The present invention relates generally to connectors for terminating coaxial cable. More particularly, the present invention relates to a coaxial cable connector having structural features to increase the range of cable sizes that can be accepted by the connector.
It has long been known to use connectors to terminate coaxial cable so as to connect a cable to various electronic devices such as televisions, radios and the like. Prior art coaxial connectors generally include a connector body having an annular collar for accommodating a coaxial cable, an annular nut rotatably coupled to the collar for providing mechanical attachment of the connector to an external device and an annular post interposed between the collar and the nut. A resilient sealing O-ring may also be positioned between the collar and the nut at the rotatable juncture thereof to provide a water resistant seal thereat. The collar includes a cable receiving end for insertably receiving an inserted coaxial cable and, at the opposite end of the connector body, the nut includes an internally threaded end extent permitting screw threaded attachment of the body to an external device.
This type of coaxial connector further typically includes a locking sleeve to secure the cable within the body of the coaxial connector. The locking sleeve, which is typically formed of a resilient plastic, is securable to the connector body to secure the coaxial connector thereto. In this regard, the connector body typically includes some form of structure to cooperatively engage the locking sleeve. Such structure may include one or more recesses or detents formed on an inner annular surface of the connector body, which engages cooperating structure formed on an outer surface of the sleeve. A coaxial cable connector of this type is shown and described in commonly owned U.S. Pat. No. 6,530,807.
Conventional coaxial cables typically include a center conductor surrounded by an insulator. A conductive foil is disposed over the insulator and a braided conductive shield surrounds the foil covered insulator. An outer insulative jacket surrounds the shield. In order to prepare the coaxial cable for termination, the outer jacket is stripped back exposing an extent of the braided conductive shield which is folded back over the jacket. A portion of the insulator covered by the conductive foil extends outwardly from the jacket and an extent of the center conductor extends outwardly from within the insulator.
Upon assembly, a coaxial cable is inserted into the cable receiving end of the connector body, wherein the annular post is forced between the foil covered insulator and the conductive shield of the cable. In this regard, the post is typically provided with a radially enlarged barb to facilitate expansion of the cable jacket. The locking sleeve is then moved axially into the connector body to clamp the cable jacket against the post barb providing both cable retention and a water-tight seal around the cable jacket.
Generally, such prior art connectors are designed to work for coaxial cables of a specified diameter. In other words, typical prior art coaxial cable connectors are not suitably designed to accommodate a range of cable diameters. For example, a connector adapted to connect with a relatively small diameter cable is typically designed with reduced internal dimensions making connection with a larger diameter cable impossible. Conversely, connectors adapted for larger diameter cables have larger internal dimensions, which do not adequately retain and seal smaller diameter cables.
A further problem with current coaxial connectors is that in order to properly attach the connector to the coaxial cable, a good deal of manual force must be applied to push the coaxial shielded cable over the barbs of the post. During conventional installation, the cable can buckle when the post with the barb is pushed between the foil and the braid and create an unsatisfactory electrical and mechanical connection. Thus, a mistake made in the preparation process may result in a faulty connector installation.
It is, therefore, desirable to provide a coaxial connector with structural features to enhance gripping and sealing of coaxial cables having a wide range of diameters. It would be further desirable to provide a coaxial cable connector that eliminates the need to use excessive force to push the post into the coaxial shielded cable and prevents buckling of the coaxial shielded cable.
It is an object of the present invention to provide a coaxial cable connector for terminating a coaxial cable.
It is a further object of the present invention to provide a coaxial cable connector having structure to enhance gripping and sealing of varying sizes of coaxial cables.
In the efficient attainment of these and other objects, the present invention provides a coaxial cable connector. The connector of the present invention generally includes a connector body having a rearward cable receiving end, a locking sleeve movably coupled to the rearward cable receiving end of the connector body and a sleeve ring movably disposed within a rearward sleeve ring receiving end of the locking sleeve. The sleeve ring has a forward end for retaining a cable within the connector upon forward insertion of the sleeve ring within the locking sleeve. The connector further preferably includes an annular post disposed within the connector body, wherein the forward end of the sleeve ring urges the cable against the post upon forward insertion of the sleeve ring within the locking sleeve.
