ISO has a general formula CH3—[O—CH2—CH2]p—N═C═O. This modifier, manufactured by Shearwater Corp. of Huntsville, Ala., has a molecular weight of about 5,000 which corresponds to the value of the integer “p” of about 112. Due to the presence of the isocyanate groups, PEG-ISO is chemically very active and readily reacts with EVAL in solution. The —N═C═O group of PEG-ISO, having strong electron accepting properties, reacts with nucleophilic hydroxyl group of EVAL, as illustrated by reaction scheme (I):




embedded image


The conditions under which reaction scheme (I) is conducted can be determined by one having ordinary skill in the art. As a result, EVAL is firmly bonded to the biologically compatible PEG-ISO to form the urethane product of reaction scheme (I). Thus, EVAL, modified by PEG-ISO, can have an enhanced long-term biocompatibility.


EXAMPLE 3
Modifier: poly(ethylene glycol)-epoxide

Poly(ethylene glycol)-epoxide (hereinafter, PEG-EPO) is a PEG-based product having epoxy fragments. An example of a PEG-EPO suitable as a modifier for EVAL is a methoxylated PEG-EPO, such as methoxy-PEG-glycidyl ether and has the following general formula




embedded image



The PEG-EPO has a molecular weight of about 5,000, which corresponds to the value of the integer “p” of about 112, and is manufactured by Shearwater Corp. of Huntsville, Ala.


Epoxy groups in PEG-EPO are reactive, and PEG-EPO easily reacts with EVAL in solution. The epoxy group of PEG-EPO can react with the nucleophilic hydroxyl group of EVAL, via the nucleophilic substitution reaction SN2. Normally, the proton of the hydroxyl group attacks the less substituted α-carbon atom of the epoxy group. The β-carbon is less accessible due to the steric hindrances. As the result of the proton attack on the α-carbon atom, the ring opens and the modified EVAL is formed according to a reaction that can be shown as reaction scheme (II):




embedded image


Reaction scheme (II) is carried out more effectively in the presence of electron acceptors, because the electron acceptors facilitate electrophilic polarization of the C—O bond of the epoxy ring, thus making the subsequent attack by the proton of the hydroxyl group of EVAL easier.


Accordingly, modification of EVAL with PEG-EPO is facilitated in the presence of electrophilic ring-opening catalysts, for instance, aprotonic acids such as amine-boron trifluoride adducts or tertiary amines. The use of any ring-opening catalyst is optional. The conditions under which this reaction is conducted can be determined by one having ordinary skill in the art.


EXAMPLE 4
Modifier: Hyaluronic Acid

Hyaluronic acid is a linear polysaccharide composed of disaccharide units of N-acetylglucosamine and D-glucoronic acid. In hyaluronic acid, uronic acid and the aminosugar are linked by alternating β-1,4 and β-1,3 glucosidic bonds. Hyaluronic acid has hydroxymethyl groups and secondary amino groups. EVAL can be modified by these groups. In order to facilitate the reaction of condensation of either the hydroxymethyl groups or the secondary amino groups of hyaluronic acid with the hydroxyl groups of EVAL, an appropriate catalyst may be needed. Alternatively, the modification of EVAL by hyaluronic acid can be carried out in the presence of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide, also known as carbodiimide or EDC, having the formula CH3—CH2—N═C═N—CH2—CH2—CH2—N(CH3)2. EDC is manufactured by Pierce Corp., Rockford, Ill. Instead of EDC, 1,3-dicyclohexylcarbodiimide (DCC) having the formula




embedded image



can be used. As a result, EVAL is firmly bonded to the biologically compatible hyaluronic acid for enhanced long term biocompatibility.


EXAMPLE 5
Modifier: Biologically Compatible Compound Conjugated to a Protein and/or Polysaccharide

As a first step, a biologically active agent is conjugated to a protein or a polysaccharide, or to a combination of the protein and the polysaccharide. Albumin (also known as albumen or the egg white protein) can be used as the protein, and heparin, heparin derivatives, including the derivatives containing hydrophobic counter-ions, hyaluronic acid or chitosan can be used as polysaccharides. PEG is one example of the biologically active agent to be conjugated to the protein or polysaccharide, or to a combination of the protein and the polysaccharide. Other biologically active agents that can be used include superoxide dismutase-mimetics (SOD-mimetics or SODm) and diazenium diolate type nitric oxide donors.


