Coaxial cable connector

Information

  • Patent Grant
  • 8465322
  • Patent Number
    8,465,322
  • Date Filed
    Friday, August 19, 2011
    13 years ago
  • Date Issued
    Tuesday, June 18, 2013
    11 years ago
Abstract
A connector coaxial cable connector comprising a connector body having an outer ramped surface, a post, engageable with the connector body, a coupling member, axially rotatable with respect to the post, and a compression portion structurally integral with the connector body, the compression portion having a ramped inner surface, wherein the inner ramped surface is configured to cooperate with the outer ramped surface during compression of the compression portion onto a portion of the connector body. Furthermore, an associated method is also provided.
Description
FIELD OF TECHNOLOGY

The following relates to connectors used in coaxial cable communication applications, and more specifically to coaxial connectors having features for improving the efficiency of structures and processes for attaching the connectors to coaxial cables.


BACKGROUND

Broadband communications have become an increasingly prevalent form of electromagnetic information exchange and coaxial cables are common conduits for transmission of broadband communications. Coaxial cables are typically designed so that an electromagnetic field carrying communications signals exists only in the space between inner and outer coaxial conductors of the cables. This allows coaxial cable runs to be installed next to metal objects without the power losses that occur in other transmission lines, and provides protection of the communications signals from external electromagnetic interference. Connectors for coaxial cables are typically connected onto complementary interface ports to electrically integrate coaxial cables to various electronic devices and cable communication equipment. Connection is often made through rotatable operation of an internally coupling member of the connector about a corresponding externally threaded interface port. Fully tightening the threaded connection of the coaxial cable connector to the interface port helps to ensure a ground connection between the connector and the corresponding interface port. However, often connectors are not properly tightened or otherwise installed to the interface port and proper electrical mating of the connector with the interface port does not occur. Moreover, when attached to an interface port, common connectors are often still susceptible to the unwanted introduction of environmental contaminants into the connector. In addition, common connectors often utilize cumbersome and/or costly components and installation processes associated with attaching the connectors to coaxial cables.


Hence a need exists for an improved connector having structural features that help prevent the entry of unwanted environmental contaminants into the coaxial cable connector, and that improve cost and effectiveness with relation to how the connector attaches to a coaxial cable.


SUMMARY

A first aspect relates generally to a coaxial cable connector comprising a connector body; a post, engageable with the connector body; a coupling member, axially rotatable with respect to the connector body, the coupling member having a first end and opposing second end; an outer sleeve engageable with the coupling member, the sleeve configured to rotate the coupling member; and a compression portion structurally integral with the connector body, wherein the compression portion is configured to break apart from the body when axially compressed.


A second aspect relates generally to a coaxial cable connector comprising; a connector body; a post engageable with connector body; a coupling member, axially rotatable with respect to the connector body, the coupling member having a first end and opposing second end portion; a sealing element attached to the coupling member, wherein the sealing element prevents ingress of environmental elements proximate the first end of the coupling member; and an outer sleeve engageable with the coupling member, the sleeve configured to rotate the coupling member.


A third aspect relates generally to a coaxial cable connector comprising: a connector body; a post engageable with connector body; a coupling member, axially rotatable with respect to the connector body, the coupling member having a first end and opposing second end; a sealing element attached to the coupling member, wherein the sealing element prevents ingress of environmental elements proximate the first end of the coupling member; and a compression portion structurally integral with the connector body, wherein the compression portion is configured to break apart from the body when axially compressed.


A fourth aspect relates generally to a method of fastening a coaxial cable to a communication port, the method comprising: providing a coaxial cable connector including:


a connector body; a post operably attached to the connector body; a coupling member axially rotatable with respect to the connector body; an outer sleeve engageable with the coupling member; and a compression portion structurally integral with the connector body; axially compressing the compression portion to form an environmental seal around the coaxial cable, wherein when axially compressed, the compression portion breaks away from the body and securely connects to the coaxial cable; and fastening the coupling member to an interface port by operating the outer sleeve.


A fifth aspect relates generally to a coaxial cable connector comprising a connector body having an outer ramped surface, a post, engageable with the connector body, a coupling member, axially rotatable with respect to the post, and a compression portion structurally integral with the connector body, the compression portion having a ramped inner surface, wherein the inner ramped surface is configured to cooperate with the outer ramped surface during compression of the compression portion onto a portion of the connector body.


A sixth aspect relates generally to a coaxial cable connector comprising a connector body having a first end and a second end, the connector body including an outer ramped surface proximate the second end, a post engageable with the connector body, a coupling member, axially rotatable with respect to the post, a compression portion sharing a frangible connection with the connector body, the frangible connection being defined by the outer ramped surface of the connector body and an internal annular groove.


A seventh aspect relates generally to a coaxial cable connector comprising a connector body having a first end and a second end, the connector body including an outer ramped surface proximate the second end, a post engageable with the connector body, a coupling member, axially rotatable with respect to the post, a compression portion sharing a frangible connection with the connector body, and a stress concentrator positioned proximate the frangible connection.


An eight aspect relates generally to a method of fastening a coaxial cable to a coaxial cable, the method comprising providing a coaxial cable connector including a connector body having an outer ramped surface, a post, engageable with the connector body, a coupling member, axially rotatable with respect to the post, and a compression portion structurally integral with the connector body, the compression portion having a ramped inner surface, and axially compressing the compression portion to securably attached the connector to the coaxial cable and form an environmental seal around the coaxial cable, wherein the inner ramped surface is configured to cooperate with the outer ramped surface during the axial compression of the compression portion onto a portion of the connector body


The foregoing and other features of construction and operation of the invention will be more readily understood and fully appreciated from the following detailed disclosure, taken in conjunction with accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Some of the embodiments will be described in detail, with reference to the following figures, wherein like designations denote like members, wherein:



FIG. 1A depicts a cross-section view of a first embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 1B depicts a perspective view of the first embodiment of the coaxial cable connector prior to an embodiment of the sleeve is operably attached to an embodiment of a coupling member;



FIG. 1C depicts a cross-section view of the first embodiment of the coaxial cable connector after secure attachment to an embodiment of a coaxial cable;



FIG. 2 depicts a cross-section view of a second embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 3 depicts a cross-section view of a third embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 4A depicts a cross-section view of a fourth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 4B depicts a perspective view of the fourth embodiment of the coaxial cable connector prior to an embodiment of a sleeve is operably attached to an embodiment of a coupling member;



FIG. 5 depicts a cross-section view of a fifth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 6 depicts a cross-section view of a sixth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 7 depicts a cross-section view of an seventh embodiment of a coaxial cable connector including an embodiment of an outer integral sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 8 depicts a cross-section view of an eighth embodiment of a coaxial cable connector including an embodiment of an outer integral sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 9 depicts a cross-section view of a ninth embodiment of a coaxial cable connector including an embodiment of an outer integral sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 10 depicts a cross-section view of a tenth embodiment of a coaxial cable connector including an embodiment of a sealing member, an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 11 depicts a cross-section view of an eleventh embodiment of a coaxial cable connector including an embodiment of a sealing member, an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 12 depicts a cross-section view of a twelfth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a sealing member, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 13 depicts a cross-section view of a thirteenth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 14 depicts a cross-section view of a fourteenth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 15 depicts a cross-section view of a fifteenth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 16 depicts a cross-section view of a sixteenth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 17 depicts a cross-section view of a seventeenth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 18 depicts a cross-section view of an eighteenth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 19 depicts a cross-section view of a nineteenth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 20 depicts a cross-section view of a twentieth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 21 depicts a cross-section view of a twenty-first embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 22 depicts a cross-section view of a twenty-second embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member; and



FIG. 23 depicts a cross-section view of a twenty-third embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of an outer sleeve, and an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 24 depicts a cross-section view of a twenty-fourth embodiment of a coaxial cable connector including an embodiment of an outer sleeve, an embodiment of an outer sleeve, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 25 depicts a cross-section view of a twenty-fifth embodiment of a coaxial cable connector including an embodiment of a sealing member, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 26 depicts a cross-section view of a twenty-sixth embodiment of a coaxial cable connector including an embodiment of a sealing member, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 27 depicts a cross-section view of a twenty-seventh embodiment of a coaxial cable connector including an embodiment of a sealing member, an embodiment of a compression portion, and an embodiment of a radial restriction member;



FIG. 28 depicts a cross-section view of a twenty-eighth embodiment of a coaxial cable connector including an embodiment of a sealing member, an embodiment of an outer sleeve, an embodiment of a compression portion configured to move axially external to an embodiment of a connector body;



FIG. 29 depicts a cross-section view of a twenty-ninth embodiment of a coaxial cable connector including an embodiment of a sealing member, an embodiment of an outer sleeve, and an embodiment of a compression portion configured to move axially within an embodiment of a connector body;



FIG. 30 depicts a cross-section view of a thirtieth embodiment of a coaxial cable connector including an embodiment of a compression portion having an internal annular groove;



FIG. 31 depicts a perspective cut-away view of the thirtieth embodiment of the coaxial cable connector including an embodiment of a compression portion having an internal annular groove; and



FIG. 32 depicts a cross-section view of an embodiment of the thirtieth embodiment of the coaxial cable connector in a fully compressed position.





DETAILED DESCRIPTION

Although certain embodiments of the present invention are shown and described in detail, it should be understood that various changes and modifications may be made without departing from the scope of the appended claims. The scope of the present invention will in no way be limited to the number of constituting components, the materials thereof, the shapes thereof, the relative arrangement thereof, etc., and are disclosed simply as an example of embodiments of the present invention.


As a preface to the detailed description, it should be noted that, as used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents, unless the context clearly dictates otherwise.


Referring to the drawings, FIGS. 1A-29 depict embodiments of a coaxial cable connector 100-128. The coaxial cable connector 100-128 may be operably affixed, or otherwise functionally attached, to a coaxial cable 10 having a protective outer jacket 12, a conductive grounding shield 14, an interior dielectric 16 and a center conductor 18 (the cable 10 being shown in FIG. 1C). The coaxial cable 10 may be prepared as embodied in FIG. 1C by removing the protective outer jacket 12 and drawing back the conductive grounding shield 14 to expose a portion of the interior dielectric 16. Further preparation of the embodied coaxial cable 10 may include stripping the dielectric 16 to expose a portion of the center conductor 18. The protective outer jacket 12 is intended to protect the various components of the coaxial cable 10 from damage which may result from exposure to dirt or moisture and from corrosion. Moreover, the protective outer jacket 12 may serve in some measure to secure the various components of the coaxial cable 10 in a contained cable design that protects the cable 10 from damage related to movement during cable installation. The conductive grounding shield 14 may be comprised of conductive materials suitable for providing an electrical ground connection, such as cuprous braided material, aluminum foils, thin metallic elements, or other like structures. Various embodiments of the shield 14 may be employed to screen unwanted noise. For instance, the shield 14 may comprise a metal foil wrapped around the dielectric 16, or several conductive strands formed in a continuous braid around the dielectric 16. Combinations of foil and/or braided strands may be utilized wherein the conductive shield 14 may comprise a foil layer, then a braided layer, and then a foil layer. Those in the art will appreciate that various layer combinations may be implemented in order for the conductive grounding shield 14 to effectuate an electromagnetic buffer helping to prevent ingress of environmental noise that may disrupt broadband communications. The dielectric 16 may be comprised of materials suitable for electrical insulation, such as plastic foam material, paper materials, rubber-like polymers, or other functional insulating materials. It should be noted that the various materials of which all the various components of the coaxial cable 10 are comprised should have some degree of elasticity allowing the cable 10 to flex or bend in accordance with traditional broadband communication standards, installation methods and/or equipment. It should further be recognized that the radial thickness of the coaxial cable 10, protective outer jacket 12, conductive grounding shield 14, interior dielectric 16 and/or center conductor 18 may vary based upon generally recognized parameters corresponding to broadband communication standards and/or equipment.


Referring further to FIGS. 1A-29, a connector, such as connector 100-128 may also interact with a coaxial cable interface port 20. The coaxial cable interface port 20 includes a conductive receptacle for receiving a portion of a coaxial cable center conductor 18 sufficient to make adequate electrical contact. The coaxial cable interface port 20 may further comprise a threaded exterior surface 23. It should be recognized that the radial thickness and/or the length of the coaxial cable interface port 20 and/or the conductive receptacle of the port 20 may vary based upon generally recognized parameters corresponding to broadband communication standards and/or equipment. Moreover, the pitch and height of threads which may be formed upon the threaded exterior surface 23 of the coaxial cable interface port 20 may also vary based upon generally recognized parameters corresponding to broadband communication standards and/or equipment. Furthermore, it should be noted that the interface port 20 may be formed of a single conductive material, multiple conductive materials, or may be configured with both conductive and non-conductive materials corresponding to the port's 20 operable electrical interface with a connector 100-128. However, the receptacle of the port 20 should be formed of a conductive material, such as a metal, like brass, copper, or aluminum. Further still, it will be understood by those of ordinary skill that the interface port 20 may be embodied by a connective interface component of a coaxial cable communications device, a television, a modem, a computer port, a network receiver, or other communications modifying devices such as a signal splitter, a cable line extender, a cable network module and/or the like.


Referring now to FIGS. 1A-25, embodiments of a coaxial cable connector 100-123 may further comprise a coupling member 30, a post 40, a connector body 50, an outer sleeve 90, a compression portion 60, a radial restriction member 65, and a connector body seal member 5 (as shown in FIG. 28), such as, for example, a body O-ring configured to fit around a portion of the connector body 50. Embodiments of coupling member 30 may be coupling member 30a, 30b, or 30c described in further detail infra. Embodiments of sleeve 90 may be sleeve 90a, 90b, 90c, 90d, 90e, 90f, 90g, or 90h, described in further detail infra. Similarly, embodiments of radial restriction member 65 may be 65a, 65b, or 65c, described in further detail infra. Connector 100-123 may come in a preassembled configuration or may require additional operable attachment of the sleeve 90 to connector 100-123 during installation.