In a preferred embodiment, the locking sleeve includes a sleeve flange formed on an inner surface thereof and the sleeve flange includes a flexible skirt. The forward end of the sleeve ring engages the flexible skirt upon forward insertion of the sleeve ring within the locking ring to deflect the flexible skirt radially inward whereby the skirt engages the cable to retain the cable within the connector.
In an alternative embodiment, the connector further includes a cable gripping O-ring disposed within the locking sleeve. The forward end of the sleeve ring compresses the O-ring upon forward insertion of the sleeve ring within the locking sleeve to expand the O-ring radially inward. In this manner, the O-ring engages the cable to retain the cable within the connector and to provide a seal around the cable.
In another alternative embodiment, the locking sleeve includes a sleeve flange formed on an inner surface thereof and the sleeve flange includes a ramped portion. In this embodiment, the forward end of the sleeve ring includes a deformable edge portion, which engages the flange ramped portion upon forward insertion of the sleeve ring within the locking sleeve, whereby the deformable edge portion is deflected radially inward to engage the cable and retain the cable within the connector.
The present invention further involves a coaxial cable connector including a connector body, a locking sleeve movably coupled to a rearward cable receiving end of the connector body and a cable gripping ferrule disposed in the connector body forward of the locking sleeve. The connector body further includes a first engagement portion having a first internal diameter and a second engagement portion having a second internal diameter, wherein the second internal diameter is smaller than the first internal diameter. When the locking sleeve is moved forward, it forces the cable gripping ferrule from the first engagement portion of the connector body into the second engagement portion, wherein the gripping ferrule compresses in a radially inward direction for engaging a cable inserted in the connector.
The cable gripping ferrule can be in the form of a split ring formed separate from the locking sleeve, wherein the ring has an outer diameter substantially equal to the first internal diameter of the connector body first engagement portion. Alternatively, the cable gripping ferrule can be an integral forward portion of the locking sleeve, wherein the portion has at least one slot formed therein to facilitate its radially inward compression.
In either case, the gripping ferrule preferably has a length, a first substantially constant outer diameter along its entire length when the gripping ferrule is disposed in the connector body first engagement portion and a second substantially constant outer diameter along its entire length when the gripping ferrule is disposed in the connector body second engagement portion. The second substantially constant outer diameter is smaller than the first substantially constant outer diameter.
The present invention further involves a method for terminating a coaxial cable in a connector. The method generally includes the steps of inserting an end of a cable into a rearward cable receiving end of a connector body, axially moving a locking sleeve coupled to the connector body in a forward direction and axially moving a sleeve ring within the locking sleeve in a forward direction, wherein the sleeve ring has a forward end for retaining a cable within the connector upon forward insertion of the sleeve ring within the locking sleeve.
A preferred form of the coaxial connector, as well as other embodiments, objects, features and advantages of this invention, will be apparent from the following detailed description of illustrative embodiments thereof, which is to be read in conjunction with the accompanying drawings.
a is an enlarged detail view of the interaction between the inner sleeve ring and the locking sleeve flange shown in
a is an enlarged detail view of the interaction between the inner sleeve ring and the O-ring shown in
a is an enlarged detail view of the interaction between the inner sleeve ring and the locking sleeve ramp portion shown in
Referring first to
The connector body 12, also called a collar, is an elongate generally cylindrical member, which can be made from plastic or from metal or the like. The body 12 has a forward end 22 coupled to the post 18 and the nut 20 and an opposite cable receiving end 24 for insertably receiving the locking sleeve 14, as well as a prepared end of a coaxial cable in the forward direction as shown by arrow A. The cable receiving end 24 of the connector body 12 defines an inner sleeve engagement surface 26 for coupling with the locking sleeve 14. The inner engagement surface 26 is preferably formed with an arrangement of grooves or recesses 27 and protrusions 28, which cooperate with mating detent structure 29 provided on the outer surface of the locking sleeve 14.