Superoxide dismutase-mimetics are oxidoreductases based oxidoreductase-based complexes that contain cations of copper, iron, or manganese. SOD-mimetics are major intracellular enzymes that protects the cell against oxygen toxicity by dismutating the radical oxygen superoxide, —O2, to oxygen and hydrogen peroxide.


As a second step, the conjugation of PEG, SODm or diazenium diolates to the protein or polysaccharide, or a combination thereof, is cold-blended with EVAL. As a result, EVAL is modified with a product having high biocompatibility.


Superoxide dismutate-mimetics are oxidoreductases-based complexes that contain cations of copper, iron, or manganese. SOD-mimetics are major intracellular enzymes that protects the cell against oxygen toxicity by dismutating the radical oxygen superoxide, O2%, to oxygen and hydrogen peroxide.


Manganese-based SODm, manganese(II)dichloro-aminoethylthiolated pentaazatetracyclohexacosatriene (SOD-40470) manufactured by Metaphore Pharmaceuticals, Inc., St. Louis, Mo. is one example of SODm that can be used to conjugate to the protein or polysaccharide. This complex seven-ligand SODm has a formula




embedded image



where R is 2-aminoethylmercapto group, —SCH2CH2NH2. Those having ordinary skill in the art can also select other types of SODm. Due to the presence of the primary amino ligands, SOD-40470 is chemically quite active and can be easily conjugated to the protein or the polysaccharide, or to a combination of the protein and the polysaccharide.


Diazenium diolate type nitric oxide donors are adducts of nitric oxide (NO) with nucleophilic amines. Diazenium diolates also known as NONOates are highly biologically compatible and possess valuable medicinal properties. In slightly acidic medium they spontaneously release NO which has excellent therapeutical properties. One example of diazenium diolate that can be used to conjugate to the protein or polysaccharide is spermine diazenium diolate (SDD).


An aliphatic NONOate, SDD, or 1,3-propanediamine, N-{4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl}-diazen-1-ium-1,2-diolate has the formula ═NH2—(CH2)3—N[N+(O)—(N—OH)]—(CH2)4—NH—(CH2)3—NH2 and is manufactured by Molecular Probes, Inc., Eugene, Oreg. Alternatively, other diazenium diolate-type NO donors can be used. One example of a suitable alternative diazenium diolate-type NO donor can be 1-{N-methyl-N-[6-(N-methylammonio)hexyl]amino}diazen-1-ium-1,2-diolate having the formula CH3—N+H2—(CH2)6—N(CH3—N+(O)═N—O (MAHMA-NO). Another example of a suitable alternative NONOate can be Z-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate having the formula O—N+[N(CH2—CH2—NH2)CH2—CH2—N+H3]═N—O (DETA-NO). MAHMA-NO and DETA-NO can be obtained from Cayman Chemical Co., Ann Arbor, Mich.


Due to the presence of amino groups, both SDD, MAHMA-NO and DETA-NO are easily conjugated to the above-mentioned proteins and/or polysaccharides, or to a combination thereof. The conditions under which the reaction of conjugation of PEG, SODm or diazenium diolates to the protein or polysaccharide, or a combination thereof, is conducted can be determined by those having ordinary skill in the art.


As a second step, the conjugated adduct of PEG, SODm or diazenium diolates to the protein or polysaccharid, or a combination thereof, is cold-blended with EVAL. As a result, EVAL is modified with a product having high biocompatibility.


EVAL can be preliminarily derivatized by tosylation (treatment with tosyl chloride), or alternatively by tresylation (by reacting with tresyl chloride). Tosyl chloride is a derivative of toluene, p-toluene sulfonyl chloride having the formula CH3—C6H4—SO2Cl (TsCl). The process of EVAL derivatization can be conducted directly on the stent. The following process of tosylation can be used.


A 2% (mass) solution of EVAL in dimethylacetamide (DMAC) can be sprayed on the stent and dried for 10 minutes at 80° C., and then for 1 hour at 140° C. A 3% (mass) of TsCl in dry xylene can be prepared and the coated EVAL stent can be shaken for 1 minute with 1.4 ml of the TsCl solution. 0.25 ml of 33% (mass) of pyridine in dry xylene can be added, followed by shaking for 4 hours in a desiccator. The stent can be then rinsed with acetone and twice with 1 mM solution of HCl to remove the excess TsCl. As a result, EVAL can be tosylated according to reaction scheme (III) and the tosyl group is attached to the EVAL backbone via hydroxy group to yield the toluenesulfoester:




embedded image


Alternatively, tresyl chloride (2,2,2-trifluoroethanesulphonyl chloride) can be used to derivatrize EVAL, according to reaction scheme (IV) and the tresyl group is attached to the EVAL backbone via hydroxy group:




embedded image


EXAMPLE 6
Modifier: Poly(ethylene glycol)-amine Adduct

Poly(ethylene glycol)-amine adduct (hereinafter, PEG-NH2) is a PEG-based product having amino groups NH2. An example of a PEG-NH2 that can be used as a modifier for the tosylated or tresylated EVAL is a methoxylated PEG-NH2 adduct having a general formula CH3—[O—CH2—CH2]p—O—CH2—CH2—NH2. This adduct, manufactured by Shearwater Corp., Huntsville, Ala., has a molecular weight of about 5,000 which corresponds to the value of the integer “p” of about 113.


In addition, since toluenesulfonic acid is known to be a very strong acid, on par with sulfuric or hydrochloric acids, its anion, CH3—C6H4—SO3, is an excellent leaving group in the nucleophilic substitution alkylation reaction of a primary amine, much better than hydroxyl group of underivatized EVAL. Accordingly, the tosylated EVAL obtained as described above, readily reacts with PEG-NH2 as schematically shown by the alkylation reaction scheme (V):




embedded image


The conditions under which this reaction are conducted can be determined by those having ordinary skill in the art. The reaction of tresylated EVAL and PEG-NH2 is similar to reaction scheme (V). As a result, EVAL is firmly bonded to the biologically compatible PEG-NH2 to form the secondary amine product of reaction (V).


EXAMPLE 7
Modifier: SOD-Mimetic

SOD-mimetics are highly biocompatible and can be used for modifying tosylated or tresylated EVAL. In particular, SOD-40470 can be used as a modifying agent for the tosylated or tresylated EVAL. Due to the presence of the primary amino ligands, SOD-40470 is chemically active and is readily alkylated with the tosylated or tresylated EVAL in solution. Alternatively, other SOD-mimetics can be used so long as they have amino groups. The mechanism of the tosylation or tresylation is via a reaction of alkylation of the amino group of SODm and is similar to reaction scheme (V) discussed above. The conditions under which this reaction is conducted will be determined by those having ordinary skill in the art. As a result, EVAL is firmly bonded to the biologically compatible amino ligand-containing SODm to form the secondary amine product.


EXAMPLE 8
Modifier: Spermine Diazenium Diolate

Tosylated or tresylated EVAL can be modified by binding it to a NONOate. Spermine diazenium diolate, SDD, can be used as a modifying agent for the tosylated or tresylated EVAL. Due to the presence of two primary and one secondary amino groups, SDD is easily alkylated with the tosylated or tresylated EVAL in solution. The mechanism of such tosylation or tresylation is via a reaction of alkylation of the amino group of SDD and is similar to reaction scheme (V) discussed above. Alternatively, other diazenium diolate-type NO donors can be used, so long as they have amino groups, for example, MAHMA-NO or DETA-NO. The mechanism of binding of the tosylated or tresylated EVAL to MAHMA-NO or DETA-NO is the same as the mechanism of binding to SDD.


The conditions under which the reaction of binding the tosylated or tresylated EVAL to SDD, or the alternative diazenium diolate-type NO donors, is conducted can be determined by those having ordinary skill in the art. As a result, EVAL is firmly bonded to the biologically compatible diazenium diolate-type NO donors to form the secondary amine product. Since the modified product will be able to release NO having valuable medicinal properties, the stent coating will acquire additional therapeutic properties.


3. Polymer Subject to Modification is a Copolymer of Ethylene with Acrylic Acid (EAA)


EAA has the general formula —[CH2—CH2]m—[CH2—CH(COOH)]n—. In one embodiment of this invention, 25% (by mass) aqueous, ammonia-neutralized dispersion of EAA manufactured by Michelman, Inc., Cincinnati, Ohio is used. In some of the embodiments of this invention EAA is modified as illustrated in the following examples.


EXAMPLE 9
Modifier: PEG-NH2

Due to the presence of the amino groups, PEG-NH2 is chemically active and is readily acylated with the carboxyl groups of EAA. Accordingly, EAA readily reacts with PEG-NH2. The reaction is carried out in the presence of EDC. EAA reacts with EDC and forms an O-acylisourea, an amine-reactive intermediate. This intermediate is unstable in aqueous environment and immediately reacts with PEG-NH2 through PEG-NH2's amino groups.