Referring now to FIG. 1A, embodiments of connector 100 may include a coupling member 30a, a post 40, a connector body 50, an outer sleeve 90a, a compression portion 60, and a radial restriction member 65a.


Embodiments of connector 100 may include a coupling member 30a. The coupling member 30a of embodiments of a coaxial cable connector 100 has a first forward end 31a and opposing second rearward end 32a. The coupling member 30a may comprise internal threading 33a extending axially from the edge of first forward end 31a a distance sufficient to provide operably effective threadable contact with the external threads 23 of a standard coaxial cable interface port 20 (as shown, by way of example, in FIG. 1C). The coupling member 30a includes an internal lip 34a, such as an annular protrusion, located proximate the second rearward end 32a of the coupling member. The internal lip 34a includes a surface 35a facing the first forward end 31a of the coupling member 30a. The forward facing surface 35a of the lip 34a may be a tapered surface or side facing the first forward end 31a of the coupling member 30a. However, the internal lip 34a of coupling member 30a may define the second end 32a of the coupling member 30a, eliminating excess material from the coupling member 30a. Located somewhere on the outer surface 36a of the coupling member 30a may be a retaining structure 37a. The retaining structure 37a of the coupling member 30a may be an annular groove or recess that extends completely or partially around the outer surface 36a of the coupling member 30a to retain, accommodate, receive, or mate with an engagement member 97 of the sleeve 90. Alternatively, the retaining structure 37a may be an annular protrusion that extends completely or partially around the outer surface 36a of the coupling member 30a to retain or mate with the engagement member 97 of the outer sleeve 90. The retaining structure 37a may be placed at various axial positions from the first end 31a to the 32a, depending on the configuration of the sleeve 90 and other design requirements of connector 100.


Moreover, embodiments of coupling member 30a may include an outer surface feature(s) 38a proximate or otherwise near the second end 32a to improve mechanical interference or friction between the coupling member 30a and the sleeve 90. For instance, the outer surface feature 38a may extend completely or partially around the outer surface 36a proximate the second 32a of the coupling member 30a to increase a retention force between an inner surface 93 of the sleeve 90 and the outer surface 36a of the coupling member 30a. The outer surface feature 38a may include a knurled surface, a slotted surface, a plurality of bumps, ridges, grooves, or any surface feature that may facilitate contact between the sleeve 90 and the coupling member 30a. In one embodiment, the coupling member 30a may be referred to as a press-fit coupling member.


The structural configuration of the coupling member 30a may vary according differing connector design parameters to accommodate different functionality of a coaxial cable connector 100. For instance, the first forward end 31a of the coupling member 30a may include internal and/or external structures such as ridges, grooves, curves, detents, slots, openings, chamfers, or other structural features, etc., which may facilitate the operable joining of an environmental sealing member, such a water-tight seal or other attachable component element, that may help prevent ingress of environmental contaminants, such as moisture, oils, and dirt, at the first forward end 31a of the coupling member 30a, when mated with an interface port 20. Those in the art should appreciate that the coupling member 30a need not be threaded. Moreover, the coupling member 30a may comprise a coupler commonly used in connecting RCA-type, or BNC-type connectors, or other common coaxial cable connectors having standard coupler interfaces. The coupling member 30a may be formed of conductive materials, such as copper, brass, aluminum, or other metals or metal alloys, facilitating grounding through the coupling member 30a. Further embodiments of the coupling member 30a may be formed of polymeric materials and may be non-conductive. Accordingly, the coupling member 30a may be configured to extend an electromagnetic buffer by electrically contacting conductive surfaces of an interface port 20 when a connector 100 is advanced onto the port 20. In addition, the coupling member 30a may be formed of both conductive and non-conductive materials. For example the external surface of the coupling member 30a may be formed of a polymer, while the remainder of the coupling member 30a may be comprised of a metal or other conductive material. The coupling member 30a may be formed of metals or polymers or other materials that would facilitate a rigidly formed coupling member body. Manufacture of the coupling member 30a may include casting, extruding, cutting, knurling, turning, tapping, drilling, injection molding, blow molding, combinations thereof, or other fabrication methods that may provide efficient production of the component. The forward facing surface 35a of the coupling member 30a faces a flange 44 the post 40 when operably assembled in a connector 100, so as to allow the coupling member 30a to rotate with respect to the other component elements, such as the post 40 and the connector body 50, of the connector 100.


Embodiments of connector 100 may include a post 40. The post 40 comprises a first forward end 41 and an opposing second rearward end 42. Furthermore, the post 40 may comprise a flange 44, such as an externally extending annular protrusion, located at the first end 41 of the post 40. The flange 44 includes a rearward facing surface 45 that faces the forward facing surface 35a, 35b, 35c of the coupling member 30a, 30b, 30c when operably assembled in a coaxial cable connector, so as to allow the coupling member 30 to rotate with respect to the other component elements, such as the post 40 and the connector body 50, of the connector 100-128. The rearward facing surface 45 of flange 44 may be a tapered surface facing the second rearward end 42 of the post 40. Further still, an embodiment of the post 40 may include a surface feature 47 such as a lip or protrusion that may engage a portion of a connector body 50 to secure axial movement of the post 40 relative to the connector body 50. However, the post need not include such a surface feature 47, and the coaxial cable connector 100-128 may rely on press-fitting and friction-fitting forces and/or other component structures having features and geometries to help retain the post 40 in secure location both axially and rotationally relative to the connector body 50. The location proximate or near where the connector body is secured relative to the post 40 may include surface features 43, such as ridges, grooves, protrusions, or knurling, which may enhance the secure attachment and locating of the post 40 with respect to the connector body 50. Moreover, various components having larger or smaller diameters can be readily press-fit or otherwise secured into connection with each other. Additionally, the post 40 may include a mating edge 46, which may be configured to make physical and electrical contact with a corresponding mating edge 26 of an interface port 20 (as shown in exemplary fashion in FIG. 1C) The post 40 should be formed such that portions of a prepared coaxial cable 10 including the dielectric 16 and center conductor 18 (examples shown in FIG. 1C) may pass axially into the second end 42 and/or through a portion of the tube-like body of the post 40. Moreover, the post 40 should be dimensioned, or otherwise sized, such that the post 40 may be inserted into an end of the prepared coaxial cable 10, around the dielectric 16 and under the protective outer jacket 12 and conductive grounding shield 14. Accordingly, where an embodiment of the post 40 may be inserted into an end of the prepared coaxial cable 10 under the drawn back conductive grounding shield 14, substantial physical and/or electrical contact with the shield 14 may be accomplished thereby facilitating grounding through the post 40. The post 40 should be conductive and may be formed of metals or may be formed of other conductive materials that would facilitate a rigidly formed post body. In addition, the post may be formed of a combination of both conductive and non-conductive materials. For example, a metal coating or layer may be applied to a polymer of other non-conductive material. Manufacture of the post 40 may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


Embodiments of a coaxial cable connector, such as connector 100, may include a connector body 50. The connector body 50 may comprise a first end 51 and opposing second end 52. Moreover, the connector body may include a post mounting portion 57 proximate or otherwise near the first end 51 of the body 50, the post mounting portion 57 configured to securely locate the body 50 relative to a portion of the outer surface of post 40, so that the connector body 50 is axially secured with respect to the post 40, in a manner that prevents the two components from moving with respect to each other in a direction parallel to the axis of the connector 100. The internal surface of the post mounting portion 57 may include an engagement feature, such as an annular detent or ridge having a different diameter than the rest of the post mounting portion 57. However other features such as grooves, ridges, protrusions, slots, holes, keyways, bumps, nubs, dimples, crests, rims, or other like structural features may be included. In addition, the connector body 50 may include an outer annular recess 58 located proximate or near the first end 51 of the connector body 50. Furthermore, the connector body 50 may include a semi-rigid, yet compliant outer surface 55, wherein the outer surface 55 may be configured to form an annular seal when the second end 52 is deformably compressed against a received coaxial cable 10 by operation of a compression portion 60. The connector body 50 may include an outer ramped surface 56 and an internal annular notch 59 or groove proximate the second end 52 to structurally facilitate the deformation of the connector body 50, as described in further detail infra.


Moreover, the connector body 50 may include an external annular detent located proximate or close to the second end 52 of the connector body 50. Further still, the connector body 50 may include internal surface features, such as annular serrations formed near or proximate the internal surface of the second end 52 of the connector body 50 and configured to enhance frictional restraint and gripping of an inserted and received coaxial cable 10, through tooth-like interaction with the cable. The connector body 50 may be formed of materials such as plastics, polymers, bendable metals or composite materials that facilitate a semi-rigid, yet compliant outer surface 55. Further, the connector body 50 may be formed of conductive or non-conductive materials or a combination thereof. Manufacture of the connector body 50 may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


With continued reference to FIG. 1A, embodiments of connector 100 may include a sleeve 90a. The sleeve 90a may be engageable with the coupling member 30a. The sleeve 90a may include a first end 91a, a second 91a, an inner surface 93a, and an outer surface 94a. The sleeve 90a may be a generally annular member having a generally axial opening therethrough. The sleeve 90a may be radially disposed over the coupling member 30a, or a portion thereof, the connector body 50, or a portion thereof the compression portion 60, or a portion thereof, and radial restriction member 65, or a portion thereof, while operably assembled and/or in a compressed position. Proximate or otherwise near the first end 91a, the sleeve 90a may include an engagement member 97a configured to mate or engage with the retaining structure 37a of the coupling member 30a. The engagement member 97a may be an annular lip or protrusion that may enter or reside within the retaining structure 37a of the coupling member 30a. For example, in embodiments where the retaining structure 37a is an annular groove, the engagement member 97a may be a protrusion or lip that may snap into the groove located on the coupling member 30a to retain the sleeve 90a in a single axial position. In other words, the cooperating surfaces of the groove-like retaining structure 37a and the lip or protruding engagement member 97a may prevent axial movement of the sleeve 90a once the connector 100 is in an assembled configuration. Alternatively, the engagement member 97a may be an annular groove or recess that may receive or engage with the retaining structure 37a of the coupling member 30a. For example, in embodiments where the retaining structure 37a of the coupling member 30a is an annular protrusion, the engagement member 97a may be a groove or recess that may allow the annular protruding retaining structure 37a of the coupling member 30a to snap into to retain the sleeve 90a in a single axial position. In other words, the cooperating surfaces of the protruding retaining structure 37a and the groove-like engagement member 97a may prevent axial movement of the sleeve 90a once the connector 100 is in an assembled configuration. Those having skill in the art should understand that various surface features effectuating cooperating surfaces between the coupling member 30 and the sleeve 90 may be implemented to retain the sleeve 90a with respect to the rest of the connector 100 in an axial direction. Furthermore, the engagement member 97a of the sleeve 90a may be segmented such that one or more gaps may separate portions of the engagement member 97a, while still providing sufficient structural engagement with the retaining structure 37a.


An embodiment of an assembled configuration of connector 100 with respect to the sleeve 90a may involve sliding the sleeve 90a over the coupling member 30a in an axial direction starting from the first end 31a and continuing toward the second end 32a of the coupling member 30a until sufficient mating and/or engagement occurs between the engagement member 97a of the sleeve 90a and the retaining structure 37a of the coupling member 30a, as shown in FIG. 1B. Once in the assembled configuration, rotation of the sleeve 90a may in turn cause the coupling member 30a to simultaneously rotate in the same direction as the sleeve 90a due to mechanical interference between the inner surface 93a of the sleeve 90a and the outer surface 36a of the coupling member 30a. In some embodiments, the interference between the sleeve 90a and the coupling member 30a relies simply on a friction fit or interference fit between the components. Other embodiments include a coupling member 30a with an outer surface feature(s) 38a, as described supra, to improve the mechanical interference between the components. Further embodiments include a sleeve 90a with internal surface features 98a positioned on the inner surface 93a to improve the contact between the components. Even further embodiments of connector 100 may include a sleeve 90a and a coupling member 30a both having surface features 98a, 38a, respectively. Embodiments of the inner surface features 98a of the sleeve 90a may include a knurled surface, a slotted surface, a plurality of bumps, ridges, rib, grooves, or any surface feature that may facilitate contact between the sleeve 90a and the coupling member 30. In many embodiments, the inner surface features 98a of the sleeve 90a and the outer surface features 38a of the coupling member 30a may structurally correspond with each other. For example, the inner geometry of the sleeve 90a may reflect and/or structurally correspond with the outer geometric shape of the coupling member 30a. Due to the engagement between the sleeve 90a and the coupling member 30a, a user may simply grip and rotate/twist the sleeve 90a to thread the coupling element 30a onto an interface port, such as interface port 20. Further still, embodiments of the sleeve 90a may include outer surface features 99a, such as annular serrations or slots, configured to enhance gripping of the sleeve 90a while connecting the connector 100 onto an interface port. The sleeve 90a may be formed of materials such as plastics, polymers, bendable metals or composite materials that facilitate a rigid body. Further, the sleeve 90a may be formed of conductive or non-conductive materials or a combination thereof. Manufacture of the sleeve 90a may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


Embodiments of connector 100 may include a compression portion 60. Compression portion 60 may be operably attached to the connector body 50. For instance, the compression portion 60 may be structurally integral with the connector body 50, wherein the compression portion 60 separates or shears from the connector body 50 upon an axial force which in turn radially compresses the second end 52 of the connector body 50 onto the coaxial cable 10, as shown in FIG. 1C. The structural connection between the connector body 50 and the compression portion 60 may be thin or otherwise breakable when compressive, axial force is applied (e.g. by an axial compression tool). For example, the compression portion 60 may have a frangible connection with the connector body 50. Moreover, the structural connection or configuration between the connector body 50 and the compression portion 60 may be defined by an internal annular notch 66 or groove of the compression portion 60 and an outer ramped surface 56 of the connector body 50. The annular notch 59 of the connector body 50 may further facilitate the deformation of the second end 52 of the connector body 1350. The compression portion 60 may be formed of the same material as connector body 50 because they may be structurally integral with each other. For example, the compression portion 60 may be comprised of materials such as plastics, polymers, bendable metals or composite materials that facilitate a rigid body. Further, the compression portion 60 may be formed of conductive or non-conductive materials or a combination thereof. Manufacture of the compression member 60 may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


Furthermore, embodiments of connector 100 may include a radial restriction member 65a. The radial restriction member 65a may be a bushing or similar annular tubular member disposed proximate the rearward second end 52 of the connector body 50. For instance, the radial restriction member 65a may surround the compression portion 60 and a portion of the connector body 50 proximate the rearward second end 52. The radial restriction member 65a may be a generally annular, hollow cylindrically-shaped sleeve-like member comprised of stainless steel or other substantially rigid materials which may structurally assist the crack and seal process of compression portion 60. For instance, when the compression portion 60 is axially compressed in a direction towards the coupling member 30, the radial restriction member 65a may axially displace along with the compression portion 60 and may prevent the compression portion 60 from splintering or otherwise displacing in a direction other than substantially axial towards the coupling member 30.


