1. Technical Field
The present disclosure relates to an audio speaker, in particular, to an audio speaker with Z-shaped cross-sectional magnetic-conductive base. Specially, the audio speaker employs a bass sound unit and a treble sound unit surrounded by the bass sound unit. Further, a bass vibration audio source point and a treble vibration audio source point may be aligned at the same horizontal level.
2. Description of Related Art
Traditional earphones or audio speakers are equipped with one single amplifier (sound unit) and that renders difficult the realization of a broad range of listening experience. And certain tradeoff becomes necessary if the bass performance needs to be enhanced (at the expense of the treble performance). Even for achieving the goal of the above mentioned broad listening experience, multiple separate sound units (for example, distinct treble sound unit and bass sound unit) need to be placed within the earphones or the audio speakers, occupying additional space inside the earphones or the audio speakers and inevitably increasing the size of the same.
In order to overcome the aforementioned deficiency, the present disclosure provides a coaxial audio speaker using a single audio source. A bass sound unit may be co-axially disposed with and surrounding a treble sound unit, reducing the size of the audio speaker, enabling the bass vibration audio source point to be at the same horizontal level with the treble vibration audio source point, and realizing a broader range of electricity adjustability.
A coaxial audio speaker according to the present disclosure may include a treble sound unit with a treble vibration audio source point, a wiring board, and a treble sound hole. The same audio speaker may also include a bass sound unit having a magnetic-conductive base with a center portion of the magnetic-conductive base defining a hollow treble positioning surface. A main body of the magnetic-conductive base may define an auxiliary magnetic adjoining space and a vocal coil movement space adjacent to the auxiliary magnetic adjoining space and separated from each other by a separating wall. The bass sound unit may include a ring-shaped magnet having a first surface and a second surface opposite to the first surface. The first surface may be stationed within the vocal coil movement space, and the ring-shaped magnet may be fixed within the vocal coil movement space and away from the separating wall to form a magnetic gap between the ring-shaped magnet and the separating wall. The bass sound unit may also include a magnetic-conductive ring disposed on the second surface of the ring-shaped magnet and an opening defined by the magnetic-conductive ring and the magnetic-conductive base. The bass sound unit may further include a vibrating vocal tone diaphragm with a hollow diaphragm membrane on which a vocal coil is connected. A position where the vocal coil and the hollow diaphragm membrane connect may define a bass vibration audio source point, the vibrating vocal tone diaphragm may be fixed within the opening to enclose the opening, and the vocal coil may extend into the vocal coil movement space and position within the magnetic gap. Plus, the bass sound unit may include a wiring board adjoined on an external wall of a bottom surface defining the vocal coil movement space for positioning wires of the vocal coil. The bass sound unit and the treble sound unit may be coaxially disposed and the treble sound unit may be surrounded by the bass sound unit. The bass vibration audio source point may horizontally align with the treble vibration audio source point.
Specifically, the treble sound unit is a moving iron sound unit, a circular electromagnetic sound unit, a rectangular electromagnetic moving iron sound unit, a moving-vocal coil sound unit, a ribbon-type sound unit, a piezo-ceramic sound piece component, a piezo-ceramic sound piece adjoining another vibrating vocal tone diaphragm, or a semiconductor chip sound unit.
Specifically, a magnetic resistant ring may be disposed at the position where the co-axially disposed bass sound unit and treble sound unit adjoin, for separating a magnetic field of the bass sound unit and a magnetic field of the treble sound unit.
Specifically, the vibrating vocal tone diaphragm may further include an external pressurized frame positioned at an outer ring edge of the diaphragm membrane and an inner pressurized frame positioned at an inner ring edge of the diaphragm membrane, and the inner pressurized frame and the outer pressurized frame may connect to an inner edge and an outer edge of the magnetic-conductive base, respectively, to position the diaphragm membrane above the opening to enclose the opening.
Specifically, a vent hole may be disposed on the bottom surface defining the vocal coil movement space allowing for an air associated with the vibration of the vibrating vocal tone diaphragm to be channeled out of the vocal coil movement space.
Specifically, a flow damping gauze may be included to be adhesively attached on the external wall of the bottom surface of the magnetic-conductive base for covering the vent hole and adjusting an air flow within the vocal coil movement space, and a dust cover may be above the bass sound unit allowing for the sound of the bass sound unit to be transmitted out of a bass sound hole of the dust cover.
The diaphragm membrane may be in form of composite diaphragm material.
The auxiliary magnetic adjoining space may be in the proximity of the treble positioning surface while the vocal coil movement space may be away from the treble positioning surface.
An auxiliary magnet may be adjoined within the auxiliary magnetic adjoining space.
The auxiliary magnetic adjoining space in another implementation may be away from the treble positioning surface while the vocal coil movement space may be in the proximity of the treble positioning surface instead.
The auxiliary magnet may be adjoined within the auxiliary magnetic adjoining space.
For further understanding of the present disclosure, reference is made to the following detailed description illustrating the embodiments and examples of the present disclosure. The description is only for illustrating the present disclosure, not for limiting the scope of the claim.
The drawings included herein provide further understanding of the present disclosure. A brief introduction of the drawings is as follows:
The aforementioned and other technical contents, features, and efficacies will be shown in the following detail descriptions of a preferred embodiment corresponding with the reference Figures.
Please refer to
The bass sound unit 100 may be implemented in terms of a single magnetic gap mechanism. The bass sound unit 100 may include a ring-shaped magnetic-conductive base 3. A center portion of the magnetic-conductive base 3 may have a hollow treble positioning surface defined. A main body of the magnetic-conductive base 3 may include an auxiliary magnetic adjoining space 321 and a vocal coil movement space 322 adjacent to the auxiliary magnetic adjoining space 321. The auxiliary magnetic adjoining space 321 and the vocal coil movement space 322 may be separated from each other by a separating wall 323. A cross-section of the conductive-magnetic base 3 may be Z-shaped. A vent hole 325 may be disposed on a bottom surface 324 of the vocal coil movement space 322. As shown in
Please refer to
Please refer to
The top surface of the magnet 51 may be adhesively attached to a magnetic-conductive ring 601. Both the magnetic-conductive ring 601 and the magnet 5 may be positioned within the vocal coil movement space 322.
An opening 31 may be formed between the magnetic-conductive base 3 and the magnetic-conductive ring 601. The opening 31 may be integrated with a vibrating vocal tone diaphragm 9. The vibrating vocal tone diaphragm 9 may be composed by a ring-shaped external pressurized frame 901, a hollow diaphragm membrane 902, and a ring-shaped internal pressurized frame 903. The ring-shaped diaphragm membrane 902 may be with an outer ring edge and an inner ring edge. The inner ring edge may be where the ring-shaped inner pressurized frame 903 is positioned while the outer ring edge may be where the ring-shaped external pressurized frame 901 is positioned. A vocal coil 8 may be connected to the diaphragm membrane 902 between the external pressurized frame 901 and the internal pressurized frame 903. The position where the vocal coil 8 connects to the diaphragm membrane 902 may be where a bass vibration audio source point 1301 is formed. As the external pressurized frame 901 and the internal pressurized frame 903 may be attached to the outer ring edge and the inner ring edge of the opening 31, respectively, the vocal coil 8 may be positioned within the vocal coil movement space 322 and within the magnetic gap 34 between the magnet 51 and the separating wall 323. The vibrating vocal tone diaphragm 9 may therefore enclose the opening 31.
Magnetic fields provided by the magnet 51 may be conductive present the magnetic-conductive ring 601 along with the vocal coil 8 and the providing the magnetic gap and the magnetic-conductive base 3 further serving to render conductive the magnetic fields. A vent hole 325 may allow for the air associated with the vibration of the vibrating vocal tone diaphragm 9 to be channeled out. It is worth noting that another side of the magnet 51 may extend out of the coil movement space 322, enhancing the magnetic force of the magnetic gap.
Please refer to
Please refer to
As shown in
As shown in
A wiring board 4 may be adhesively attached to an external wall of the coil movement space 322. The wiring board 4 may allow for wires 81 of the vocal coil 8 to be positioned.
The coupling between the treble sound unit 2 and the magnetic resistant ring 7 or the magnetic-conductive base 3 may be by adhesion, engaging, or other commercially available connecting approaches. The bass sound unit 100 may co-axially surround the treble sound unit 2 and the bass vibration audio source point 1301 of the bass sound unit 100 may be at the same horizontal level with the treble vibration audio source point 1302 of the treble sound unit 2. Thus, the audio speaker according to the present disclosure may be with a broader range of electricity adjustability even with one single audio source.
The wiring board 14 of the magnetized treble sound unit 2 and the wiring board 4 of the magnetized bass sound unit 100 may be connected to electrical signal wires.
The external surface of the bottom surface of the coil movement space 322 may be having flow damping gauze 1 adhesively attached. The flow damping gauze 1 may cover the vent hole 325 and may be for adjusting the air flow within the coil movement space 322.
Above the bass sound unit 100 where the vibrating vocal tone diaphragm is disposed may overlay a dust cover 10. A bass sound hole 11 may be disposed on the dust cover 10. The sound from the bass sound unit 100 may be channeled through the bass sound hole 11 of the dust cover 10.
As shown in
The embodiments discussed in above may be applicable in a variety of different audio speakers or earphones. The earphones, for instance, may include in-ear headphones, ear canal headphones, back neck earphones, and headphones.
Some modifications of these examples, as well as other possibilities will, on reading or having read this description, or having comprehended these examples, will occur to those skilled in the art. Such modifications and variations are comprehended within this disclosure as described here and claimed below. The description above illustrates only a relative few specific embodiments and examples of the present disclosure. The present disclosure, indeed, does include various modifications and variations made to the structures and operations described herein, which still fall within the scope of the present disclosure as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2426948 | Preston | Sep 1947 | A |
3796839 | Torn | Mar 1974 | A |
4492826 | Chiu | Jan 1985 | A |
4552242 | Kashiwabara | Nov 1985 | A |
5339286 | Esposto | Aug 1994 | A |
5548657 | Fincham | Aug 1996 | A |
6002780 | Espiritu | Dec 1999 | A |
6222929 | Kim | Apr 2001 | B1 |
7324657 | Kobayashi | Jan 2008 | B2 |
8150077 | Akino | Apr 2012 | B2 |
Number | Date | Country | |
---|---|---|---|
20160014485 A1 | Jan 2016 | US |