The path of the reaction is via the nucleophilic attack of the carbon of the carboxyl group of EAA by the electron-rich nitrogen of the amino group of PEG-NH2, followed by the formation of the peptide bond —NH—CO—. Water is the by-product. The process is schematically shown by the acylation reaction scheme (VI):




embedded image


Reaction scheme (VI) shows only the final products of the process. The intermediate stage of the formation of O-acylisourea is omitted. The conditions under which reaction scheme (VI) is conducted can be determined by those having ordinary skill in the art. As a result, EAA is firmly bonded to the biologically compatible PEG-NH2 to form the peptide-type product of reaction scheme (VI).


EXAMPLE 10
Modifier: SOD-Mimetic

SOD-40470 can be used as a modifying agent of EAA. Due to the presence of the primary amino ligands, SOD-40470 is chemically active and readily couples with EAA. Just as in the case of modification with PEG-NH2, the reaction is carried in the presence of EDC. The mechanism of the reaction is via acylation of the amino group of SOD-40470 and is similar to reaction scheme (VI). Other SOD-mimetics can be used so long as they have amino groups. EAA can be firmly bonded to the biologically compatible amino ligand-containing SOD-40470 to form the peptide-type product.


EXAMPLE 11
Modifier: Spermine Diazenium Diolate

SDD can be used as a modifying agent of EAA. Due to the presence of the amino groups, SDD is chemically active and readily couples with EAA. Just as in the case of modification with PEG-NH2 and SOD-40470, the reaction is carried out in the presence of EDC. The mechanism of the reaction is via acylation of the amino group of SDD and is similar to reaction scheme (VI). Other diazenium diolate-type NO donors can be used, so long as they have amino groups, for example, MAHMA-NO or DETA-NO. The mechanism of coupling the EAA to MAHMA-NO or to DETA-NO is the same as the mechanism of coupling the EAA to SDD. The conditions under which the reaction of binding EAA to SDD or the alternative diazenium diolate-type NO donors is conducted can be determined by those having ordinary skill in the art. As a result, EAA is firmly bonded to the biologically compatible diazenium diolate-type NO donors to form the peptide-type adduct. The modified product will be able to release NO.


4. Polymer Subject to Modification is a Copolymer of Ethylene with Glycidyl Methacrylate (EGMA)


EGMA has the general formula




embedded image



wherein m and n are integers. A brand of EGMA having about 80% (by mass) of the units derived from ethylene can be used for modification. EGMA is an aliphatic epoxy oligomer with relatively high contents of epoxy functionality. Due to the presence of the epoxy groups, EGMA is chemically reactive and can be modified via these epoxy groups, particularly, by reacting EGMA with substances containing amino-, carboxyl-, and/or hydroxyl groups. In accordance with some of the embodiments of this inventions EGMA is modified as shown in the following examples.


EXAMPLE 12
Modifier: PEG-NH2

As mentioned above, PEG-NH2 is chemically active and its amino group easily reacts with the epoxy group of EGMA. The path of the reaction is via the SN2 nucleophilic attack of the epoxy group of EGMA by the electron-rich nitrogen of the amino group of PEG-NH2. As a result, the oxirane ring of EGMA opens and a hydroxyl group forms. The process is schematically shown by reaction scheme (VII):




embedded image


Reaction scheme (VII) may then continue and, depending on the amounts of EGMA and PEG-NH2, the second proton of the amino group of the adduct formed according to reaction (VII) can attack the second molecule of EGMA by the same nucleophilic mechanism as shown by reaction (VII). As a result a cross-linked oligomer may form. The conditions under which reaction (VII) is conducted can be determined by those having ordinary skill in the art. Irrespective of whether the reaction stops at a stage shown by reaction (VII) or continues through the formation of the cross-linked tri-dimensional oligomeric network, EGMA is firmly bonded to the biologically compatible PEG-NH2.


EXAMPLE 13
Modifier: SOD-Mimetic

SOD-40470 can be used as a modifying agent of EGMA. Due to the presence of the primary amino ligands, SOD-40470 is chemically active and readily couples with EGMA. The mechanism of the reaction is via nucleophilic bonding of the amino group of SOD-40470 to the oxirane group of EGMA and is similar to the reaction (VII) discussed above. Alternatively, other SOD-mimetics can be used so long as they have amino groups. EGMA can be firmly bonded to the biologically compatible amino ligand-containing SOD-40470 to form a linear or cross-linked oligomer, depending on the conditions of the reaction of modification.


