The invention relates generally to coaxial cable connectors, and more particularly to coaxial cable connectors having insulation displacement contacts suitable for use with smaller diameter coaxial cables.
In the past, connectors have been proposed for interconnecting coaxial cables. Generally, coaxial cables have a circular geometry formed with a central conductor (of one or more conductive wires) surrounded by a cable dielectric material. The dielectric material is surrounded by a cable braid (of one or more conductive wires) that serves as a ground, and the cable braid is surrounded by a cable jacket. In most coaxial cable applications, it is preferable to match the impedance between source and destination electrical components located at opposite ends of the coaxial cable. Consequently, when sections of coaxial cable are interconnected by connector assemblies, it is preferable that the impedance remain matched through the interconnection.
Today, coaxial cables are widely used. Recently, demand has risen for radio frequency (RF) coaxial cables in applications such as personal computers and wireless networks. In addition, there is an increased demand for RF coaxial cables in the automotive industry, which is due, in part, to the increased electrical content within automobiles, such cellular phones, GPS, satellite radios, Bluetooth® compatibility systems and the like. The wide applicability of coaxial cables demands that connected coaxial cables maintain the impedance at the interconnection.
Conventional coaxial connector assemblies include matable plug and receptacle housings carrying dielectric subassemblies. The dielectric subassemblies include dielectrics, metal outer shields, and center contacts. The dielectric subassemblies receive and retain coaxial cable ends, and each of the outer shields enclose the dielectrics on three sides thereof. Portions of the shields pierce the cable jackets to electrically contact the cable braids while the center contacts engage the central conductors. The plug and receptacle housings include interior latches that catch and hold the dielectric subassemblies, and thus the coaxial cable ends, therein. When the plug and receptacle housings are mated, the dielectric subassemblies are engaged such that the outer shields are interconnected and the center contacts are interconnected with the dielectrics interconnected therebetween.
Some of the shields that pierce the cable jackets are formed with insulation displacement contacts (IDC) to make terminations to the cable braids. The IDC pierces the coaxial cable in a manner that captures and wedges the braid wires in a slot in the IDC. However, there is a practical limit as to how small the IDC slots can be made using current stamping processes. With some of today's smaller coaxial cables, the braid wires are so small that a reliable electrical connection cannot be made using conventional IDC contacts with stamped slots. Thus, there is a need for a cost effective contact that can be used with smaller diameter coaxial cables with smaller diameter braid wires.
In one aspect, an electrical connector for a coaxial cable having a braid layer is provided. The connector includes a housing and a shield configured to receive the housing. An insulation displacement contact (IDC) is formed on the shield. The IDC includes a contact wall and a prong. The contact wall defines and extends along a contact wall plane. The prong is displaced laterally out of the contact wall plane. An edge of the contact wall and an edge of the prong define a gap therebetween that is sized to receive a braid wire of the cable.
Optionally, the IDC is unitarily formed with the shield and the prong extends from the back wall. The prong includes a tip and a tapered edge configured to pierce an insulation layer and the braid layer of the cable. The prong includes a first bend and a second bend. The first and second bends determine an angular relationship between the prong and the contact wall.
In another aspect, a shield for a coaxial cable having a braid layer is provided. The shield includes a back wall and an insulation displacement contact (IDC) formed on the back wall. The IDC includes a contact wall and a prong. The prong is displaced out of a plane of the contact wall. An edge of the contact wall and an edge of the prong define a gap sized to receive a braid wire of the cable. The braid wire is deflected laterally around the prong when the braid wire is received in the gap.
In yet another aspect, a shield for a coaxial cable having a braid layer includes a back wall and an insulation displacement contact (IDC) formed on the back wall. The IDC includes a contact wall and a prong. The prong is displaced out of a plane of the contact wall. An edge of the contact wall and an edge of the prong define a gap sized to receive a braid wire of the cable. The contact wall edge is located on a forward surface of the contact wall and the edge of the prong is located on a rearward surface of the prong.
Receptacle connector 110 is terminated to a cable 118 and includes a dielectric housing 120 that is received in a shield 122. Plug connector 114 is terminated to a cable 124 and includes a dielectric housing 126 that is received in a shield 128. Housing 120 holds a contact (not shown) that is joined to center conductor (not shown) in cable 118. Likewise, housing 126 holds a contact (not shown) that is joined to center conductor (not shown) in cable 124. Shields 122 and 128 are electrically terminated to braids in cables 118 and 124, respectfully. Shield 122 surrounds a substantial portion of a perimeter of housing 120. Similarly, shield 128 surrounds a substantial portion of a perimeter of housing 126. When receptacle connector 110 and plug connector 114 are mated, shield 122 is received in shield 128 such that the shields 122 and 128 cooperate to form a substantially shielded chamber (not shown) enclosing a substantial portion of both housings 120 and 126. As shown in
In an exemplary embodiment, back wall 188 is cut using a lancing or shearing operation to form the prong 212. When first formed, the prong 212 lies in the contact wall plane P, adjacent the contact wall 210. First and second bends 224 and 226, respectively, are applied to move prong 212 out of the contact wall plane P and create the gap 220. Gap 220 is sized to receive the braid wires of the coaxial cable being used. In one embodiment, the gap 220 is about 0.06 mm where IDC 194 is suitable for use with coaxial cables of 1.38 mm in diameter. Prong 212 may be formed with a slight angle relative to contact wall 210 to provide a lead-in for the cable insulation and braid wires. First bend 224 and second bend 226 cooperate to determine the angular relationship between prong 212 and contact wall 210. IDC 194 may be fabricated for use with any commonly used coaxial cable size.
The embodiments thus described provide a cost effective and reliable IDC contact 194 for making braid terminations with coaxial cables. While the contact may be used with any common coaxial cable size or diameter, the contact is particularly useful with small diameter coaxial cables having correspondingly small diameter braid wires. The IDC pierces the coaxial cable 118 in a manner that deflects the braid wires laterally and wedges the braid wires in the gap between the contact wall 210 and the contact prong 212.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4708414 | Lam | Nov 1987 | A |
4927378 | Song | May 1990 | A |
5314350 | Matthews et al. | May 1994 | A |
5399106 | Ferry | Mar 1995 | A |
5924887 | Aoyama et al. | Jul 1999 | A |
6142817 | Lee | Nov 2000 | A |
6666706 | Jones et al. | Dec 2003 | B1 |
6746268 | Laub et al. | Jun 2004 | B1 |
6758695 | Pepe et al. | Jul 2004 | B1 |
20030104720 | Laub et al. | Jun 2003 | A1 |