Embodiments of the compression portion 60 may create an environmental seal around the coaxial cable 10 when in the fully compressed position. Specifically, when the compression portion 60 (and the radial restriction member 65a) is axially slid or compressed towards the coupling member 30, the structural connection between the compression portion 60 and the connector body 50 is severed, sheared, ruptured, etc., and the compression portion 60 comes into contact with the outer ramped surface 56 of the connector body 50. The severing of the structural connection between the connector body 50 and the compression portion 60 essentially turns the internal notch 66a into a cooperative ramped surface with the outer ramped surface 56 of the connector body 50. Due to the cooperative ramped surfaces, the axial compression (displacement) of the compression portion 60 evenly compresses the second end 52 of the connector body 50 onto the outer jacket 12 of the coaxial cable 10 and deforms the outer ramped surface 56, as shown in FIG. 1C. Accordingly, the compression portion 60 and potentially the radial restriction member 65a may be referred to as a crack and seal compression means with a radial restriction member 65a. Those skilled in the requisite art should appreciate that the seal may be created by the compression portion 60 without the radial restriction member 65a. However, the radial restriction member 65a significantly enhances the structural integrity and functional operability of the compression portion, for example, when it is compressed and sealed against an attached coaxial cable 10.


With reference to FIG. 2, embodiments of connector 101 may include a coupling member 30a, a post 40, a connector body 50, an outer sleeve 90a, a compression portion 60, and a radial restriction member 65c. Radial restriction member 65c may share the same or substantially the same function as radial restriction member 65a. However, radial restriction member 65c may be a cap member, or similar generally annular, tubular member having an engagement surface for operable engagement with a compression tool. For instance, embodiments of the radial restriction member 65c may include an internal annular lip 63 or inwardly extending flange proximate a rearward end 62 of the radial restriction member 65c. The radial restriction member 65c may surround or partially surround the compression portion 60 and a portion of the connector body 50 proximate the rearward second end 52, wherein the internal annular lip 63 of the radial restriction member 65c may be configured to contact the compression portion 6a prior to or upon axial compression of the connector. The radial restriction member 65c may be comprised of stainless steel or other substantially rigid materials which may structurally assist the crack and seal process of compression portion 60. For instance, when the compression portion 60 is axially compressed in a direction towards the coupling member 30, the radial restriction member 65c may axially displace along with the compression portion 60 and may prevent the compression portion 60 from splintering or otherwise displacing in a direction other than substantially axial towards the coupling member 30. Additionally, the internal lip 63 proximate the rearward end 62 of the radial restriction member 65c may provide an engagement surface for operable engagement with a compression tool, or other device/means that provides the necessary compression to compress seal connector 1302.


Referring now to FIG. 3, embodiments of connector 102 may include a coupling member 30a, a post 40, a connector body 50, an outer sleeve 90a, a compression portion 60, and a radial restriction member 65b. Radial restriction member 65b may share the same or substantially the same function as radial restriction member 65a. However, radial restriction member 65b may be one or more straps or bands that extend annularly around or partially around the compression portion 60. The radial restriction member 65b may be structurally attached to the compression portion 60 in a variety of methods, such as press-fit, adhesion, cohesion, fastened, etc. For instance, the radial restriction member 65b may reside within annular notches or grooves in the compression portion 60. The notches or grooves may have various depths to allow the radial restriction member 65 to be flush with the outer surface of the compression portion 60, to protrude from the outer surface of the compression portion 60, or to reside completely beneath the outer surface of the compression portion 60. Moreover, the radial restriction member 65 may be comprised of stainless steel or other substantially rigid materials which may structurally assist the crack and seal process of compression portion 60. For instance, when the compression portion 60 is axially compressed in a direction towards the coupling member 30a, the radial restriction member 65b may also prevent the compression portion 60 from splintering or otherwise displacing in a direction other than substantially axial towards the coupling member 30a.


With reference to FIG. 4A, embodiments of connector 103 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90b, a compression portion 60, and a radial restriction member 65a.


Embodiments of a connector 103 may include a coupling member 30b. Coupling member 30b may share the same or substantially the same structural and functional aspects of coupling member 30a. Accordingly, coupling member 30b has a first forward end 31b, an opposing second rearward end 32b, internal threading 33b, an internal lip 34b including a surface 35b facing the first forward end 31b of the coupling member 30b. However, the second rearward end 32b, of the coupling member 30b may extend a significant axial distance to reside radially extent, or otherwise partially surround, a portion of the connector body 50, although the extended portion of the coupling member 30b need not contact the connector body 50. Additionally, coupling member 30b may include a retaining structure 37b on an outer surface 36b of the coupling member 30b. The retaining structure 37b may share the same or substantially same structural and functional aspects of the retaining structure 37a described in association with, for example, connector 100. Manufacture of the coupling member 30b may include casting, extruding, cutting, knurling, turning, tapping, drilling, injection molding, blow molding, combinations thereof, or other fabrication methods that may provide efficient production of the component. The forward facing surface 35b of the coupling member 30b faces a flange 44 the post 40 when operably assembled in a coaxial cable connector, so as to allow the coupling member 30b to rotate with respect to the other component elements, such as the post 40 and the connector body 50.


Embodiments of connector 103 may include an outer sleeve 90b. Sleeve 90b may share the same structural and functional aspects of sleeve 90a described in association with, for example, connector 100. Accordingly, sleeve 90b may include an engagement member 97b that is configured to mate or engage with a retaining structure 37b of the coupling member 30b. For example, the sleeve 90b may include a first end 91b, a second end 92b, an inner surface 93b, and an outer surface 94b, and may be a generally annular member having a generally axial opening therethrough. However, the sleeve 90b may be radially disposed over the coupling member 30b, or a portion thereof, the connector body 50, or a portion thereof, the compression portion 60, or a portion thereof, and the radial restriction member 65, while operably assembled and/or in a compressed position. Additionally, the sleeve 90b may include an annular ramped surface 95b or chamfer proximate or otherwise near the first end 91b to accommodate an increased diameter or general size of the coupling member 30b proximate a second, rearward end 32b of the coupling member 30b. Embodiments of the ramped surface 95b may be structurally integral with the engagement member 97b and the body of the sleeve 90b. Furthermore, embodiments of an assembled configuration of connector 103 with respect to the sleeve 90b may involve sliding the sleeve 90b over the coupling member 30b in an axial direction starting from the first end 31b and continuing toward the second end 32b of the coupling member 30b until sufficient mating and/or engagement occurs between the engagement member 97b of the sleeve 90b and the retaining structure 37b of the coupling member 30b, as shown in FIG. 4B. Sleeve 90b may also include outer surface feature(s) 99b, such as annular serrations or slots, configured to enhance gripping of the sleeve 90 while connecting the coaxial cable connector onto an interface port.



FIG. 5 depicts an embodiment of connector 104. Embodiments of connector 104 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90b, a compression portion 60, and a radial restriction member 65c.



FIG. 6 depicts an embodiment of connector 105. Embodiments of connector 105 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90b, a compression portion 60, and a radial restriction member 65b


Referring now to FIG. 7, embodiments of connector 106 may include an integral sleeve 90c, a post 40, a connector body 50, a compression portion 60, and a radial restriction member 65a.


Embodiments of connector 106 may include an integral sleeve 90c. An integral sleeve 90c may be a generally annular member having a generally axial opening therethrough. The integral sleeve 90c may include a first end 91c, a second end 1392c, an outer surface 93c, and an outer surface 94c. Furthermore, the integral sleeve 90c may include a coupling portion 95c proximate the first end 91c and a body portion 96c structurally integral with the coupling portion 95c. The coupling portion 95c may include internal threads for operable engagement with an interface port, such as interface port 20. For instance, the internal threads of the coupling portion 95c of the integral sleeve 90c may correspond to threads on the outer surface of an interface port. The coupling portion 95c may also include an internal lip 97c, such as an annular protrusion. The internal lip 97c includes a surface 98c facing the first forward end 91c of the integral sleeve 90c. The forward facing surface 98c of the lip 97c may be a tapered surface that corresponds to a tapered surface 45 of the post 40. The forward facing surface 98c of the coupling portion 95c faces the flange 44 of the post 40 when operably assembled in a connector 106, so as to allow the integral sleeve 90c to rotate with respect to the other component elements, such as the post 40 and the connector body 50. The structural configuration of the coupling portion 95c of integral sleeve 90c may vary according to differing connector design parameters to accommodate different functionality of a coaxial cable connector. For instance, the first forward end 91c of the integral sleeve 90c may include internal and/or external structures such as ridges, grooves, curves, detents, slots, openings, chamfers, or other structural features, etc., which may facilitate the operable joining of an environmental sealing member, such a water-tight seal or other attachable component element, that may help prevent ingress of environmental contaminants, such as moisture, oils, and dirt, at the first forward end 91c of the integral sleeve 90c, when mated with an interface port 20. Those in the art should appreciate that the coupling portion 95c need not be threaded.


Moreover, the integral sleeve 90c includes a body portion 96c that may be structurally integral with the coupling portion 95c to form an outer sleeve that may surround the post 40, the connector body 50, the compression portion 60, or a portion thereof, and the radial restriction member 65, or a portion thereof when in an assembled and/or compressed position. Because the body portion 96c may be structurally integral with the coupling portion 95c, rotation or twisting of the body portion 96c can cause rotation or twisting of the coupling portion 95c to operably mate a coaxial cable connector, such as connector 106, onto an interface port. Thus, the integral sleeve 90c includes a larger surface area to grip and twist the integral sleeve 90c to thread the coupling portion 95c fully onto the interface port, such as interface port 20. Embodiments of the body portion 96c of the integral sleeve 90c may include outer surface features, such as annular serrations or slots, configured to enhance gripping of the integral sleeve 90c while connecting the coaxial cable connector onto an interface port. The body portion 96c of the sleeve 90c may be formed of materials such as plastics, polymers, bendable metals or composite materials that facilitate a rigid body, while the coupling portion 95c may be formed of conductive materials, such as copper, brass, aluminum, or other metals or metal alloys, facilitating grounding through the connector. In other words, the integral sleeve 90c may be formed of both conductive and non-conductive materials. For example, the external surface of the coupling portion 95c of the integral sleeve 90c may be formed of a polymer, while the remainder of the coupling portion 95c may be comprised of a metal or other conductive material. Alternatively, the coupling portion 95c and the body portion 96c of the integral sleeve 90c may be formed of conductive materials such as metals or metal alloys, or may both be formed of polymers or other materials that would facilitate a rigidly formed component. Manufacture of the integral sleeve 90c may include casting, extruding, cutting, knurling, turning, tapping, drilling, injection molding, blow molding, combinations thereof, or other fabrication methods that may provide efficient production of the component.



FIG. 8 depicts an embodiment of connector 107. Embodiments of connector 107 may include an integral sleeve 90c, a post 40, a connector body 50, a compression portion 60, and a radial restriction member 65c.



FIG. 9 depicts an embodiment of connector 108. Embodiments of connector 108 may include an integral sleeve 90c, a post 40, a connector body 50, a compression portion 60, and a radial restriction member 65b.


With reference now to FIG. 10, embodiments of connector 109 may include a coupling member 30c, a post 40, a connector body 50, a sleeve 90h, a sealing member 80, a compression portion 60, and a radial restriction member 65a.


Embodiments of connector 109 may include a coupling member 30c. Coupling member 30c may share some of the structural and functional aspects of embodiments of coupling member 30a, 30b, such as being mated, threaded or otherwise, to a corresponding interface port 20. Coupling member 30c may include a first end 31c, a second end 32c, an inner surface 33c, at least a portion of which is threaded, a connector-grasping portion 39c, and an outer surface 34c, including a seal-grasping surface portion 36c. The seal-grasping surface portion 36c may be a flat, smooth surface or a flat, roughened surface suitable to frictionally and/or adhesively engage an interior sealing surface 83 of the sealing member 80. Embodiments of the seal-grasping surface portion 36c may also contain a ridge that together with the seal grasping surface portion 36c forms a groove or shoulder that is suitably sized and shaped to correspondingly engage an internal shoulder 87 of the sealing member 80 adjacent the interior sealing surface 83 in a locking-type interference fit between the coupling member 30c and the sealing member 80.