EXAMPLE 14
Modifier: Spermine Diazenium Diolate

SDD can be used as a modifying agent of EGMA. Due to the presence of the amino groups, SDD is chemically active and readily couples with EGMA according to the mechanism similar to reaction scheme (VII). Other diazenium diolate-type NO donors can be used, so long as they have amino groups, for example, MAHMA-NO or DETA-NO. The mechanism of coupling the EAA to MAHMA-NO or DETA-NO is the same as the mechanism of coupling to the EAA to SDD. The conditions under which the reaction of binding EGMA to SDD, or the alternative diazenium diolate-type NO donors, is conducted can be determined by those having ordinary skill in the art. EGMA can be firmly bonded to the biologically compatible diazenium diolate-type NO donors.


EXAMPLE 15
Modifier: Hydroxyl-Terminated Methoxy-PEG

Hydroxyl-terminated methoxy-PEG is a PEG-based product having hydroxyl groups. An example of a hydroxyl-terminated methoxy-PEG suitable as a modifier for EGMA is monomethyl ether of PEG, a methoxylated PEG adduct having a general formula CH3O—[CH2—CH2—O]p—CH2—CH2—OH, known as a low-diol mPEG. The adduct is manufactured by Shearwater Corp., Huntsville, Ala., and, like PEG-ISO or PEG-EPO, has a molecular weight of about 5,000, which corresponds to a value of the integer “p” of about 112. The low-diol mPEG is a strong nucleophilic agent and bonds with EGMA via a nucleophilic substitution reaction of its nucleophilic hydroxyl group with the oxirane ring of EGMA. The mechanism of that reaction is similar to the mechanism illustrated schematically by reaction (II).


Carboxyl-terminated methoxy-PEG is a PEG-based product having carboxyl groups, —COOH. An example of a carboxyl-terminated methoxy-PEG suitable as a modifier for EGMA is methoxy-PEG propionic acid, a methoxylated PEG-based adduct having a general formula CH3O—[CH2—CH2—O]p—CH2—CH2COOH, known as PA-PEG. The adduct, manufactured by Shearwater Corp., Huntsville, Ala., has a molecular weight of about 5,000 which corresponds to the value of the integer “p” of about 111.


Naturally, modification of EGMA by the low diol mPEG is carried out more effectively in the presence of the electron acceptors, which facilitate the nucleophilic attack of the epoxy group of EGMA by the proton of the hydroxyl group of the low diol mPEG. Accordingly, modification of EGMA with the low diol mPEG is facilitated in the presence of ring-opening catalysts, that include either amines or electrophilic agents, for example, aprotonic acids such as amine-boron trifluoride adducts. The use of any ring-opening catalysts is optional.


The conditions under which this reaction is conducted can be determined by those having ordinary skill in the art. As a result, EGMA is firmly bonded to the biologically compatible low diol mPEG to form the product similar to the product of reaction (II).


EXAMPLE 16
Modifier: Carboxyl-Terminated Methoxy-PEG

A methoxylated PEG-based adduct having a general formula CH3O—[CH2—CH2—O]n—CH2—CH2COOH, known as PA-PEG, can be used. The adduct, manufactured by Shearwater Corp., Huntsville, Ala., has a molecular weight of about 5,000 which corresponds to the value of the integer “n” of about 111.


Like low diol mPEG, PA-PEG is a strong nucleophilic agent which can react with the epoxy group of EGMA. The mechanism of this reaction is similar to the mechanism illustrated schematically by reaction (II), except that a proton of a carboxyl group carries out the nucleophilic attack instead of the alcohol proton illustrated by reaction (II). EGMA can be firmly bonded to the biologically compatible PA-PEG to form a product similar to the product of reaction (II).


Modification of EVAL, tosylated or tresylated EVAL, EAA and EGMA discussed in Examples 1–16 can be recapitulated as shown in Table 1.











