The present invention relates to a connector for connecting an end of a coaxial cable to a mating connector, and more particularly to a coaxial cable connector that may be used with coaxial cables of different specifications.
An existing coaxial connector is used to connecting a coaxial cable to a mating connector, so that the coaxial cable may be used in cable TV signal transmission, data transmission line, etc. The coaxial cable normally includes a central conductor, an insulator surrounding the central conductor, a foil layer surrounding the insulator, at least one braided conducting sheath surrounding the foil layer, and a jacket surrounding the at least one braided conducting sheath. The currently available coaxial cables may be divided into several different specifications, including RG6, RG7, RG11, RG59, etc., and each coaxial cable of a specific specification must be installed with a corresponding connector. When a coaxial cable is connected to a mismatching connector, failures in signal transmission would occur. Moreover, a large number of connectors in different specifications must be manufactured at increased cost to match differently sized coaxial cables.
It is uneasy to determine whether a cable and a connector have the same specification. Most cable installers determine the correct matching of cable and connector simply based on personal working experiences. Before a coaxial connector can be installed onto an end of a coaxial cable, that end of the coaxial cable must be processed for associating with the connector. Then, the connector is manually pushed onto the processed cable end until the jacket and the braided conducting sheath of the coaxial cable are isolated from the insulator and the coaxial cable has been inserted into the connector by a required depth. Finally, a hexagonal clamping tool is used to compress the connector against the coaxial cable to firmly join them together. In response to the coaxial cables of different specifications, total three differently sized hexagonal clamping tools must be prepared to ensure the application of sufficient compression force on the coaxial connector. The differently sized hexagonal clamping tools require extra cost and are inconvenient for carrying. It is therefore desirable to develop a coaxial cable connector that may be used with coaxial cables of different specifications.
A primary object of the present invention is to provide a coaxial cable connector that may be used with coaxial cables of different specifications.
Another object of the present invention is to provide a coaxial cable connector that may be firmly and stably clamped to coaxial cables of different specifications.
To achieve the above and other objects, the coaxial cable connector according to the present invention includes a standard adapter and a mini adapter. The standard adapter includes an inner sleeve, an outer sleeve coaxially mounted around the inner sleeve, and a fastener mounted to a front end of the standard adapter for connecting to a receiver or a terminal, so that the coaxial cable is mechanically and electrically connected to the receiver or the terminal via the coaxial cable connector.
The mini adapter includes an inner member having a finger clamp for holding and thereby electrically connecting to a central conductor of the coaxial cable; a cylindrical housing having a first tubular end portion for receiving the inner member therein, and a second tubular end portion externally having a plurality of elastic hooking portions located corresponding to the finger clamp and a plurality of long slots coaxially located behind the elastic hooking portions; a contact spring mounted in the first tubular end portion; a conducting element located outside and around the contact spring; and a round sleeve externally mounted around the second tubular end portion.
When the coaxial cable is connected to the mini adapter, and the mini adapter is pushed into the standard adapter, the elastic hooking portions on the mini adapter are radially compressed by the inner sleeve of the standard adapter to thereby force the finger clamp to mechanically and electrically contact with the central conductor of the coaxial cable, and contact strips on the contact spring are also pushed by the inner sleeve to mechanically and electrically contact with a foil layer of the coaxial cable.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
a is a plan view showing a coaxial cable with a processed end for connecting to a coaxial cable connector;
b is a plan view showing a braided conducting sheath at the processed end of the coaxial cable of
Please refer to
Please refer to
The outer sleeve 24 is formed on the rear extension portion 27 with at least one first annular recess portion 211, which has a wall thickness smaller than that of other areas on the rear extension portion 27. When an axial force is applied to the outer sleeve 24, the at least one first annular recess portion 211 is subjected to an axially inward pressure and becomes bent under stress.
The existing standard adapter 21 is usable with a coaxial cable having a relative large outer diameter, such as an RG6 cable, but not a coaxial cable having a relative small outer diameter, such as an RG59 cable.
For the coaxial cable connector 20 of the present invention to be applicable to more than one cable specification, a cable with a relative small outer diameter may be associated with the standard adapter 21 via the mini adapter 40.
Please refer to
The contact spring 43 is made of a metal material, and includes a ring portion 431 seated in the through hole 427 of the second tubular end portion 422, and a plurality of contact strips 432 integrally formed with and extended from the ring portion 431. The contact strips 432 are located in the long slots 424 of the first tubular end portion 421. The contact spring 43 illustrated in
The conducting element 44 is made of a metal material, and has a radially inward extended flange 441 in contact with the ring portion 431 of the contact spring 43, as can be seen from
The round sleeve 45 is coaxially mounted to outer side of the second tubular end portion 422 and the conducting element 44, ensuring that the round sleeve 45, the conducting element 44, and the contact spring 43 are in good metal-to-metal contact. The round sleeve 45 has a radially outward extended flange 451 formed at a predetermined position thereof.
In the second procedure, the mini adapter 40 having the coaxial cable 10 associated therewith is inserted into the standard adapter 21 via rear ends of the outer sleeve 24 and the inner sleeve 22, as shown in
In the third procedure, the mini adapter 40 is pushed further into the standard adapter 21 using a suitable installation tool. At this point, the outward flange 451 of the round sleeve 45 is in contact with a rear end surface 212 of the outer sleeve 24 of the standard adapter 21, as shown in
When the at least one first annular recess portion 211 and the second annular recess portion 425 are bent, the contact spring 43 is moved forward into the inner sleeve 22, and the contact strips 431 of the contact spring 43 are subjected to radial forces as indicated by the arrows Y to shift toward the center of the cylindrical housing 42 and accordingly mechanically and electrically contact with the foil layer 15 of the coaxial cable 10.
The present invention has been described with a preferred embodiment thereof and it is understood that many changes and modifications in the described embodiment can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5011432 | Sucht et al. | Apr 1991 | A |
5281167 | Le et al. | Jan 1994 | A |
5284449 | Vaccaro | Feb 1994 | A |