Moreover, the coupling member 30c may further include a coupling member-turning surface portion on an outer surface 84 of the sealing member 80. The coupling member-turning surface portion may have at least two flat surface regions that allow engagement with the surfaces of a tool such as a wrench. In one embodiment, the coupling member-turning surface is hexagonal. Alternatively, the coupling member-turning surface may be a knurled surface to facilitate hand-turning of the nut component. Furthermore, upon engagement of the sealing member 80 with the coupling member 30c, a rear sealing surface of the sealing member 80 abuts a side/edge surface of the coupling member 30c to form a sealing relationship in that region. In one embodiment, the connector-grasping portion 36c of the coupling member 30c is an internally-projecting shoulder that engages a flange 44 of the post 40 in such a manner that the coupling member 30c can be freely rotated as it is held in place as part of the connector.


With continued reference to FIG. 10, connector 109 may include a sealing member 80. The sealing member may include a first end 81, a second end 82, an inner surface 83, and an outer surface 84. The sealing member 80 may have a generally tubular body that is elastically deformable by nature of its material characteristics and design. In most embodiments, the seal member 80 is a one-piece element made of a compression molded, elastomer material having suitable chemical resistance and material stability (i.e., elasticity) over a temperature range between about −40° C. to +40° C. For example, the sealing member 80 may be made of silicone rubber. Alternatively, the material may be propylene, a typical O-ring material. Other materials known in the art may also be suitable. Furthermore, the first end 81 of sealing member 80 may be a free end for ultimate engagement with a port, while the second end 82 may be for ultimate connection to the coupling member 30c. The sealing member 80 may have a forward sealing surface, a rear sealing portion including an interior sealing surface 83 that integrally engages the coupling member 30c, and an integral joint-section intermediate the first and second end 81, 82 of the tubular body of the sealing member 80. The forward sealing surface 85 at the first end 81 of the sealing member 80 may include annular facets to assist in forming a seal with the port, such as interface port 20. Alternatively, forward sealing surface 85 may be a continuous rounded annular surface that forms effective seals through the elastic deformation of the inner surface 83 and end of the sealing member 80 compressed against the port. The integral joint-section includes a portion of the length of the sealing member 80 which is relatively thinner in radial cross-section to encourage an outward expansion or bowing of the seal upon its axial compression. In an exemplary embodiment, the coupling member grasping surface includes an interior sealing surface which forms an annular surface on the inside of the tubular body, and an internal shoulder 87 of the tubular body adjacent the second end 82. Accordingly, compressive axial force may be applied against one or both ends of the seal depending upon the length of the port intended to be sealed. The force will act to axially compress the seal whereupon it will expand radially in the vicinity of the integral joint-section. In one embodiment, the integral joint-section is located axially asymmetrically intermediate the first end 81 and the second end 82 of the tubular body, and adjacent an anterior end of the interior sealing surface 83. Embodiments of the sealing member 80 may have an interior diameter at the integral joint-section equal to about 0.44 inches in an uncompressed state; the tubular body of the sealing member 80 may have a length from the first end 81 to the second end 82 of about 0.36 inches in an uncompressed state. However, it is contemplated that the joint-section can be designed to be inserted anywhere between she sealing surface and the first end 81. The sealing member 80 may prevent the ingress of corrosive elements when the seal is used for its intended function.


Referring still to FIG. 10, embodiments of connector 109 may include an outer sleeve 90h. The outer sleeve 90h may be engageable with coupling member 30c. Sleeve 90h may share the same or substantially the same structural and functional aspects of sleeve 90a, described supra, and sleeve 90d, 90f, described infra. Accordingly, the sleeve 90h may include a first end 91h, a second end 92h, an inner surface 93h, and an outer surface 94h. However, the sleeve 90h need not include an engagement member, such as an embodiment of engagement member 97a. The mechanical interference to effectuate simultaneous rotation/twisting of the sleeve 90h and the coupling member 30c between coupling member 30c and sleeve 90h may rely on a press-fit or interference fit between the components. Alternatively, the sleeve 90h may and coupling member 30c may include corresponding internal (sleeve 90h) and external (coupling member 30c) surface features to facilitate mechanical interference between the components. Internal and external surface features of sleeve 90h and coupling member 30c may share the structural and functional aspects as surface features 98a and 38a, as described in association with, for example, connector 100.



FIG. 11 depicts an embodiment of connector 110. Embodiments of connector 110 may include a coupling member 30c, a post 40, a connector body 50, a sleeve 90h, a sealing member 80, a compression portion 60, and a radial restriction member 65c.



FIG. 12 depicts an embodiment of connector 111. Embodiments of connector 111 may include a coupling member 30c, a post 40, a connector body 50, a sleeve 90h, a sealing member 80, a compression portion 60, and a radial restriction member 65b.


With continued reference to the drawings, FIG. 13 depicts an embodiment of connector 112. Embodiments of connector 112 may include a coupling member 30a, a post 40, a connector body 50, a sleeve 90d, a compression portion 60, and a radial restriction member 65a.


Embodiments of connector 112 may include a sleeve 90d. Sleeve 90d may be engageable with the coupling member 30a. Sleeve 90d may share the same or substantially the same structural and functional aspects of sleeve 90a. Accordingly, sleeve 90d may include an engagement member 97d that is configured to mate or engage with a retaining structure 37a of the coupling member 30a. Additionally, the sleeve 90d may include a first end 91d, a second end 92d, an inner surface 93d, and an outer surface 94d, and may be a generally annular member having a generally axial opening therethrough. Additionally, sleeve 90d may surround the coupling member 30a, the post 40, the connector body 50, or a portion thereof, the compression portion 60, and a radial restriction member 65, or a portion thereof when in an assembled and/or compressed position. However, the sleeve 90d may extend towards the first end 31a of coupling member 30a. In one embodiment, the first end 91d of the sleeve 90d may be flush or substantially flush with an edge of the coupling member 30a proximate or otherwise near the first end 31a of the coupling member 30a. Moreover, the engagement member 97d may be located proximate or otherwise near the edge of the first end 91d of the sleeve 90d. The engagement member 97d may be configured to mate or engage a retaining structure 37a of the coupling member 30a that is correspondingly located proximate or otherwise near the first end 31a of the coupling member 30a.



FIG. 14 depicts an embodiment of connector 113. Embodiments of connector 113 may include a coupling member 30a, a post 40, a connector body 50, an outer sleeve 90d, a compression portion 60, and a radial restriction member 65c.



FIG. 15 depicts an embodiment of connector 114. Embodiments of connector 114 may include a coupling member 30a, a post 40, a connector body 50, an outer sleeve 90d, a compression portion 60, and a radial restriction member 65b.


Referring now to FIG. 16, embodiments of connector 115 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90g, a compression portion 60, and a radial restriction member 65a.


Embodiments of connector 115 may include an outer sleeve 90g. Sleeve 90g may be engageable with the coupling member 30b. Sleeve 90g may share the same or substantially the same function as sleeve 90b and sleeve 90f described infra. Accordingly, the sleeve 90g may include a first end 91g, a second end 92g, an inner surface 93g, and an outer surface 94g, and may be a generally annular member having a generally axial opening therethrough. Sleeve 90g may surround the coupling member 30b, the post 40, the connector body 50, or a portion thereof, the compression portion 60, and a radial restriction member 65, or a portion thereof, when in an assembled and/or compressed position. Moreover, the sleeve 90g may extend towards the first end 31b of coupling member 30b. However, sleeve 90g may include an inwardly extending lip 97g proximate or otherwise near the first end 91g of the sleeve 90g, which can help guide the coupling member 30b onto a corresponding interface port. The lip 97g may share the same structural and functional aspects of the engagement member 97b. For instance, the lip 97g may radially inwardly extend a distance sufficient to prevent axial movement of the sleeve 90g in a direction towards the second end 32b of the coupling member 30b when operably assembled and/or in a compressed position. An embodiment of an assembled configuration of connector 115 with respect to the sleeve 90g may involve sliding the sleeve 90g over the coupling member 30b in an axial direction starting from the first end 31b and continuing toward the second end 32b of the coupling member 30b until sufficient mechanical interference and/or engagement occurs between the lip 97g of the sleeve 90g and frontal edge or mating surface of the coupling member 30b. The simultaneous rotation/twisting of the sleeve 90g and the coupling member 30b may be effectuated in the same or similar manner as described between the sleeve 90b and the coupling member 30b.



FIG. 17 depicts an embodiment of connector 116. Embodiments of connector 116 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90g, a compression portion 60, and a radial restriction member 65c.



FIG. 18 depicts an embodiment of connector 117. Embodiments of connector 117 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90g, a compression portion 60, and a radial restriction member 65b.


With reference now to FIG. 19, embodiments of connector 118 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90f, a compression portion 60, and a radial restriction member 65a.


Embodiments of connector 118 may include an outer sleeve 90f. Sleeve 90f may share the same or substantially the same structural and functional aspects of sleeve 90b. Accordingly, sleeve 90f may include an engagement member 97f that is configured to mate or engage with a retaining structure 37b of the coupling member 30b. For example, the sleeve 90f may include a first end 91f, a second end 92f, an inner surface 93f, and an outer surface 94f, and may be a generally annular member having a generally axial opening therethrough. Additionally, sleeve 90f may surround the coupling member 30b, the post 40, the connector body 50, or a portion thereof, the compression portion 60, and a radial restriction member 65, or a portion thereof when in an assembled and/or compressed position. However, the sleeve 90f may extend towards the first end 31b of coupling member 30b. In one embodiment, the first end 91f of the sleeve 90f may be flush or substantially flush with an edge of the coupling member 30b proximate or otherwise near the first end 31b of the coupling member 30b. Moreover, the engagement member 97f may be located proximate or otherwise near the edge of the first end 91f of the sleeve 90f. The engagement member 97f may be configured to mate or engage a retaining structure 37b of the coupling member 30b that is correspondingly located proximate or otherwise near the first end 31b of the coupling member 30b.



FIG. 20 depicts an embodiment of connector 119. Embodiments of connector 119 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90f, a compression portion 60, and a radial restriction member 65c.



FIG. 21 depicts an embodiment of connector 120. Embodiments of connector 120 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90f, a compression portion 60, and a radial restriction member 65b.


Referring now to FIG. 22, embodiments of connector 121 may include a coupling member 30a, a post 40, a connector body 50, an outer sleeve 90e, a compression portion 60, and a radial restriction member 65a.


Embodiments of connector 121 may include an outer sleeve 90e. Sleeve 90e may share the same or substantially the same function as sleeve 90a and sleeve 90d. Accordingly, the sleeve 90e may include a first end 91e, a second end 92e, an inner surface 93e, and an outer surface 94e, and may be a generally annular member having a generally axial opening therethrough. Sleeve 90e may surround the coupling member 30a, the post 40, the connector body 50, or a portion thereof, the compression portion 60, and a radial restriction member 65, or a portion thereof when in an assembled and/or compressed position. Moreover, the sleeve 90e may extend towards the first end 31a of coupling member 30a. However, sleeve 90e may include an inwardly extending lip 97e proximate or otherwise near the first end 91e of the sleeve 90e, which can help guide the coupling member 30a onto a corresponding interface port. The lip 97e may share the same functional aspects of the engagement member 97a, 97d of sleeve 90a, 90d, respectively. For instance, the lip 97e may radially inwardly extend a distance sufficient to prevent axial movement of the sleeve 90e in a direction towards the second end 32a of the coupling member 30a when operably assembled and/or in a compressed position. An embodiment of an assembled configuration of connector 121 with respect to the sleeve 90e may involve sliding the sleeve 90e over the coupling member 30a in an axial direction starting from the first end 31a and continuing toward the second end 32a of the coupling member 30a until sufficient mechanical interference and/or engagement occurs between the lip 97e of the sleeve 90e and frontal edge or mating surface of the coupling member 30a. The simultaneous rotation/twisting of the sleeve 90e and the coupling member 30a may be effectuated in the same or similar manner as described between the sleeve 90a and the coupling member 30a.



FIG. 23 depicts an embodiment of connector 122. Embodiments of connector 122 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90e, a compression portion 60, and a radial restriction member 65c.



FIG. 24 depicts an embodiment of connector 123. Embodiments of connector 123 may include a coupling member 30b, a post 40, a connector body 50, an outer sleeve 90e, a compression portion 60, and a radial restriction member 65b


Continuing to refer to the drawings, FIGS. 25-27 depict an embodiment of connector 124-128 that may include a coupling member 30c, a post 40, a seal member 80, a connector body 50, a connector body seal element 5, a compression portion 60, and a radial restriction member 65. Embodiments of a radial restriction member 65 may be radial restriction member 65a, radial restriction member 65b, or radial restriction member 65c.


Referring to FIG. 25, embodiments of connector 124 may include a coupling member 30c, a post 40, a connector body 50, a sealing member 80, a connector body seal element 5, a compression portion 60, and a radial restriction member 65a.



FIG. 26 depicts an embodiment of connector 125. Embodiments of connector 125 may include a coupling member 30c, a post 40, a connector body 50, a sealing member 80, a compression portion 60, and a radial restriction member 65c.



FIG. 27 depicts an embodiment of connector 126. Embodiments of connector 127 may include a coupling member 30c, a post 40, a connector body 50, a sealing member 80, a compression portion 60, and a radial restriction member 65b.