TABLE 1





Example
The modified polymer
The modifying agent

















1
EVAL
PEG


2
EVAL
PEG-ISO


3
EVAL
PEG-EPO


4
EVAL
Hyaluronic acid


5
EVAL
PEG or SODm or diazenium




diolate + albumin or heparin




or chitosan


6
Tosylated or tresylated EVAL
PEG-NH2


7
Tosylated or tresylated EVAL
SODm


8
Tosylated or tresylated EVAL
SDD


9
EAA
PEG-NH2


6
Tosylated or tresylated EVAL
PEG-NH2


7
Tosylated or tresylated EVAL
SODm


8
Tosylated or tresylated EVAL
SDD


9
EAA
PEG-NH2


10
EAA
SODm


11
EAA
SDD


12
EGMA
PEG-NH2


13
EGMA
SODm


14
EGMA
SDD


15
EGMA
Low diol mPEG


16
EGMA
PA-PEG









While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims
  • 1. A coating for a medical device, wherein the coating comprises a biologically compatible compound conjugated to a polymer, wherein the polymer comprises tosylated or tresylated ethylene-vinyl alcohol copolymer (EVAL), or ethylene-glycidyl methacrylate copolymer (EGMA), andwherein the biologically compatible compound comprises a superoxide dismutase compound.
  • 2. The coating of claim 1, wherein the superoxide dismutase compound comprises manganese(II)dichloro-aminoethylthiolated pentaazatetracyclohexacosatriene.
  • 3. The coating of claim 1, wherein the device comprises a stent.
  • 4. The coating of claim 1, wherein the biologically compatible compound is further conjugated to a protein or a polysaccharide.
  • 5. The coating of claim 1 further comprising a therapeutic substance, wherein the therapeutic substance is estradiol, paclitaxel, docetaxel or rapamycin.
  • 6. A coating for a medical device, wherein the coating comprises a biologically compatible compound conjugated to a polymer, wherein the polymer comprises tosylated or tresylated ethylene-vinyl alcohol copolymer (EVAL), or ethylene-glycidyl methacrylate copolymer (EGMA), and wherein the biologically compatible compound comprises a diazenium diolate compound.
  • 7. The coating of claim 6, wherein the diazenium diolate comprises a component selected from a group consisting of 1,3-propanediamine, N-{4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl}-diazen-1-ium-1,2-diolate and 1-{N-methyl-N-[6-(N-methylammonio)hexyl]amino}diazen-1-ium-1,2-diolate.
  • 8. The coating of claim 6, wherein the device comprises a stent.
  • 9. The coating of claim 6, wherein the biologically compatible compound is further conjugated to a protein or to a polysaccharide.
  • 10. The coating of claim 6 further comprising a therapeutic substance, wherein the therapeutic substance is estradiol, paclitaxel, docetaxel, or rapamycin.
  • 11. A method of fabricating a medical device comprising: (a) modifying a polymer by reacting a biologically compatible compound with the polymer, wherein the polymer comprises tosylated or tresylated ethylene-vinyl alcohol copolymer (EVAL), or ethylene-glycidyl methacrylate copolymer (EGMA), and(b) depositing the polymer on an implantable medical device;wherein the biologically compatible compound comprises a superoxide dismutase compound.
  • 12. The method of claim 11, wherein the superoxide dismutase compound comprises manganese(II)dichloro-aminoethylthiolated pentaazatetracyclohexacosatriene.
  • 13. The method of claim 11, wherein the biologically compatible compound further comprises a diazenium diolate or hyaluronic acid.
  • 14. The method of claim 11, wherein the device comprises a stent.
  • 15. The method of claim 11, wherein the superoxide dismutase compound comprises manganese(II)dichloro-aminoethylthiolated pentaazatetracyclohexacosatriene.
  • 16. The method of claim 11 further comprising a therapeutic substance, wherein the therapeutic substance is estradiol, paclitaxel, docetaxel, or rapamycin.
  • 17. A method of fabricating a medical device comprising: (a) modifying a polymer by reacting a biologically compatible compound with the polymer, wherein the polymer comprises tosylated or tresylated ethylene-vinyl alcohol copolymer (EVAL), or ethylene-glycidyl methacrylate copolymer (EGMA), and(b) depositing the polymer on an implantable medical device; wherein the biologically compatible compound comprises a diazenium diolate compound.
  • 18. The method of claim 9, wherein the diazenium diolate comprises a component selected from a group consisting of 1,3-propanediamine, N-{4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl}-diazen-1-ium-1,2-diolate and 1-{N-methyl-N-[6-(N-methylammonio)hexyl]amino}diazen-1-ium-1,2-diolate.
  • 19. The method of claim 17, wherein the biologically compatible compound further comprises a polysaccharide comprising a component selected from a group consisting of heparin, heparin containing hydrophobic counter-ion, chitosan, and hyaluronic acid.
  • 20. The method of claim 19, wherein the therapeutic substance is taxol, estradiol, paclitaxel, docetaxel, or rapamycin.