The locking sleeve 14 is a generally tubular member having a rearward cable receiving end 30 and an opposite forward connector insertion end 32, which is movably coupled to the inner surface 26 of the connector body 12. As mentioned above, the outer cylindrical surface of the sleeve 14 at its forward end 32 includes a plurality of ridges or projections 29, which cooperate with a plurality of recesses 27 and protrusions 28 formed in the inner sleeve engagement surface 26 of the connector body 12 to allow for the movable connection of the sleeve 14 to the connector body 12 such that the sleeve is lockingly axially moveable along arrow A toward the forward end 22 of the connector body from a first position, as shown in
Preferably, there are two ridges 29 to provide locking of the sleeve 14 in both its first and second positions. Each ridge 29 is further preferably defined by a rearwardly facing perpendicular wall and a forwardly facing chamfered wall. This structure facilitates forward insertion of the sleeve 14 into the body 12 in the direction of arrow A and resists rearward removal of the sleeve from the body.
Moreover, the ridges or projections 29 of the present invention may take other forms. For example, while each ridge 29 is shown in the drawings to be continuous about the circumference of the locking sleeve 14, it is conceivable to provide gaps or spaces in one or more ridges to increase the ridge's flexibility. Also, the ridges 29 can be provided on the inner sleeve engagement surface 26 of the connector body 12, while the grooves are formed on the outer cylindrical surface of the sleeve 14.
The locking sleeve 14 further preferably includes a flanged head portion 34 disposed at the rearward cable receiving end 30 thereof. The head portion 34 has an outer diameter larger than the inner diameter of the body 12 and includes a forward facing perpendicular wall 36, which serves as an abutment surface against which the rearward end of the body 12 stops to prevent further insertion of the sleeve 14 into the body 12. A resilient, sealing O-ring 38 is preferably provided at the forward facing perpendicular wall 36 to provide a water-tight seal between the locking sleeve 14 and the connector body 12 upon insertion of the locking sleeve within the body.
The locking sleeve 14 further includes an annular sleeve flange 40 formed on the inner cylindrical surface of the locking sleeve. The sleeve flange 40 extends radially inward from the inner surface of the locking sleeve 14 and includes a rearward extending flexible skirt 42, which engages the inner sleeve ring 16 in a manner which will be described below. The flexible skirt 42 is preferably formed continuous around the inner surface of the locking sleeve 14. Alternatively, the flexible skirt 42 can consist of a series of annularly disposed individual flexible fingers, where sealing is not required. In either event, the rearward extending flexible skirt 42 and the inner surface of the locking sleeve 14 define an annular gap 44, which receives a forward end 46 of the inner sleeve ring 16.
The inner sleeve ring 16 is also a generally tubular member having a forward end 46 and an opposite rearward cable receiving end 48. The inner sleeve ring is axially movable within the rearward cable receiving end 30 of the locking sleeve 14 between a first, open position, as shown in
As mentioned above, the forward end 46 of the inner sleeve ring 16 is received within the annular gap 44 defined between the flexible skirt 42 and the inner surface of the locking sleeve 14. As will be discussed in further detail below, forward movement of the inner sleeve ring 16, in the direction of arrow A, will cause the flexible skirt 42 of the locking sleeve flange 42 to deflect radially inward, as shown in the enlarged view of
To facilitate the radially inward deflection of the flexible skirt 42, the forward end 46 of the inner sleeve ring 16 is preferably formed with a forward facing ramp portion 52 on its inner surface, which urges the flexible skirt 42 radially inward as the inner sleeve ring moves in the forward direction along arrow A. Also, the flexible skirt 42 preferably terminates at a rearward facing sharp edge 54 to facilitate “biting” into the cable jacket as the skirt deflects inward.
As mentioned above, the connector 10 of the present invention further preferably includes an annular post 18 coupled to the forward end 22 of the connector body 12. The annular post 18 includes a flanged base portion 56 at its forward end for securing the post to the connector body 12 and an annular tubular extension 58 extending rearwardly within the body 12 and terminating adjacent the forward end 32 of the connector body 12. The rearward end of the tubular extension 58 preferably includes a radially outwardly extending ramped flange portion or “barb” 60 to enhance compression of the outer jacket of the coaxial cable against the flexible skirt 42 of the inner sleeve ring 16 to secure the cable within the connector 10. The tubular extension 58 can include a series of such barbs 60 for gripping the cable. In any event, the rearward end of the tubular extension 58 preferably terminates in a sharp edge 62, which facilitates separation of the metallic foil from the metallic shield of the cable during installation, as will be discussed in further detail below. The tubular extension 58 of the post 18, the locking sleeve 14 and the body 12 define an annular chamber 64 for accommodating the jacket and shield of the inserted coaxial cable.