With reference to FIGS. 28 and 29, embodiments of connector 127-128 may include a coupling member 30c, a post 40, a seal member 80, a connector body 50, a sleeve 90h, a connector body seal element 5, and a compression portion 260. Embodiments of a compression portion 260 may be compression portion 260b or compression portion 260c.



FIG. 28 depicts an embodiment of connector 127. Embodiments of connector 127 may include a coupling member 30c, a post 40, a connector body 50, a connector body seal member 5, a sleeve 90h, and a compression portion 260b.


Embodiments of connector 127 may include a compression portion 260b. Compression portion 260b may be a fastener member that is inserted over the connector body 50 to deformably compress the connector body 50 onto the cable 10. The compression portion 260b may have a first end 261 and opposing second end 262. In addition, the compression portion 260 may include an internal annular protrusion 263 located proximate the first end 261 of the compression portion 260b and configured to mate and achieve purchase with the annular detent 53 on the outer surface 55 of connector body 50. Moreover, the compression portion 260b may comprise a central passageway defined between the first end 261 and second end 262 and extending axially through the compression portion 260b. The central passageway may comprise a ramped surface 266 which may be positioned between a first opening or inner bore having a first diameter positioned proximate with the first end 261 of the compression portion 260b and a second opening or inner bore having a second diameter positioned proximate with the second end 262 of the compression portion 260b. The ramped surface 266 may act to deformably compress the outer surface 55 of a connector body 50 when the compression portion 260b is operated to secure a coaxial cable 10. For example, the narrowing geometry will compress squeeze against the cable, when the compression portion is compressed into a tight and secured position on the connector body. Additionally, the compression portion 260b may comprise an exterior surface feature 269 positioned proximate with or close to the second end 262 of the compression portion 260b. The surface feature 269 may facilitate gripping of the compression portion 260b during operation of the connector. Although the surface feature 269 is shown as an annular detent, it may have various shapes and sizes such as a ridge, notch, protrusion, knurling, or other friction or gripping type arrangements. It should be recognized, by those skilled in the requisite art, that the compression portion 260b may be formed of rigid materials such as metals, hard plastics, polymers, composites and the like, and/or combinations thereof. Furthermore, the compression portion 260b may be manufactured via casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.



FIG. 29 depicts an embodiment of connector 128. Embodiments of connector 128 may include a coupling member 30c, a post 40, a connector body 50, a sealing member 80, a connector body seal member 5, a sleeve 90h, and a compression portion 260c.


Embodiments of connector 128 may include a compression portion 260c. Compression portion 260c may be an insertable compression sleeve or tubular locking compression member that resides internally with respect to the connector body 50 in the compressed position. The compression portion 260c may include a first end 261c, a second end 262c, an inner surface 263, and an outer surface 264c. The compression portion 260c may be pushed into the connector body 50 to squeeze against and secure the cable 10. For instance, the compression portion 260c may protrude axially into an annular chamber through the rear opening, and may be slidably coupled or otherwise movably affixed to the connector body 50 to compress into the connector body 50 and retain the cable 10. The compression portion 260c may be displaceable or movable axially or in the general direction of the axis of the connector between a first open position (accommodating insertion of the tubular inner post 40 into a prepared cable 10 end to contact the grounding shield 14), and a second clamped position compressibly fixing the cable 10 within the chamber of the connector because the compression portion 260c is squeezed into retraining contact with the cable 10 within the connector body 50. Furthermore, the compression portion 260c may include a lip 265c proximate the first end 261c, wherein the lip 265c of the compression portion 260c mates with the internal groove of the connector body 50.


Further embodiments of a coaxial cable connector may include a coupling member 30, a post 40, a connector body 50, a sealing member 80, a connector body seal member 5, a sleeve 90, a compression portion 60/260, and a radial restriction member 65a/65b/65c. Embodiments of sleeve 90 may include sleeve 90a/90b/90d/90e/90f/90g/90h, or may simply share the same structural and functional aspects, yet be configured to operably attach to a coupling member having molded plastic threads, or a coupling member that is completely molded. Embodiments of a coupling member 30, which may share the same or substantially the same structural and functional aspects of 30a/30b/30c, may include plastic threads designed to seal against the external threads 23 of port 20 to keep moisture and other physical contaminants out. For example, the threads may be cut slightly different resulting in a differently shaped or dimensioned thread from the threads 23 of the port 20 to achieve a seal with the port 20. Furthermore, the threads could be slightly over-sized causing the metallic threads 23 of the port 20 to slice, pierce, grind, etc., into and against the plastic threads of the plastic coupling member 30 as the plastic coupling member 30 is being threaded onto the port 20. The threads can be molded or machined, and the coupling member 30 can be all plastic (molded or machined) or the coupling member 30 can have a plastic insert that has molded or cut threads. Additionally, the plastic threads may be shaped like pipe-threads causing the non-pipe-thread-shaped threads of the port 20 to seal against the plastic threads of the coupling member 30 when the coupling member 30 is advanced onto the port 20. The threads may also include a small protrusion feature running along the threads that forms a seal with the threads of the port 20 as the coupling member 30 is advanced onto the port 20. Embodiments of a plastic coupling member (or partially plastic coupling member having plastic threads), in addition to creating a physical seal, may inherently create a secure connection to the port 20 because a tight friction-fit may likely be formed with the port 20 as the threads of the coupling member 30 are advanced (with some amount of force that may be necessary to overcome the friction) onto the threads of the port 20.


Those skilled in the art should appreciate that various combinations and embodiments disclosed and described in detail herein may include a body seal element, such as connector body seal element 5, to provide an environmental seal for the coaxial cable connector.


With reference to FIGS. 1-29, a method of fastening a coaxial cable, such as coaxial cable 10, to a communication port, such as port 20. The method may comprise a step of providing a coaxial cable connector 100-128 including: a connector body 50, a post 40 operably attached to the connector body 50, the post 40 having a flange 44, a coupling member 30a/30b/30c axially rotatable with respect to the post 40 and the connector body 50, the coupling member 30a/30b/30c including a lip 34a/34b/36c, an outer sleeve 90a/90b/90c/90d/90e/90f/90g/90h engageable with the coupling member 30a/30b/30c, and a compression portion 60 structurally integral with the connector body 50. Another method step may include axially compressing the compression portion 60 to form an environmental seal around the coaxial cable 10, wherein when axially compressed, the compression portion 60 breaks away from the connector body 50 and securely connects to the coaxial cable 10. Still another method step may include fastening the coupling member 30a/30b/30c to an interface port by operating the outer sleeve 90a/90b/90c/90d/90e/90f/90g/90h.


Referring now to FIGS. 30 and 31, embodiments of a coaxial cable connector 2000 is shown and described. Embodiments of connector 2000 may share some of the same structural and functional aspects and components as described in association with connectors 100-123. For instance, connector 2000 may comprise a coupling member 2030, a post 2040, a connector body 2050, a compression portion 2060, a radial restriction member 2065, and a connector body seal member 2005 such as, for example, a body O-ring configured to fit around a portion of the connector body 2050. Embodiments of coupling member 2030 may be either coupling member 2030a or coupling member 2030b, and may share the same or substantially the same structure and function of the coupling member 30, described supra. Embodiments of post 2040 may share the same structure and functional of post 40, described supra. In some embodiments of connector 2000, a gas-tight seal may be effectuated between the post 2040 and the coupling member 2030, and the coupling member and/or post may be comprised of Nickel plated brass for added environmental protection for the connector 2000. Moreover, some embodiments of connector 2000 may a bandwidth of 0 MHz-3 GHz, a nominal impedance of 75 Ohms, a minimum −30 dB to 3 GHz return loss, an insertion loss less than 0.10 dB to 3 GHz, an operating voltage of 90V (at 60 Hz continuous AC), an operating temperature between −40° F. to 140° F. (−40° C. to 60° C.), and a cable retention of 40 lbs minimum. Those skilled in the art should appreciate that the specifications described herein refer to approximate values of one exemplary embodiment of connector 2000. Connector 2000 may come in a preassembled configuration, ready to be attached to a prepared end of a coaxial cable 10, typically through operation of a compression tool.


Embodiments of connector 2000 may include a connector body 2050. The connector body 2050 may comprise a first end 2051 and opposing second end 2052. Moreover, the connector body 2050 may include a post mounting portion 2057 proximate or otherwise near the first end 2051 of the body 2050, the post mounting portion 2057 configured to securely locate the body 2050 relative to a portion of the outer surface of post 2040, so that the connector body 2050 is axially secured with respect to the post 2040, in a manner that prevents the two components from moving with respect to each other in a direction parallel to the axis of the connector 2000. The internal surface of the post mounting portion 2057 may include an engagement feature, such as an annular detent or ridge having a different diameter than the rest of the post mounting portion 207. However other features such as grooves, ridges, protrusions, slots, holes, keyways, bumps, nubs, dimples, crests, rims, or other like structural features may be included. In addition, the connector body 2050 may include an outer annular recess 2058 located proximate or near the first end 2051 of the connector body 2050. Furthermore, the connector body 2050 may include a semi-rigid, yet compliant outer surface 2055, wherein the second end 2052 of the connector body 2050 may be configured to form an annular seal when the second end 2052 is deformably compressed against a received coaxial cable 10 by operation of a compression portion 2060. The connector body 2050 may include an outer ramped surface 2056 to gradually reduce thickness of the connector body 2050 proximate the second end 2052 and define a weakened annular portion with a cooperating internal annular groove 2066 of the compression portion 2060. Further embodiments of connector body 2050 may include an internal annular notch 2059 or groove located an axial distance towards the coupling member 2030 from the internal annular groove 2066 of the compression portion 2060 to structurally facilitate the deformation of the connector body 2050, as described in further detail infra.


Moreover, the connector body 2050 may include an external annular detent 2071 located proximate or close to the second end 2052 of the connector body 2050. The external annular detent 2071 may be configured to receive, mate with, engage with, and/or cooperate with an internal lip 2081 of a radial restriction member 2065. Embodiments of the external annular detent 2071 may include a ramped portion 2072 and a lip portion 2073. The ramped portion 2072 of the external detent 2071 may facilitate smooth or otherwise gradient axial movement of the radial restriction member 2065 towards the coupling member 30 as the radial restriction member 2065 and the compression 2060 are being axially compressed. The lip portion 2073 may form a wall or similar edge that is perpendicular or substantially perpendicular to the outer surface 2055 of the connector body 2050. The location and structure of the lip portion 2073 of the external annular detent 2071 may prevent or interfere with axial movement of the radial restriction member 2065 in a direction away from the coupling member 30, which could result in the radial restriction member 2065 sliding off of the connector 2000. In other words, the radial restriction member 2065 may operably engage the connector body 2050 when the internal lip 2081 of the radial restriction member 2065 snaps into place or cooperates with the external annular detent 2071 of the connector body 2050. Further still, the connector body 2050 may include internal surface features, such as annular serrations formed near or proximate the internal surface of the second end 2052 of the connector body 2050 and configured to enhance frictional restraint and gripping of an inserted and received coaxial cable 10, through tooth-like interaction with the cable. The connector body 2050 may be formed of materials such as plastics, polymers, bendable metals or composite materials that facilitate a semi-rigid, yet compliant outer surface 2055. Further, the connector body 2050 may be formed of conductive or non-conductive materials or a combination thereof. Manufacture of the connector body 50 may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


Embodiments of connector 2000 may include a compression portion 2060. Compression portion 2060 may be operably attached to the connector body 2050 through a frangible connection 2090. For instance, the compression portion 2060 may be structurally integral with the connector body 2050, wherein the compression portion 2060 separates or shears from the connector body 2050 upon an axial force which in turn radially compresses the second end 2052 of the connector body 2050 onto the coaxial cable 10, as shown in FIG. 32. The structural connection (i.e. frangible connection 2090) between the connector body 2050 and the compression portion 2060 may be thin, frangible, weakened, or otherwise breakable when compressive, axial force is applied (e.g. by an axial compression tool). For example, the compression portion 2060 may have a frangible or breakable connection with the connector body 2050. Moreover, the structural connection or configuration between the connector body 2050 and the compression portion 2060 may be defined by an internal annular notch 2066 or groove of the compression portion 2060 and an outer ramped surface 2056 of the connector body 2050. Embodiments of the internal annular groove 2066 may include a ramped inner surface 2074 formed from part of the connector body 2050, and a ramped inner surface 2094 formed from part of the compression portion 2060. In other words, the internal annular groove 2066 may comprise two opposingly ramped inner surfaces 2094, 2074 converging toward the frangible connection 2090 to reduce the overall thickness and/or girth of the frangible connection 2090 and help control the breaking pattern of the compression portion 2060 from the connector body 2050. Ramped inner surface 2094 forming the annular groove 2066 may be part of the compression portion 2060, and may have the same or similar angle (with respect to a uniform portion of the inner surface 2054) as the outer ramped surface 2056, such that when the frangible connection 2090 is severed, the ramped inner surface 2094 of the annular groove 2066 associated with the compression portion 2060 can cooperate with the outer ramped surface 2056 of the connector body 2050 during compression of the connector 2000. The internal annular groove 2066 may act as a stress concentrator for consistent cracking form and location during compression. Accordingly, embodiments of connector 2000 may include a stress concentrator along an inner surface 2054 of the connector body 2050 to facilitate controlled deformation and/or cracking of the frangible connection 2090. One embodiment of a stress concentrator may be the internal annular groove 2066. Other embodiments of a stress concentrator may include a different internal geometry than as described above, and achieve the same result. For instance, an embodiment of a stress concentrator may be any internal geometry at one or more locations along the compression portion 2060, the connector body 2050, or a combination of the compression portion 2060 and the connector body 2050 that either or both facilitates a consistent and/or even cracking of a frangible connection therebetween and facilitates the axial movement of the various connector components during compression.


Embodiments of the compression portion 2060 may include a first outer ramped surface 2092 proximate the frangible connection 2090. The first outer ramped surface 2092 of the compression portion 2060 may help to gradually reduce the thickness of the compression portion proximate the frangible connection 2090; furthermore, the first outer ramped surface 2092 may also provide a small amount of space for the compression portion 2060 to more efficiently and smoothly ride up along the outer ramped surface 2056 of the connector body 2050 during compression of the compression portion 2060. Further still, embodiments of the compression portion 2060 may include a second outer ramped surface 2093 at an opposing end of the compression portion 2060 from the first outer ramped portion 2092. The second outer ramped portion 2093 may extend less axial distance than the first outer ramped surface 2092, and may provide some clearance or leeway for the radial restriction member 2065 when being compressed. The annular notch 2059 of the connector body 2050 located an axial distance from the internal annular notch 2066 may further facilitate the deformation of the second end 2052 of the connector body 2050.


Additionally, the frangible connection 2090 may be located at an axial distance along the connector 2000 just prior to, proximate, or otherwise near the single barb 2049 on the second end of the post 2040 to allow for compression of the second end 2052 of the connector body 2050 onto the cable 10 at a location where the grounding shield 14 and jacket 12 bulge out from engagement with the annular barb 2049. If the grounding shield 14 and jacket 12 of the cable 10 are radially displaced outward based on engagement with the single, annular barb 2049 of the post 2040, then the second end 2052 of the connector body 2050 can exert more force against the shield 14 and jacket 12 to enhance the seal created around the cable 10 proximate the rear end of the connector 2000. Embodiments of the compression portion 2060 may be formed of the same material as connector body 2050 because they may be structurally integral with each other. For example, the compression portion 2060 may be comprised of materials such as plastics, polymers, bendable metals or composite materials that facilitate a rigid body. Further, the compression portion 2060 may be formed of conductive or non-conductive materials or a combination thereof. Manufacture of the compression member 2060 may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


Furthermore, embodiments of connector 2000 may include a radial restriction member 2065. The radial restriction member 2065 may be a sleeve or similar annular tubular member disposed proximate the rearward second end 2052 of the connector body 2050. For instance, the radial restriction member 2065 may surround the compression portion 2060 and a portion of the connector body 2050 proximate the rearward second end 2052. Embodiments of the radial restriction member 2065 may include an engagement surface for operable engagement with a compression tool. For instance, embodiments of the radial restriction member 2065 may include an internal annular lip 2063 or inwardly extending flange proximate a rearward end 2062 of the radial restriction member 2065. The lip 2063 may radially inwardly extend a distance to cover about half of the thickness of the compression portion 2060. The radial restriction member 2065 may surround or partially surround the compression portion 2060 and a portion of the connector body 2050 proximate the rearward second end 2052, wherein the internal annular lip 2063 of the radial restriction member 2065 may be configured to contact the compression portion 2060 prior to or upon axial compression of the connector. Additionally, the internal lip 2063 proximate the rearward end 2062 of the radial restriction member 2065 may provide an engagement surface for operable engagement with a compression tool, or other device/means that provides the necessary compression to compress seal connector 2000. The radial restriction member 2065 may be a generally annular, hollow cylindrically-shaped sleeve-like member comprised of stainless steel or other substantially rigid materials which may structurally assist the crack and seal process of compression portion 2060. For instance, when the compression portion 2060 is axially compressed in a direction towards the coupling member 2030, the radial restriction member 2065 may axially displace along with the compression portion 2060 and may prevent the compression portion 2060 from splintering or otherwise displacing in a direction other than substantially axial towards the coupling member 2030. Furthermore, the axial length of the radial restriction member 2065 may vary, but when in the uncompressed position, a forward end 2061 of the radial restriction member 2065 may terminate a distance just beyond (towards coupling member 2030) the external annular detent 2071, sufficient to allow the radial restriction member 2065 to securably attach to the connector body 2050. Embodiments of the radial restriction member 2065 may be a radial restriction member sharing the same or substantially the same structure and function of the radial restriction member 65a, and 65b described supra.


Embodiments of the compression portion 2060 may create an environmental seal around the coaxial cable 10 when in the fully compressed position (shown in FIG. 32). Specifically, when the compression portion 2060 (and the radial restriction member 2065) is axially slid or compressed towards the coupling member 2030, the frangible connection 2090 between the compression portion 2060 and the connector body 2050 is severed, sheared, ruptured, etc., and the compression portion 2060 comes into contact with the outer ramped surface 2056 of the connector body 2050. The severing of the frangible connection 2090 between the connector body 2050 and the compression portion 2060 essentially turns the internal notch 2066 into a cooperative ramped surface with the outer ramped surface 2056 of the connector body 2050. Due to the cooperative ramped surfaces, the axial compression (displacement) of the compression portion 2060 evenly compresses the second end 2052 of the connector body 2050 onto the outer jacket 12 of the coaxial cable 10 and deforms the outer ramped surface 2056, as shown in FIG. 32. Accordingly, the compression portion 2060 and potentially the radial restriction member 2065 may be referred to as a crack and seal compression means with a radial restriction member 2065. Those skilled in the requisite art should appreciate that the seal may be created by the compression portion 2060 without the radial restriction member 2065. However, the radial restriction member 2065 significantly enhances the structural integrity and functional operability of the compression portion, for example, when it is compressed and sealed against an attached coaxial cable 10.


With reference now to FIGS. 30-32, an embodiment of a method of fastening a coaxial cable to a coaxial cable may include the steps of providing a coaxial cable connector 2000 including: a connector body 2050 having an outer ramped surface 2056, a post 2040 engageable with the connector body 2050, a coupling member 2030 axially rotatable with respect to the post 2040, and a compression portion 2060 structurally integral with the connector body 2050, the compression portion 2060 having a ramped inner surface 2094, and axially compressing the compression portion 2060 to securably attach the connector 2000 to the coaxial cable 10 and form an environmental seal around the coaxial cable 10, wherein the inner ramped surface 2094 is configured to cooperate with the outer ramped surface 2056 during the axial compression of the compression portion 2060 onto a portion of the connector body 2050.


While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention as defined in the following claims. The claims provide the scope of the coverage of the invention and should not be limited to the specific examples provided herein.

Claims
  • 1. A coaxial cable connector comprising; a connector body having an outer ramped surface;a post, engageable with the connector body;a coupling member, axially rotatable with respect to the post; anda compression portion structurally integral with the connector body, the compression portion having a ramped inner surface,wherein the inner ramped surface is configured to cooperate with the outer ramped surface when the compression portions breaks away from the connector body during compression of the compression portion onto a portion of the connector body.
  • 2. The coaxial cable connector of claim 1, wherein the ramped inner surface of the compression portion acts a stress concentrator for consistent cracking in form and location during compression, when the compression portion breaks away from the connector body.
  • 3. The coaxial cable connector of claim 1, further comprising a radial restriction member, wherein at least some part of the radial restriction member is disposed radially extent of the compression portion to restrict radial expansion of the compression portion.
  • 4. The coaxial cable connector of claim 3, wherein the radial restriction member includes an inwardly extending lip.
  • 5. The coaxial cable connector of claim 1, wherein the compression portion includes a first outer ramped surface proximate a forward end of the compression portion.
  • 6. The coaxial cable connector of claim 1, wherein the connector body includes an external annular detent configured to interfere with the removal of a radial restriction member.
  • 7. A coaxial cable connector comprising; a connector body having a first end and a second end, the connector body including an outer ramped surface proximate the second end;a post engageable with the connector body;a coupling member, axially rotatable with respect to the post;a compression portion sharing a frangible connection with the connector body, the frangible connection being defined by the outer ramped surface of the connector body and an internal annular groove.
  • 8. The coaxial cable connector of claim 7, wherein the compression portion is configured to radially compress the second end of the connector body onto a coaxial cable.
  • 9. The coaxial cable connector of claim 7, further comprising a radial restriction member, wherein at least some part of the radial restriction member is disposed radially extent of the compression portion to restrict radial expansion of the compression portion.
  • 10. The coaxial cable connector of claim 7, wherein the radial restriction member includes an inwardly extending lip.
  • 11. The coaxial cable connector of claim 7, wherein the compression portion includes a first outer ramped surface proximate a forward end of the compression portion.
  • 12. The coaxial cable connector of claim 7, wherein the connector body includes an external annular detent configured to interfere with the removal of a radial restriction member.
  • 13. A coaxial cable connector comprising; a connector body having a first end and a second end, the connector body including an outer ramped surface proximate the second end;a post engageable with the connector body;a coupling member, axially rotatable with respect to the post;a compression portion sharing a frangible connection with the connector body; anda stress concentrator positioned proximate the frangible connection;wherein the stress concentrator is an internal annular groove comprising two opposingly ramped inner surfaces.
  • 14. The coaxial cable connector of claim 13, further comprising a radial restriction member, wherein at least some part of the radial restriction member is disposed radially extent of the compression portion to restrict radial expansion of the compression portion.
  • 15. The coaxial cable connector of claim 14, wherein the radial restriction member includes an inwardly extending lip.
  • 16. A method of fastening a coaxial cable to a coaxial cable, the method comprising: providing a coaxial cable connector including: a connector body having an outer ramped surface;a post, engageable with the connector body;a coupling member, axially rotatable with respect to the post; anda compression portion structurally integral with the connector body, the compression portion having a ramped inner surface; andaxially compressing the compression portion to securably attach the connector to the coaxial cable and form an environmental seal around the coaxial cable, wherein the inner ramped surface is configured to cooperate with the outer ramped surface during the axial compression of the compression portion onto a portion of the connector body.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part to U.S. patent application Ser. No. 13/072,605, filed Mar. 25, 2011 now U.S. Pat. No. 8,342,879, and entitled “COAXIAL CABLE CONNECTOR.”

US Referenced Citations (614)
Number Name Date Kind
331169 Thomas Nov 1885 A
1371742 Dringman Mar 1921 A
1667485 MacDonald Apr 1928 A
1766869 Austin Jun 1930 A
1801999 Bowman Apr 1931 A
1885761 Peirce, Jr. Nov 1932 A
2102495 England Dec 1937 A
2258737 Browne Oct 1941 A
2325549 Ryzowitz Jul 1943 A
2480963 Quinn Sep 1949 A
2544654 Brown Mar 1951 A
2549647 Turenne Apr 1951 A
2694187 Nash Nov 1954 A
2754487 Carr et al. Jul 1956 A
2755331 Melcher Jul 1956 A
2757351 Klostermann Jul 1956 A
2762025 Melcher Sep 1956 A
2805399 Leeper Sep 1957 A
2870420 Malek Jan 1959 A
3001169 Blonder Sep 1961 A
3015794 Kishbaugh Jan 1962 A
3091748 Takes et al. May 1963 A
3094364 Lingg Jun 1963 A
3184706 Atkins May 1965 A
3194292 Borowsky Jul 1965 A
3196382 Morello, Jr. Jul 1965 A
3245027 Ziegler, Jr. Apr 1966 A
3275913 Blanchard et al. Sep 1966 A
3278890 Cooney Oct 1966 A
3281757 Bonhomme Oct 1966 A
3292136 Somerset Dec 1966 A
3320575 Brown et al. May 1967 A
3321732 Forney, Jr. May 1967 A
3336563 Hyslop Aug 1967 A
3348186 Rosen Oct 1967 A
3350677 Daum Oct 1967 A
3355698 Keller Nov 1967 A
3373243 Janowiak et al. Mar 1968 A
3390374 Forney, Jr. Jun 1968 A
3406373 Forney, Jr. Oct 1968 A
3430184 Acord Feb 1969 A
3448430 Kelly Jun 1969 A
3453376 Ziegler, Jr. et al. Jul 1969 A
3465281 Florer Sep 1969 A
3475545 Stark et al. Oct 1969 A
3494400 McCoy et al. Feb 1970 A
3498647 Schroder Mar 1970 A
3501737 Harris et al. Mar 1970 A
3517373 Jamon Jun 1970 A
3526871 Hobart Sep 1970 A
3533051 Ziegler, Jr. Oct 1970 A
3537065 Winston Oct 1970 A
3544705 Winston Dec 1970 A
3551882 O'Keefe Dec 1970 A
3564487 Upstone et al. Feb 1971 A
3587033 Brorein et al. Jun 1971 A
3601776 Curl Aug 1971 A
3629792 Dorrell Dec 1971 A
3633150 Swartz Jan 1972 A
3646502 Hutter et al. Feb 1972 A
3663926 Brandt May 1972 A
3665371 Cripps May 1972 A
3668612 Nepovim Jun 1972 A
3669472 Nadsady Jun 1972 A
3671922 Zerlin et al. Jun 1972 A
3678444 Stevens et al. Jul 1972 A
3678445 Brancaleone Jul 1972 A
3680034 Chow et al. Jul 1972 A
3681739 Kornick Aug 1972 A
3683320 Woods et al. Aug 1972 A
3686623 Nijman Aug 1972 A
3694792 Wallo Sep 1972 A
3706958 Blanchenot Dec 1972 A
3710005 French Jan 1973 A
3739076 Schwartz Jun 1973 A
3744007 Horak Jul 1973 A
3744011 Blanchenot Jul 1973 A
3778535 Forney, Jr. Dec 1973 A
3781762 Quackenbush Dec 1973 A
3781898 Holloway Dec 1973 A
3793610 Brishka Feb 1974 A
3798589 Deardurff Mar 1974 A
3808580 Johnson Apr 1974 A
3810076 Hutter May 1974 A
3835443 Arnold et al. Sep 1974 A
3836700 Niemeyer Sep 1974 A
3845453 Hemmer Oct 1974 A
3846738 Nepovim Nov 1974 A
3854003 Duret Dec 1974 A
3858156 Zarro Dec 1974 A
3879102 Horak Apr 1975 A
3886301 Cronin et al. May 1975 A
3907399 Spinner Sep 1975 A
3910673 Stokes Oct 1975 A
3915539 Collins Oct 1975 A
3936132 Hutter Feb 1976 A
3953097 Graham Apr 1976 A
3960428 Naus et al. Jun 1976 A
3963320 Spinner Jun 1976 A
3963321 Burger et al. Jun 1976 A
3970355 Pitschi Jul 1976 A
3972013 Shapiro Jul 1976 A
3976352 Spinner Aug 1976 A
3980805 Lipari Sep 1976 A
3985418 Spinner Oct 1976 A
4017139 Nelson Apr 1977 A
4022966 Gajajiva May 1977 A
4030798 Paoli Jun 1977 A
4046451 Juds et al. Sep 1977 A
4053200 Pugner Oct 1977 A
4059330 Shirey Nov 1977 A
4079343 Nijman Mar 1978 A
4082404 Flatt Apr 1978 A
4090028 Vontobel May 1978 A
4093335 Schwartz et al. Jun 1978 A
4106839 Cooper Aug 1978 A
4109126 Halbeck Aug 1978 A
4125308 Schilling Nov 1978 A
4126372 Hashimoto et al. Nov 1978 A
4131332 Hogendobler et al. Dec 1978 A
4150250 Lundeberg Apr 1979 A
4153320 Townshend May 1979 A
4156554 Aujla May 1979 A
4165911 Laudig Aug 1979 A
4168921 Blanchard Sep 1979 A
4173385 Fenn et al. Nov 1979 A
4174875 Wilson et al. Nov 1979 A
4187481 Boutros Feb 1980 A
4225162 Dola Sep 1980 A
4227765 Neumann et al. Oct 1980 A
4229714 Yu Oct 1980 A
4250348 Kitagawa Feb 1981 A
4280749 Hemmer Jul 1981 A
4285564 Spinner Aug 1981 A
4290663 Fowler et al. Sep 1981 A
4296986 Herrmann et al. Oct 1981 A
4307926 Smith Dec 1981 A
4322121 Riches et al. Mar 1982 A
4326769 Dorsey et al. Apr 1982 A
4339166 Dayton Jul 1982 A
4346958 Blanchard Aug 1982 A
4354721 Luzzi Oct 1982 A
4358174 Dreyer Nov 1982 A
4373767 Cairns Feb 1983 A
4389081 Gallusser et al. Jun 1983 A
4400050 Hayward Aug 1983 A
4407529 Holman Oct 1983 A
4408821 Forney, Jr. Oct 1983 A
4408822 Nikitas Oct 1983 A
4412717 Monroe Nov 1983 A
4421377 Spinner Dec 1983 A
4426127 Kubota Jan 1984 A
4444453 Kirby et al. Apr 1984 A
4452503 Forney, Jr. Jun 1984 A
4456323 Pitcher et al. Jun 1984 A
4462653 Flederbach et al. Jul 1984 A
4464000 Werth et al. Aug 1984 A
4464001 Collins Aug 1984 A
4469386 Ackerman Sep 1984 A
4470657 Deacon Sep 1984 A
4484792 Tengler et al. Nov 1984 A
4484796 Sato et al. Nov 1984 A
4490576 Bolante et al. Dec 1984 A
4506943 Drogo Mar 1985 A
4515427 Smit May 1985 A
4525017 Schildkraut et al. Jun 1985 A
4531790 Selvin Jul 1985 A
4531805 Werth Jul 1985 A
4533191 Blackwood Aug 1985 A
4540231 Forney, Jr. Sep 1985 A
RE31995 Ball Oct 1985 E
4545637 Bosshard et al. Oct 1985 A
4575274 Hayward Mar 1986 A
4580862 Johnson Apr 1986 A
4580865 Fryberger Apr 1986 A
4583811 McMills Apr 1986 A
4585289 Bocher Apr 1986 A
4588246 Schildkraut et al. May 1986 A
4593964 Forney, Jr. et al. Jun 1986 A
4596434 Saba et al. Jun 1986 A
4596435 Bickford Jun 1986 A
4597621 Burns Jul 1986 A
4598959 Selvin Jul 1986 A
4598961 Cohen Jul 1986 A
4600263 DeChamp et al. Jul 1986 A
4613199 McGeary Sep 1986 A
4614390 Baker Sep 1986 A
4616900 Cairns Oct 1986 A
4632487 Wargula Dec 1986 A
4634213 Larsson et al. Jan 1987 A
4640572 Conlon Feb 1987 A
4645281 Burger Feb 1987 A
4650228 McMills et al. Mar 1987 A
4655159 McMills Apr 1987 A
4655534 Stursa Apr 1987 A
4660921 Hauver Apr 1987 A
4668043 Saba et al. May 1987 A
4673236 Musolff et al. Jun 1987 A
4674818 McMills et al. Jun 1987 A
4676577 Szegda Jun 1987 A
4682832 Punako et al. Jul 1987 A
4684201 Hutter Aug 1987 A
4688876 Morelli Aug 1987 A
4688878 Cohen et al. Aug 1987 A
4690482 Chamberland et al. Sep 1987 A
4691976 Cowen Sep 1987 A
4703987 Gallusser et al. Nov 1987 A
4703988 Raux et al. Nov 1987 A
4717355 Mattis Jan 1988 A
4720155 Schildkraut et al. Jan 1988 A
4734050 Negre et al. Mar 1988 A
4734666 Ohya et al. Mar 1988 A
4737123 Paler et al. Apr 1988 A
4738009 Down et al. Apr 1988 A
4738628 Rees Apr 1988 A
4746305 Nomura May 1988 A
4747786 Hayashi et al. May 1988 A
4749821 Linton et al. Jun 1988 A
4755152 Elliot et al. Jul 1988 A
4757297 Frawley Jul 1988 A
4759729 Kemppainen et al. Jul 1988 A
4761146 Sohoel Aug 1988 A
4772222 Laudig et al. Sep 1988 A
4789355 Lee Dec 1988 A
4797120 Ulery Jan 1989 A
4806116 Ackerman Feb 1989 A
4807891 Neher Feb 1989 A
4808128 Werth Feb 1989 A
4813886 Roos et al. Mar 1989 A
4820185 Moulin Apr 1989 A
4834675 Samchisen May 1989 A
4835342 Guginsky May 1989 A
4836801 Ramirez Jun 1989 A
4838813 Pauza et al. Jun 1989 A
4854893 Morris Aug 1989 A
4857014 Alf et al. Aug 1989 A
4867706 Tang Sep 1989 A
4869679 Szegda Sep 1989 A
4874331 Iverson Oct 1989 A
4892275 Szegda Jan 1990 A
4902246 Samchisen Feb 1990 A
4906207 Banning et al. Mar 1990 A
4915651 Bout Apr 1990 A
4921447 Capp et al. May 1990 A
4923412 Morris May 1990 A
4925403 Zorzy May 1990 A
4927385 Cheng May 1990 A
4929188 Lionetto et al. May 1990 A
4934960 Capp et al. Jun 1990 A
4938718 Guendel Jul 1990 A
4941846 Guimond et al. Jul 1990 A
4952174 Sucht et al. Aug 1990 A
4957456 Olson et al. Sep 1990 A
4971727 Takahashi et al. Nov 1990 A
4973265 Heeren Nov 1990 A
4979911 Spencer Dec 1990 A
4990104 Schieferly Feb 1991 A
4990105 Karlovich Feb 1991 A
4990106 Szegda Feb 1991 A
4992061 Brush, Jr. et al. Feb 1991 A
5002503 Campbell et al. Mar 1991 A
5007861 Stirling Apr 1991 A
5011422 Yeh Apr 1991 A
5011432 Sucht et al. Apr 1991 A
5021010 Wright Jun 1991 A
5024606 Ming-Hwa Jun 1991 A
5030126 Hanlon Jul 1991 A
5037328 Karlovich Aug 1991 A
5046964 Welsh et al. Sep 1991 A
5052947 Brodie et al. Oct 1991 A
5055060 Down et al. Oct 1991 A
5059747 Bawa et al. Oct 1991 A
5062804 Jamet et al. Nov 1991 A
5066248 Gaver, Jr. et al. Nov 1991 A
5073129 Szegda Dec 1991 A
5080600 Baker et al. Jan 1992 A
5083943 Tarrant Jan 1992 A
5120260 Jackson Jun 1992 A
5127853 McMills et al. Jul 1992 A
5131862 Gershfeld Jul 1992 A
5137470 Doles Aug 1992 A
5137471 Verespej et al. Aug 1992 A
5141448 Mattingly et al. Aug 1992 A
5141451 Down Aug 1992 A
5149274 Gallusser et al. Sep 1992 A
5154636 Vaccaro et al. Oct 1992 A
5161993 Leibfried, Jr. Nov 1992 A
5166477 Perin, Jr. et al. Nov 1992 A
5169323 Kawai et al. Dec 1992 A
5181161 Hirose et al. Jan 1993 A
5183417 Bools Feb 1993 A
5186501 Mano Feb 1993 A
5186655 Glenday et al. Feb 1993 A
5195905 Pesci Mar 1993 A
5195906 Szegda Mar 1993 A
5205547 Mattingly Apr 1993 A
5205761 Nilsson Apr 1993 A
5207602 McMills et al. May 1993 A
5215477 Weber et al. Jun 1993 A
5217391 Fisher, Jr. Jun 1993 A
5217393 Del Negro et al. Jun 1993 A
5221216 Gabany et al. Jun 1993 A
5227093 Cole et al. Jul 1993 A
5227587 Paterek Jul 1993 A
5247424 Harris et al. Sep 1993 A
5269701 Leibfried, Jr. Dec 1993 A
5283853 Szegda Feb 1994 A
5284449 Vaccaro Feb 1994 A
5294864 Do Mar 1994 A
5295864 Birch et al. Mar 1994 A
5316494 Flanagan et al. May 1994 A
5318459 Shields Jun 1994 A
5334032 Myers et al. Aug 1994 A
5334051 Devine et al. Aug 1994 A
5338225 Jacobsen et al. Aug 1994 A
5342218 McMills et al. Aug 1994 A
5354217 Gabel et al. Oct 1994 A
5359735 Stockwell Nov 1994 A
5362250 McMills et al. Nov 1994 A
5371819 Szegda Dec 1994 A
5371821 Szegda Dec 1994 A
5371827 Szegda Dec 1994 A
5380211 Kawaguchi et al. Jan 1995 A
5389005 Kodama Feb 1995 A
5393244 Szegda Feb 1995 A
5397252 Wang Mar 1995 A
5413504 Kloecker et al. May 1995 A
5431583 Szegda Jul 1995 A
5435745 Booth Jul 1995 A
5439386 Ellis et al. Aug 1995 A
5444810 Szegda Aug 1995 A
5455548 Grandchamp et al. Oct 1995 A
5456611 Henry et al. Oct 1995 A
5456614 Szegda Oct 1995 A
5464661 Lein et al. Nov 1995 A
5466173 Down Nov 1995 A
5470257 Szegda Nov 1995 A
5474478 Ballog Dec 1995 A
5490033 Cronin Feb 1996 A
5490801 Fisher, Jr. et al. Feb 1996 A
5494454 Johnsen Feb 1996 A
5499934 Jacobsen et al. Mar 1996 A
5501616 Holliday Mar 1996 A
5516303 Yohn et al. May 1996 A
5525076 Down Jun 1996 A
5542861 Anhalt et al. Aug 1996 A
5548088 Gray et al. Aug 1996 A
5550521 Bernaud et al. Aug 1996 A
5564938 Shenkal et al. Oct 1996 A
5571028 Szegda Nov 1996 A
5586910 Del Negro et al. Dec 1996 A
5595499 Zander et al. Jan 1997 A
5598132 Stabile Jan 1997 A
5607325 Toma Mar 1997 A
5620339 Gray et al. Apr 1997 A
5632637 Diener May 1997 A
5632651 Szegda May 1997 A
5644104 Porter et al. Jul 1997 A
5651698 Locati et al. Jul 1997 A
5651699 Holliday Jul 1997 A
5653605 Woehl et al. Aug 1997 A
5667405 Holliday Sep 1997 A
5681172 Moldenhauer Oct 1997 A
5683263 Hsu Nov 1997 A
5696196 DiLeo Dec 1997 A
5702263 Baumann et al. Dec 1997 A
5722856 Fuchs et al. Mar 1998 A
5735704 Anthony Apr 1998 A
5746617 Porter, Jr. et al. May 1998 A
5746619 Harting et al. May 1998 A
5769652 Wider Jun 1998 A
5770216 Mitchnick et al. Jun 1998 A
5775927 Wider Jul 1998 A
5863220 Holliday Jan 1999 A
5877452 McConnell Mar 1999 A
5879191 Burris Mar 1999 A
5882226 Bell et al. Mar 1999 A
5921793 Phillips Jul 1999 A
5938465 Fox, Sr. Aug 1999 A
5944548 Saito Aug 1999 A
5949029 Crotzer et al. Sep 1999 A
5957716 Buckley et al. Sep 1999 A
5967852 Follingstad et al. Oct 1999 A
5975949 Holliday et al. Nov 1999 A
5975951 Burris et al. Nov 1999 A
5977841 Lee et al. Nov 1999 A
5997350 Burris et al. Dec 1999 A
6010349 Porter, Jr. Jan 2000 A
6019635 Nelson Feb 2000 A
6022237 Esh Feb 2000 A
6032358 Wild Mar 2000 A
6042422 Youtsey Mar 2000 A
6048229 Lazaro, Jr. Apr 2000 A
6053769 Kubota et al. Apr 2000 A
6053777 Boyle Apr 2000 A
6083053 Anderson, Jr. et al. Jul 2000 A
6089903 Stafford Gray et al. Jul 2000 A
6089912 Tallis et al. Jul 2000 A
6089913 Holliday Jul 2000 A
6117539 Crotzer et al. Sep 2000 A
6123567 McCarthy Sep 2000 A
6146197 Holliday et al. Nov 2000 A
6152753 Johnson et al. Nov 2000 A
6153830 Montena Nov 2000 A
6180221 Crotzer et al. Jan 2001 B1
6210216 Tso-Chin et al. Apr 2001 B1
6210222 Langham et al. Apr 2001 B1
6217383 Holland et al. Apr 2001 B1
6239359 Lilienthal, II et al. May 2001 B1
6241553 Hsia Jun 2001 B1
6261126 Stirling Jul 2001 B1
6267612 Arcykiewicz et al. Jul 2001 B1
6271464 Cunningham Aug 2001 B1
6331123 Rodrigues Dec 2001 B1
6332815 Bruce Dec 2001 B1
6358077 Young Mar 2002 B1
6375866 Paneccasio, Jr. et al. Apr 2002 B1
D458904 Montena Jun 2002 S
6406330 Bruce Jun 2002 B2
D460739 Fox Jul 2002 S
D460740 Montena Jul 2002 S
D460946 Montena Jul 2002 S
D460947 Montena Jul 2002 S
D460948 Montena Jul 2002 S
6416847 Lein et al. Jul 2002 B1
6422900 Hogan Jul 2002 B1
6425782 Holland Jul 2002 B1
D461166 Montena Aug 2002 S
D461167 Montena Aug 2002 S
D461778 Fox Aug 2002 S
D462058 Montena Aug 2002 S
D462060 Fox Aug 2002 S
6439899 Muzslay et al. Aug 2002 B1
D462327 Montena Sep 2002 S
6465550 Kleyer et al. Oct 2002 B1
6468100 Meyer et al. Oct 2002 B1
6491546 Perry Dec 2002 B1
D468696 Montena Jan 2003 S
6506083 Bickford et al. Jan 2003 B1
6530807 Rodrigues et al. Mar 2003 B2
6540531 Syed et al. Apr 2003 B2
6558194 Montena May 2003 B2
6572419 Feye-Homann Jun 2003 B2
6576833 Cavaro et al. Jun 2003 B2
6619876 Vaitkus et al. Sep 2003 B2
6634906 Yeh Oct 2003 B1
6676446 Montena Jan 2004 B2
6683253 Lee Jan 2004 B1
6692285 Islam Feb 2004 B2
6692286 De Cet Feb 2004 B1
6712631 Youtsey Mar 2004 B1
6716041 Ferderer et al. Apr 2004 B2
6716062 Palinkas et al. Apr 2004 B1
6733336 Montena et al. May 2004 B1
6733337 Kodaira May 2004 B2
6767248 Hung Jul 2004 B1
6769926 Montena Aug 2004 B1
6780052 Montena et al. Aug 2004 B2
6780068 Bartholoma et al. Aug 2004 B2
6786767 Fuks et al. Sep 2004 B1
6790081 Burris et al. Sep 2004 B2
6805584 Chen Oct 2004 B1
6817896 Derenthal Nov 2004 B2
6848939 Stirling Feb 2005 B2
6848940 Montena Feb 2005 B2
6884113 Montena Apr 2005 B1
6884115 Malloy Apr 2005 B2
6887103 Montena et al. May 2005 B2
6929508 Holland Aug 2005 B1
6939169 Islam et al. Sep 2005 B2
6971912 Montena et al. Dec 2005 B2
6994588 Montena Feb 2006 B2
7026382 Akiba et al. Apr 2006 B2
7029326 Montena Apr 2006 B2
7070447 Montena Jul 2006 B1
7070477 Morisawa et al. Jul 2006 B2
7086897 Montena Aug 2006 B2
7097499 Purdy Aug 2006 B1
7102868 Montena Sep 2006 B2
7114990 Bence et al. Oct 2006 B2
7118416 Montena et al. Oct 2006 B2
7125283 Lin Oct 2006 B1
7131868 Montena Nov 2006 B2
7144271 Burris et al. Dec 2006 B1
7147509 Burris et al. Dec 2006 B1
7156696 Montena Jan 2007 B1
7161785 Chawgo Jan 2007 B2
7179121 Burris et al. Feb 2007 B1
7229303 Vermoesen et al. Jun 2007 B2
7252546 Holland Aug 2007 B1
7255598 Montena et al. Aug 2007 B2
7299550 Montena Nov 2007 B2
7364462 Holland Apr 2008 B2
7375533 Gale May 2008 B2
7393245 Palinkas et al. Jul 2008 B2
7404737 Youtsey Jul 2008 B1
7452239 Montena Nov 2008 B2
7455550 Sykes Nov 2008 B1
7462068 Amidon Dec 2008 B2
7476127 Wei Jan 2009 B1
7479035 Bence et al. Jan 2009 B2
7488210 Burris et al. Feb 2009 B1
7494355 Hughes et al. Feb 2009 B2
7497729 Wei Mar 2009 B1
7507116 Laerke et al. Mar 2009 B2
7507117 Amidon Mar 2009 B2
7544094 Paglia et al. Jun 2009 B1
7566236 Malloy et al. Jul 2009 B2
7607942 Van Swearingen Oct 2009 B1
7674132 Chen Mar 2010 B1
7682177 Berthet Mar 2010 B2
7727011 Montena et al. Jun 2010 B2
7753705 Montena Jul 2010 B2
7753727 Islam et al. Jul 2010 B1
7794275 Rodrigues Sep 2010 B2
7806714 Williams et al. Oct 2010 B2
7806725 Chen Oct 2010 B1
7811133 Gray Oct 2010 B2
7824216 Purdy Nov 2010 B2
7828595 Mathews Nov 2010 B2
7830154 Gale Nov 2010 B2
7833053 Mathews Nov 2010 B2
7845976 Mathews Dec 2010 B2
7845978 Chen Dec 2010 B1
7850487 Wei Dec 2010 B1
7857661 Islam Dec 2010 B1
7874870 Chen Jan 2011 B1
7887354 Holliday Feb 2011 B2
7892004 Hertzler et al. Feb 2011 B2
7892005 Haube Feb 2011 B2
7892024 Chen Feb 2011 B1
7927135 Wlos Apr 2011 B1
7950958 Mathews May 2011 B2
7955126 Bence et al. Jun 2011 B2
7972158 Wild et al. Jul 2011 B2
7997930 Ehret et al. Aug 2011 B2
8016613 Paglia et al. Sep 2011 B2
8029315 Purdy et al. Oct 2011 B2
8062044 Montena et al. Nov 2011 B2
8062063 Malloy et al. Nov 2011 B2
8070504 Amidon et al. Dec 2011 B2
8075337 Malloy et al. Dec 2011 B2
8075338 Montena Dec 2011 B1
8079860 Zraik Dec 2011 B1
8113875 Malloy et al. Feb 2012 B2
8113879 Zraik Feb 2012 B1
8152551 Zraik Apr 2012 B2
8157588 Rodrigues et al. Apr 2012 B1
8157589 Krenceski et al. Apr 2012 B2
8167635 Mathews May 2012 B1
8167636 Montena May 2012 B1
8167646 Mathews May 2012 B1
8172612 Bence et al. May 2012 B2
8192237 Purdy et al. Jun 2012 B2
8342879 Amidon et al. Jan 2013 B2
20020013088 Rodrigues et al. Jan 2002 A1
20020038720 Kai et al. Apr 2002 A1
20030214370 Allison et al. Nov 2003 A1
20030224657 Malloy Dec 2003 A1
20040018312 Halladay Jan 2004 A1
20040077215 Palinkas et al. Apr 2004 A1
20040102089 Chee May 2004 A1
20040209516 Burris et al. Oct 2004 A1
20040219833 Burris et al. Nov 2004 A1
20040229504 Liu Nov 2004 A1
20050042919 Montena Feb 2005 A1
20050109994 Matheson et al. May 2005 A1
20050208827 Burris et al. Sep 2005 A1
20050233636 Rodrigues et al. Oct 2005 A1
20060099853 Sattele et al. May 2006 A1
20060110977 Matthews May 2006 A1
20060154519 Montena Jul 2006 A1
20070026734 Bence et al. Feb 2007 A1
20070049113 Rodrigues et al. Mar 2007 A1
20070077360 Kashiwagi et al. Apr 2007 A1
20070123101 Palinkas May 2007 A1
20070155232 Burris et al. Jul 2007 A1
20070175027 Khemakhem et al. Aug 2007 A1
20070243759 Rodrigues et al. Oct 2007 A1
20070243762 Burke et al. Oct 2007 A1
20080102696 Montena May 2008 A1
20080289470 Aston Nov 2008 A1
20090029590 Sykes et al. Jan 2009 A1
20090098770 Bence et al. Apr 2009 A1
20100055978 Montena Mar 2010 A1
20100081321 Malloy et al. Apr 2010 A1
20100081322 Malloy et al. Apr 2010 A1
20100105246 Burris et al. Apr 2010 A1
20100233901 Wild et al. Sep 2010 A1
20100233902 Youtsey Sep 2010 A1
20100239871 Scheffer et al. Sep 2010 A1
20100255720 Radzik et al. Oct 2010 A1
20100255721 Purdy et al. Oct 2010 A1
20100279548 Montena et al. Nov 2010 A1
20100297871 Haube Nov 2010 A1
20100297875 Purdy et al. Nov 2010 A1
20110021072 Purdy Jan 2011 A1
20110027039 Blair Feb 2011 A1
20110053413 Mathews Mar 2011 A1
20110111626 Paglia et al. May 2011 A1
20110117774 Malloy et al. May 2011 A1
20110143567 Purdy et al. Jun 2011 A1
20110230089 Amidon Sep 2011 A1
20110230091 Krenceski et al. Sep 2011 A1
20120021642 Zraik Jan 2012 A1
20120094532 Montena Apr 2012 A1
20120122329 Montena May 2012 A1
20120145454 Montena Jun 2012 A1
20120171894 Malloy et al. Jul 2012 A1
20120196476 Haberek et al. Aug 2012 A1
20120202378 Krenceski et al. Aug 2012 A1
20120214342 Mathews Aug 2012 A1
20120222302 Purdy et al. Sep 2012 A1
20120244733 Amidon et al. Sep 2012 A1
Foreign Referenced Citations (53)
Number Date Country
2096710 Nov 1994 CA
201149936 Nov 2008 CN
201149937 Nov 2008 CN
201178228 Jan 2009 CN
47931 Oct 1888 DE
102289 Apr 1899 DE
1117687 Nov 1961 DE
1191880 Apr 1965 DE
1515398 Apr 1970 DE
2225764 Dec 1972 DE
2221936 Nov 1973 DE
2261973 Jun 1974 DE
3211008 Oct 1983 DE
9001608.4 Apr 1990 DE
4439852 May 1996 DE
19957518 Sep 2001 DE
116157 Aug 1984 EP
167738 Jan 1986 EP
0072104 Feb 1986 EP
0265276 Apr 1988 EP
0428424 May 1991 EP
1191268 Mar 2002 EP
1501159 Jan 2005 EP
1548898 Jun 2005 EP
1701410 Sep 2006 EP
2232846 Jan 1975 FR
2234680 Jan 1975 FR
2312918 Dec 1976 FR
2462798 Feb 1981 FR
2494508 May 1982 FR
589697 Jun 1947 GB
1087228 Oct 1967 GB
1270846 Apr 1972 GB
1401373 Jul 1975 GB
2019665 Oct 1979 GB
2079549 Jan 1982 GB
2252677 Aug 1992 GB
2264201 Aug 1993 GB
2331634 May 1999 GB
4503793 Jan 2002 JP
2002075556 Mar 2002 JP
3280369 May 2002 JP
4503793 Apr 2010 JP
2006100622526 Sep 2006 KR
427044 Mar 2001 TW
8700351 Jan 1987 WO
0186756 Nov 2001 WO
02069457 Sep 2002 WO
2004013883 Feb 2004 WO
2006081141 Aug 2006 WO
2011128665 Oct 2011 WO
2011128666 Oct 2011 WO
2012061379 May 2012 WO
Non-Patent Literature Citations (5)
Entry
Digicon AVL Connector. ARRIS Group Inc. [online]. 3 pages. [retrieved on Apr. 22, 2010]. Retrieved from the Internet<URL: http://www.arrisi.com/special/digiconAVL.asp>.
U.S. Appl. No. 13/072,350, filed Mar. 25, 2011.
U.S. Appl. No. 12/843,971, filed Jul. 27, 2010.
Office Action (Mail Date: Apr. 4, 2012) for U.S. Appl. No. 13/072,605, filed Mar. 25, 2011.
Notice of Allowance (Mail Date: Sep. 7, 2012) for U.S. Appl. No. 13/072,605, filed Mar. 25, 2011.
Related Publications (1)
Number Date Country
20120244748 A1 Sep 2012 US
Continuation in Parts (1)
Number Date Country
Parent 13072605 Mar 2011 US
Child 13213954 US