  • 21. The method of claim 17, wherein the biologically compatible compound is further conjugated to a protein or a polysaccharide.
  • 22. The method of claim 17 further comprising a therapeutic substance, wherein the therapeutic substance is estradiolg paclitaxel, docetaxel, or rapamycin.
  • 23. A method of fabricating a medical device comprising: (a) forming a polymeric coating on an implantable medical device, wherein the polymer comprises tosylated or tresylated ethylene-vinyl alcohol copolymer (EVAL), or ethylene- glycidyl methacrylate copolymer (EGMA), and(b) modifying the coating by reacting the polymer with a biologically compatible compound, wherein the biologically compatible compound comprises a superoxide dismutase compound.
  • 24. The method of claim 14, wherein the device comprises a stent.
  • 25. The method of claim 23, further comprising a therapeutic substance contained in the coating wherein the therapeutic substance is estradiol, paclitaxel, docetaxel, or rapamycin.
  • 26. The method of claim 23, wherein the device comprises a stent.
  • 27. The method of claim 23, wherein the biologically compatible compound is further conjugated to a protein or a polysaccharide.
  • 28. A method of fabricating a medical device comprising: (a) forming a polymeric coating on an implantable medical device, wherein the polymer comprises tosylated or tresylated ethylene-vinyl alcohol copolymer (EVAL), or ethylene- glycidyl methacrylate copolymer (EGMA), and(b) modifying the coating by reacting the polymer with a biologically compatible compound, wherein the biologically compatible compound comprises a diazenium diolate compound.
  • 29. The method of claim 16, wherein the biologically compatible compound is conjugated to a protein or a polysaccharide.
  • 30. The method of claim 28, wherein the device comprises a stent.
  • 31. The method of claim 28 further comprising a therapeutic substance contained in the coating wherein the therapeutic substance is estradiol, paclitaxel, docetaxel, or rapamycin.
  • 32. The method of claim 28, wherein the biologically compatible compound is further conjugated to a protein or a polysaccharide.
  • 33. A method of fabricating a medical device comprising forming a coating on the device, wherein the coating comprises a biologically compatible compound conjugated to a polymer comprising tosylated or tresylated ethylene-vinyl alcohol copolymer (EVAL) or ethylene-glycidyl methacrylate copolymer (EGMA) wherein the biologically compatible compound comprises a superoxide dismutase compound, a diazenium diolate, or hyaluronic acid; and,wherein the diazenium diolate comprises a component selected from a group consisting of 1,3-propanediamine, N- {4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino] butyl}-diazen-1-ium-1,2-diolate and 1-{N-methyl-N-[6-(N-methylammonio)hexyl]amino}diazen-1-ium- 1,2-diolate.
  • 34. The coating of claim 1 further comprising a therapeutic substance.
  • 35. The coating of claim 3 further comprising a therapeutic substance.
  • 36. The method of claim 34, wherein the biologically compatible compound is further conjugated to a protein or a polysaccharide.
  • 37. The method of claim 34 further comprising a therapeutic substance, wherein the therapeutic substance is estradiol, paclitaxel, docetaxel, or rapamycin.
  • 38. The method of claim 30, wherein the medical device comprises a stent.
  • 39. The method of claim 33, wherein the biologically compatible compound is further conjugated to a protein or a polysaccharide.
  • 40. The method of claim 33 further comprising a therapeutic substance, wherein the therapeutic substance is estradiol, paclitaxel, docetaxel, or rapamycin.
  • 41. A coating for a medical device, wherein the coating comprises a biologically compatible compound conjugated to a polymer comprising tosylated or tresylated ethylene-vinyl alcohol copolymer (EVAL), or ethylene-glycidyl methacrylate copolymer (EGMA), wherein the biologically compatible compound comprises a superoxide dismutase compound, a diazenium diolate, or hyaluronic acid; andwherein the diazenium diolate comprises a component selected from a group consisting of 1,3-propanediamine, N-{4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl}-diazen 1-ium- 1,2-diolate and 1-{N-methyl-N-[6-(N-methylammonio)hexyl]amino }diazen- 1-ium 1,2-diolate.
  • 42. The method of claim 30, wherein the biologically compatible compound is conjugated to a protein or a polysaccharide.
  • 43. The coating of claim 42, wherein the medical device comprises a stent.
  • 44. The method of claim 32, wherein the biologically compatible compound is conjugated to a protein or a polysaccharide.
  • 45. The coating of claim 42 further comprising a therapeutic substance, wherein the therapeutic substance is estradiol, paclitaxel, docetaxel, or rapamycin.