The connector 10 of the present invention further preferably includes a nut 20 rotatably coupled to the forward end 22 of the connector body 12. The nut 20 may be in any form, such as a hex nut, knurled nut, wing nut, or any other known attaching means, and is rotatably coupled to the connector body 12 for providing mechanical attachment of the connector 10 to an external device. A resilient sealing O-ring 66 is preferably positioned in the nut 20 to provide a water resistant seal thereat.
The connector 10 of the present invention is constructed so as to be supplied in the assembled condition shown in the drawings, wherein the locking sleeve 14 and the inner sleeve ring 16 are pre-installed inside the rearward cable receiving end 24 of the connector body 12. In such assembled condition, and as will be described in further detail hereinbelow, a coaxial cable may be inserted through the rearward cable receiving end 48 of the inner sleeve ring 16 to engage the post 18 of the connector 10. However, it is conceivable that the locking sleeve 14 and the inner sleeve ring 16 can be first slipped over the end of a cable and then be inserted into the rearward end 24 of the connector body 12 together with the cable.
Having described the components of the connector 10 in detail, the use of the connector in terminating a coaxial cable 100 may now be described. Coaxial cable 100 includes an inner conductor 102 formed of copper or similar conductive material. Extending around the inner conductor 102 is an insulator 104 formed of a dielectric material, such as a suitably insulative plastic. A metallic foil 106 is disposed over the insulator 104 and a metallic shield 108 is positioned in surrounding relationship around the foil covered insulator. Covering the metallic shield 108 is an outer insulative jacket 110.
The end of the cable 100 is inserted into the connector body 12 so that the cable jacket 110 is separated from the insulator 104 by the sharp edge 62 of the annular post 18. Once the cable 100 is fully inserted in the connector body 12, the locking sleeve 14 is moved axially forward in the direction of arrow A from the first position shown in
Next, or at the same time, the inner sleeve ring 16 is driven forward in the direction of arrow A to further lock the cable 100 in the connector 10. Movement of the inner sleeve ring 16 can be accomplished with the same compression tool used to drive the locking sleeve 14, or a different compression tool. As described above, inward axial movement of the inner sleeve ring 16 causes the flexible skirt 42 of the inner sleeve flange 40 to expand radially inward to grip the outer surface of the cable jacket 110. Thus, as a result of the present invention, the cable 100 is prevented from being easily pulled out of the connector 10.
However, in this embodiment, a cable gripping ferrule 72, 72a is disposed in the annular chamber 64 of the connector 70, 70a forward of the locking sleeve 14, 14a. The gripping ferrule 72 can be provided as a separate element, as shown in
Also in this embodiment, the inner engagement surface 26 of the connector body 12 is formed with an internal ramp portion 80, which defines a transition region on the inner surface 26 between a first inner diameter 26a and a smaller second inner diameter 26b of the connector body. As will be discussed further below, the internal ramp portion 80 of the connector body 12 facilitates forward movement of the gripping ferrule 72, 72a from engagement with the first internal diameter 26a of the engagement surface 26 to engagement with the smaller second diameter 26b. As the gripping ferrule 72, 72a moves from the first diameter 26a to the second smaller diameter, the ferrule collapses so that the inner dimensions of the ferrule are reduced or radially compressed to grip the outer jacket 110 of the cable 100.
Specifically, the gripping ferrule 72, 72a is designed to compress radially inward when pressed by the locking sleeve 14 in the forward axial direction, along arrow A, into the smaller diameter engagement surface 26b of the connector body 12. In particular, when provided as a separate component as shown in
When formed integral with the locking sleeve 14a, the gripping ferrule 72a is provided with one or more slots 79 that extend from the forward end 76 to the rearward end 78a, as shown in
In either case, such reduction of the inner diameter of the gripping ferrule 72, 72a will cause the ferrule to engage the outer surface of the cable 100 to secure the cable to the connector 70, 70a. Secondly, the ferrule 72 provides a redundant sealing point to prevent the ingress of water or other contaminants into the connector assembly 70, 70a.
The forward end 76 of the gripping ferrule 72 preferably terminates at a tapered edge 73 to enhance forward movement of the ferrule within the connector body 12. It is also conceivable that the forward end 76 of the gripping ferrule can be formed with a plurality of circumferentially arranged flexible fingers (not shown) extending in the forward longitudinal direction, where sealing is not required. The fingers may be formed simply by providing longitudinal slots or recesses at the forward end 76 of the ferrule 72.
As mentioned above, the connector 70, 70a in this embodiment further includes a cable sealing O-ring 74 to provide a second cable retention and sealing point on the cable. The cable sealing O-ring 74 is made from a resilient sealing material, such as rubber, and is disposed between the locking sleeve 14 and the forward end 46 of the inner sleeve ring 16.
The locking sleeve 14 is preferably provided with structure for retaining the O-ring in its position. In particular, instead of having a rearward extending flexible skirt 42 described above, the sleeve flange 40a in this embodiment is formed with a substantially perpendicular, rearward facing wall 82, which, together with the forward end of the inner sleeve ring define an annular cable gripping O-ring space 84 in which the cable gripping O-ring is received, as shown in the enlarged view of
In use, a cable 100 is prepared and inserted into the connector 70, 70a, as described above, wherein the cable jacket 110 is parted from the cable insulator 104 by the sharp edge 62 of the post 18. The locking sleeve 14, 14a is driven forward in the direction of arrow A from a first position, as shown in
At the same time, or subsequently, the inner sleeve ring 16 is driven forward from a first position, as shown in
However, in this embodiment, the forward end 46a of the inner sleeve ring 16a is modified slightly so as to directly engage the outer jacket 110 of the cable upon forward movement of the inner sleeve ring within the locking sleeve. Specifically, the forward end 46a of the inner sleeve ring 16a includes a deformable edge portion 92 which is adapted to compress or deflect radially inward toward the post barb 60 upon forward movement of the inner sleeve ring.
Also in this embodiment, the inner sleeve flange 40b is here formed with an internal ramp portion 94, which defines a transition region on the inner surface of the locking sleeve 14 between a first diameter and a smaller second diameter. As will be discussed further below, the internal ramp portion 94 of the sleeve flange 40b serves to radially compress the forward deformable edge portion 92 of the inner sleeve ring 16a upon forward insertion of the sleeve into the rearward end 30 of the locking sleeve 14.
More particularly, the deformable edge portion 92 is designed to expand radially inward when pressed against the internal ramp portion 94 of the sleeve flange 40b. This radially inward expansion of the deformable edge portion 92 will cause it to engage the outer surface of the cable 100 to secure the cable to the connector 70. In this regard, the deformable edge portion 92 of the inner sleeve ring 16a preferably terminates at a forward sharp edge 96 to enhance gripping of the cable jacket 110. The deformable edge portion 92 is preferably in the form of an annularly continuous deformable skirt. However, it is also conceivable that the deformable edge portion 92 can be formed with a plurality of circumferentially arranged flexible fingers (not shown) extending in the forward longitudinal direction, where water-resistant sealing against the cable is not required. The fingers may be formed simply by providing longitudinal slots or recesses in the forward end 46a of the inner sleeve ring 16a.
In use, a cable 100 is prepared and inserted into the connector 90, as described above, wherein the cable jacket 110 is parted from the cable insulator 104 by the sharp edge 62 of the post 18. The locking sleeve 18 is driven forward in the direction of arrow A from a first position, as shown in
Although the illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention.
Various changes to the foregoing described and shown structures will now be evident to those skilled in the art. Accordingly, the particularly disclosed scope of the invention is set forth in the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/926,986, filed on May 1, 2007, which is incorporated by reference herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1667485 | MacDonald | Apr 1928 | A |
2258737 | Browne | Oct 1941 | A |
2544654 | Brown | Mar 1951 | A |
2549647 | Turenne | Apr 1951 | A |
3184706 | Atkins | May 1965 | A |
3275913 | Blanchard et al. | Sep 1966 | A |
3292136 | Somerset | Dec 1966 | A |
3350677 | Daum | Oct 1967 | A |
3355698 | Keller | Nov 1967 | A |
3373243 | Janowiak et al. | Mar 1968 | A |
3406373 | Forney, Jr. | Oct 1968 | A |
3448430 | Kelly | Jun 1969 | A |
3475545 | Stark et al. | Oct 1969 | A |
3498647 | Schroder | Mar 1970 | A |
3517373 | Jamon | Jun 1970 | A |
3533051 | Ziegler, Jr. | Oct 1970 | A |
3537065 | Winston | Oct 1970 | A |
3544705 | Winston | Dec 1970 | A |
3564487 | Upstone et al. | Feb 1971 | A |
3629792 | Dorrell | Dec 1971 | A |
3633150 | Swartz | Jan 1972 | A |
3668612 | Nepovim | Jun 1972 | A |
3671922 | Zerlin et al. | Jun 1972 | A |
3694792 | Wallo | Sep 1972 | A |
3710005 | French | Jan 1973 | A |
3778535 | Forney, Jr. | Dec 1973 | A |
3781762 | Quackenbush | Dec 1973 | A |
3836700 | Niemeyer | Sep 1974 | A |
3845453 | Hemmer | Oct 1974 | A |
3846738 | Nepovim | Nov 1974 | A |
3854003 | Duret | Dec 1974 | A |
3879102 | Horak | Apr 1975 | A |
3907399 | Spinner | Sep 1975 | A |
3910673 | Stokes | Oct 1975 | A |
3915539 | Collins | Oct 1975 | A |
3936132 | Hutter | Feb 1976 | A |
3963320 | Spinner | Jun 1976 | A |
3976352 | Spinner | Aug 1976 | A |
3980805 | Lipari | Sep 1976 | A |
3985418 | Spinner | Oct 1976 | A |
4046451 | Juds et al. | Sep 1977 | A |
4053200 | Pugner | Oct 1977 | A |
4059330 | Shirey | Nov 1977 | A |
4093335 | Schwartz et al. | Jun 1978 | A |
4126372 | Hashimoto et al. | Nov 1978 | A |
4131332 | Hogendobler et al. | Dec 1978 | A |
4150250 | Lundeberg | Apr 1979 | A |
4156554 | Aujla | May 1979 | A |
4165554 | Faget | Aug 1979 | A |
4168921 | Blanchard | Sep 1979 | A |
4225162 | Dola | Sep 1980 | A |
4227765 | Neumann et al. | Oct 1980 | A |
4250348 | Kitagawa | Feb 1981 | A |
4280749 | Hemmer | Jul 1981 | A |
4339166 | Dayton | Jul 1982 | A |
4346958 | Blanchard | Aug 1982 | A |
4354721 | Luzzi | Oct 1982 | A |
4373767 | Cairns | Feb 1983 | A |
4400050 | Hayward | Aug 1983 | A |
4408821 | Forney, Jr. | Oct 1983 | A |
4408822 | Nikitas | Oct 1983 | A |
4421377 | Spinner | Dec 1983 | A |
4444453 | Kirby et al. | Apr 1984 | A |
4456323 | Pitcher et al. | Jun 1984 | A |
4484792 | Tengler et al. | Nov 1984 | A |
4515427 | Smit | May 1985 | A |
4533191 | Blackwood | Aug 1985 | A |
4540231 | Forney, Jr. | Sep 1985 | A |
4545637 | Bosshard et al. | Oct 1985 | A |
4575274 | Hayward | Mar 1986 | A |
4583811 | McMills | Apr 1986 | A |
4593964 | Forney, Jr. et al. | Jun 1986 | A |
4596434 | Saba et al. | Jun 1986 | A |
4596435 | Bickford | Jun 1986 | A |
4598961 | Cohen | Jul 1986 | A |
4600263 | DeChamp et al. | Jul 1986 | A |
4614390 | Baker | Sep 1986 | A |
4632487 | Wargula | Dec 1986 | A |
4640572 | Conlon | Feb 1987 | A |
4645281 | Burger | Feb 1987 | A |
4650228 | McMills et al. | Mar 1987 | A |
4655159 | McMills | Apr 1987 | A |
4660921 | Hauver | Apr 1987 | A |
4668043 | Saba et al. | May 1987 | A |
4674818 | McMills et al. | Jun 1987 | A |
4676577 | Szegda | Jun 1987 | A |
4682832 | Punako et al. | Jul 1987 | A |
4688876 | Morelli | Aug 1987 | A |
4688878 | Cohen et al. | Aug 1987 | A |
4691976 | Cowen | Sep 1987 | A |
4703987 | Gallusser et al. | Nov 1987 | A |
4717355 | Mattis | Jan 1988 | A |
4738009 | Down et al. | Apr 1988 | A |
4746305 | Nomura | May 1988 | A |
4747786 | Hayashi et al. | May 1988 | A |
4755152 | Elliot et al. | Jul 1988 | A |
4761146 | Sohoel | Aug 1988 | A |
4772222 | Laudig et al. | Sep 1988 | A |
4789355 | Lee | Dec 1988 | A |
4806116 | Ackerman | Feb 1989 | A |
4813886 | Roos et al. | Mar 1989 | A |
4834675 | Samchisen | May 1989 | A |
4854893 | Morris | Aug 1989 | A |
4857014 | Alf et al. | Aug 1989 | A |
4869679 | Szegda | Sep 1989 | A |
4874331 | Iverson | Oct 1989 | A |
4892275 | Szegda | Jan 1990 | A |
4902246 | Samchisen | Feb 1990 | A |
4906207 | Banning et al. | Mar 1990 | A |
4923412 | Morris | May 1990 | A |
4925403 | Zorzy | May 1990 | A |
4927385 | Cheng | May 1990 | A |
4929188 | Lionetto et al. | May 1990 | A |
4952174 | Sucht et al. | Aug 1990 | A |
4957456 | Olson et al. | Sep 1990 | A |
4973265 | Heeren | Nov 1990 | A |
4979911 | Spencer | Dec 1990 | A |
4990104 | Schieferly | Feb 1991 | A |
4990105 | Karlovich | Feb 1991 | A |
4990106 | Szegda | Feb 1991 | A |
5002503 | Campbell et al. | Mar 1991 | A |
5007861 | Stirling | Apr 1991 | A |
5021010 | Wright | Jun 1991 | A |
5024606 | Ming-Hwa | Jun 1991 | A |
5037328 | Karlovich | Aug 1991 | A |
5062804 | Jamet et al. | Nov 1991 | A |
5066248 | Gaver, Jr. et al. | Nov 1991 | A |
5073129 | Szegda | Dec 1991 | A |
5083943 | Tarrant | Jan 1992 | A |
5120260 | Jackson | Jun 1992 | A |
5127853 | McMills et al. | Jul 1992 | A |
5131862 | Gershfeld | Jul 1992 | A |
5141451 | Down | Aug 1992 | A |
5161993 | Leibfried, Jr. | Nov 1992 | A |
5195906 | Szegda | Mar 1993 | A |
5205761 | Nilsson | Apr 1993 | A |
5207602 | McMills et al. | May 1993 | A |
5217391 | Fisher, Jr. | Jun 1993 | A |
5217393 | Del Negro et al. | Jun 1993 | A |
5269701 | Leibfried, Jr. | Dec 1993 | A |
5283853 | Szegda | Feb 1994 | A |
5284449 | Vaccaro | Feb 1994 | A |
5295864 | Birch et al. | Mar 1994 | A |
5316494 | Flanagan et al. | May 1994 | A |
5338225 | Jacobsen et al. | Aug 1994 | A |
5342218 | McMills et al. | Aug 1994 | A |
5354217 | Gabel et al. | Oct 1994 | A |
5371819 | Szegda | Dec 1994 | A |
5371821 | Szegda | Dec 1994 | A |
5371827 | Szegda | Dec 1994 | A |
5393244 | Szegda | Feb 1995 | A |
5431583 | Szegda | Jul 1995 | A |
5435745 | Booth | Jul 1995 | A |
5444810 | Szegda | Aug 1995 | A |
5455548 | Grandchamp et al. | Oct 1995 | A |
5456611 | Henry et al. | Oct 1995 | A |
5456614 | Szegda | Oct 1995 | A |
5466173 | Down | Nov 1995 | A |
5470257 | Szegda | Nov 1995 | A |
5494454 | Johnsen | Feb 1996 | A |
5501616 | Holliday | Mar 1996 | A |
5525076 | Down | Jun 1996 | A |
5542861 | Anhalt et al. | Aug 1996 | A |
5548088 | Gray et al. | Aug 1996 | A |
5571028 | Szegda | Nov 1996 | A |
5586910 | Del Negro et al. | Dec 1996 | A |
5598132 | Stabile | Jan 1997 | A |
5607325 | Toma | Mar 1997 | A |
5620339 | Gray et al. | Apr 1997 | A |
5632651 | Szegda | May 1997 | A |
5651699 | Holliday | Jul 1997 | A |
5667405 | Holliday | Sep 1997 | A |
5863220 | Holliday | Jan 1999 | A |
5879191 | Burris | Mar 1999 | A |
5967852 | Follingstad et al. | Oct 1999 | A |
5975951 | Burris et al. | Nov 1999 | A |
5997350 | Burris et al. | Dec 1999 | A |
6032358 | Wild | Mar 2000 | A |
6089912 | Tallis | Jul 2000 | A |
6089913 | Holliday | Jul 2000 | A |
6146197 | Holliday et al. | Nov 2000 | A |
6210222 | Langham et al. | Apr 2001 | B1 |
6217383 | Holland | Apr 2001 | B1 |
6241553 | Hsia | Jun 2001 | B1 |
6261126 | Stirling | Jul 2001 | B1 |
6331123 | Rodrigues | Dec 2001 | B1 |
D458904 | Montena | Jun 2002 | S |
D460739 | Fox | Jul 2002 | S |
D460740 | Montena | Jul 2002 | S |
D460946 | Montena | Jul 2002 | S |
D460947 | Montena | Jul 2002 | S |
D460948 | Montena | Jul 2002 | S |
6425782 | Holland | Jul 2002 | B1 |
D461166 | Montena | Aug 2002 | S |
D461167 | Montena | Aug 2002 | S |
D461778 | Fox | Aug 2002 | S |
D462058 | Montena | Aug 2002 | S |
D462060 | Fox | Aug 2002 | S |
D462327 | Montena | Sep 2002 | S |
D468696 | Montena | Jan 2003 | S |
6530807 | Rodrigues et al. | Mar 2003 | B2 |
6558194 | Montena | May 2003 | B2 |
6767248 | Hung | Jul 2004 | B1 |
6783394 | Holliday | Aug 2004 | B1 |
6805584 | Chen | Oct 2004 | B1 |
6817896 | Derenthal | Nov 2004 | B2 |
6848940 | Montena | Feb 2005 | B2 |
6884113 | Montena | Apr 2005 | B1 |
7118416 | Montena et al. | Oct 2006 | B2 |
7455549 | Rodrigues et al. | Nov 2008 | B2 |
7458849 | Rodrigues et al. | Dec 2008 | B2 |
7458851 | Montena | Dec 2008 | B2 |
20040102089 | Chee | May 2004 | A1 |
20040229504 | Liu | Nov 2004 | A1 |
20050208827 | Burris et al. | Sep 2005 | A1 |
20080274644 | Rodrigues | Nov 2008 | A1 |
20100081321 | Malloy et al. | Apr 2010 | A1 |
20100081322 | Malloy et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
47931 | Oct 1888 | DE |
102289 | Jul 1897 | DE |
1117687 | Nov 1961 | DE |
1 515 398 | Nov 1962 | DE |
1 191 880 | Apr 1965 | DE |
2 221 936 | Apr 1972 | DE |
2 225 764 | May 1972 | DE |
2 261 973 | Dec 1972 | DE |
32 11 008 | Oct 1983 | DE |
0 072 104 | Feb 1983 | EP |
0 116 157 | Aug 1984 | EP |
0 167 738 | Jan 1986 | EP |
0 265 276 | Apr 1988 | EP |
2 232 846 | Jun 1973 | FR |
2 234 680 | Jun 1974 | FR |
2 462 798 | Feb 1981 | FR |
589697 | Mar 1945 | GB |
1087228 | Oct 1967 | GB |
1 270 846 | Apr 1972 | GB |
2019 665 | Oct 1979 | GB |
2 079 549 | Jan 1982 | GB |
2079 549 | Jan 1982 | GB |
WO 9324973 | Dec 1993 | WO |
WO 9608854 | Mar 1996 | WO |
WO 0186756 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20080274644 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60926986 | May 2007 | US |