  • 46. The method of claim 30 further comprising a therapeutic substance.
  • 47. The coating of claim 31 further comprising a therapeutic substance.
  • 48. The coating of claim 41 further comprising a therapeutic substance, wherein the therapeutic substance is estradiol, paclitaxel, docetaxel, or rapamycin.
US Referenced Citations (151)
Number Name Date Kind
3844527 Scott Oct 1974 A
4329383 Joh May 1982 A
4733665 Palmaz Mar 1988 A
4800882 Gianturco Jan 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4941870 Okada et al. Jul 1990 A
4977901 Ofstead Dec 1990 A
5112457 Marchant May 1992 A
5165919 Sasaki et al. Nov 1992 A
5272012 Opolski Dec 1993 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5328471 Slepian Jul 1994 A
5330768 Park et al. Jul 1994 A
5380299 Fearnot et al. Jan 1995 A
5417981 Endo et al. May 1995 A
5447724 Helmus et al. Sep 1995 A
5455040 Marchant Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5569463 Helmus et al. Oct 1996 A
5578073 Haimovich et al. Nov 1996 A
5605696 Eury et al. Feb 1997 A
5609629 Fearnot et al. Mar 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5649977 Campbell Jul 1997 A
5658995 Kohn et al. Aug 1997 A
5667767 Greff et al. Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5679400 Tuch Oct 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5716981 Hunter et al. Feb 1998 A
5735897 Buirge Apr 1998 A
5746998 Torchilin et al. May 1998 A
5776184 Tuch Jul 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5820917 Tuch Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5851508 Greff et al. Dec 1998 A
5858746 Hubbell et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5869127 Zhong Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876433 Lunn Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5897955 Drumheller Apr 1999 A
5925720 Kataoka et al. Jul 1999 A
5955509 Webber et al. Sep 1999 A
5971954 Conway et al. Oct 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5997517 Whitbourne Dec 1999 A
6010530 Goicoechea Jan 2000 A
6015541 Greff et al. Jan 2000 A
6033582 Lee et al. Mar 2000 A
6042875 Ding et al. Mar 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6080488 Hostettler et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099562 Ding et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6129761 Hubbell Oct 2000 A
6153252 Hossainy et al. Nov 2000 A
6165212 Dereume et al. Dec 2000 A
6203551 Wu Mar 2001 B1
6231600 Zhong May 2001 B1
6231852 Bredesen May 2001 B1
6232336 Hrabie et al. May 2001 B1
6240616 Yan Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6254632 Wu et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6379691 Tedeschi et al. Apr 2002 B1
6387379 Goldberg et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6419692 Yang et al. Jul 2002 B1
6437032 Iyengar et al. Aug 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6494862 Ray et al. Dec 2002 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6540776 Millare et al. Apr 2003 B2
6541116 Michal et al. Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6572644 Moein Jun 2003 B1
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6605154 Villareal Aug 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6793960 Michal et al. Sep 2004 B1
6908624 Hossainy et al. Jun 2005 B2
7186789 Hossainy et al. Mar 2007 B2
7202325 Pacetti et al. Apr 2007 B2
20010018469 Chen et al. Aug 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20020077693 Barclay et al. Jun 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020155212 Hossainy Oct 2002 A1
20020183380 Hunter Dec 2002 A1
20020188323 Penner et al. Dec 2002 A1
20030065377 Davila et al. Apr 2003 A1
20030099712 Jayaraman May 2003 A1
20040086542 Hossainy et al. May 2004 A1
20050031874 Michal et al. Feb 2005 A1
20050238686 Hossainy et al. Oct 2005 A1
20050265960 Pacetti et al. Dec 2005 A1
20050288481 DesNoyer et al. Dec 2005 A1
20060121089 Michal et al. Jun 2006 A1
20060147412 Hossainy et al. Jul 2006 A1
20060160985 Pacetti et al. Jul 2006 A1
20060246109 Hossainy et al. Nov 2006 A1
20070100123 Hossainy et al. May 2007 A1
Foreign Referenced Citations (49)
Number Date Country
0 301 856 Feb 1989 EP
0 514 406 Nov 1992 EP
0 604 022 Jun 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 716 836 Jun 1996 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 273 314 Jan 2003 EP
2001-190687 Jul 2001 JP
WO9112846 Sep 1991 WO
WO9510989 Apr 1995 WO
WO9640174 Dec 1996 WO
WO9710011 Mar 1997 WO
WO9745102 Dec 1997 WO
WO9746590 Dec 1997 WO
WO9817331 Apr 1998 WO
WO9836784 Aug 1998 WO
WO9901118 Jan 1999 WO
WO9938546 Aug 1999 WO
WO9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0072893 Dec 2000 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0174414 Oct 2001 WO
WO 0203890 Jan 2002 WO
WO 02026162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 02056790 Jul 2002 WO
WO 03000308 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO