The present invention relates to the field of cables and connectors, and, more particularly, to coaxial cable end preparation tools and related methods.
Coaxial cable is an electrical cable that includes an inner conductor surrounded by an insulating dielectric layer or spacer, which is in turn surrounded by an outer cylindrical conductor. A protective outer jacket typically surrounds the outer conductor. A coaxial cable provides protection of signals from external electromagnetic interference, and effectively guides signals with low emission along the length of the cable.
One particular application for coaxial cables is in cellular base station or tower installations. Large, industrial grade coaxial cables and connectors are used to connect the telephone network communication equipment located at the bottom of the cell tower with the antenna array positioned at the top of the tower. In a typical cell tower installation, there are usually at least a dozen connectors that are required, and in larger installations several dozen connectors are not uncommon.
Installation of coaxial cable connectors requires that a technician cut and prepare the coaxial cable ends at the appropriate location to mount the connector thereon. In particular, the cable end preparation requires removal of the outer jacket to expose a portion of the outer conductor, as well as removal of the outer conductor and dielectric layer to expose a portion of the inner conductor. Moreover, the exposed portion of the outer conductor may also require flaring. However, performing these operations can be difficult given the diameter of commercial grade coaxial cable, and the use of knives or other basic cutting tools with exposed blades causes a significant risk of injury to the technician. Moreover, a technician may be required to install connectors while at the top a cell tower, which compounds the difficulties of preparing a cable end with basic cutting tools.
As a result, various cable preparation tools have been developed to make coaxial cable end preparation easier for installation technicians. One such example is set forth in U.S. Pat. No. 6,668,459 to Henningsen. This patent describes stripping tools for coaxial cables with a corrugated outer conductor and a hollow inner conductor. The tool includes three main parts: a jacket cutting part for removing a certain predetermined length of the jacket of the cable, a guide part to be placed around the end of the cable after the jacket has been removed by the jacket cutting part, and a second cutting part to be placed on the guide part during a final preparation of the end of the cable during which the inner conductor, the outer conductor and the dielectric material between inner and outer conductor are cut to appropriate lengths. The guide part is provided with a portion for determining a well-defined longitudinal position of the tool on the cable relative to the pattern of valleys and crests of the corrugation on the outer conductor.
An exemplary cable flaring tool is described in U.S. Pat. No. 7,059,162 to Tarpill et al. The flaring tool is for flaring the outer conductors of two different sizes of coaxial cable, and it includes a dome-shaped body and a reversible tool head. The tool head has first and second shafts and first and second flaring heads on opposite sides. Reversing the tool head exposes the shaft and flaring head for the corresponding size of coaxial cable. The shafts match the inner diameter of the inner conductor of the coaxial cable to be flared. The flaring heads are shaped as half cones, which allow the outer conductor to be flared without deforming the insulation between the inner and outer conductors of the coaxial cable.
Despite the existence of such stripping and flaring tools, further advancements in coaxial cable end preparation tools and methods may be desirable. For example, tools such as those noted above may only be compatible with a particular type of coaxial cable, such as those with a corrugated outer conductor or those with a straight (i.e., non-corrugated) outer conductor. Moreover, tools that can be used either with or without the assistance of a power driver, such as a cordless drill, may also be helpful to technicians.
In view of the foregoing background, it is therefore an object of the present invention to provide a cable end preparation tool for coaxial cables and related methods.
This and other objects, features, and advantages are provided by a cable end preparation tool for a coaxial cable including an inner conductor, a dielectric layer surrounding the inner conductor, an outer conductor surrounding the dielectric layer, and an outer jacket surrounding the outer conductor. The cable end preparation tool may include a body having first and second opposing ends with a first recess in the first end thereof, and a first blade carried by the body and extending within the first recess for stripping the outer jacket to expose a portion of the outer conductor when the body is rotated relative to the coaxial cable. A second blade may be carried by the body and also extend within the first recess for stripping the outer conductor and dielectric layer to expose a portion of the inner conductor when the body is rotated relative to the coaxial cable. The tool may further include a coring bit carried by the second end of the body for removing a portion of the dielectric layer between the inner conductor and the exposed portion of the outer conductor when the body is rotated relative to the coaxial cable.
More particularly, the coring bit may have a predetermined shape for flaring the exposed portion of the outer conductor when the body is rotated relative to the coaxial cable. In addition, the coring bit may include a cutting head with a central opening therein for receiving the exposed inner conductor. Also, the body may further have a coring bit recess therein for receiving the coring bit. By way of example, the coring bit and the coring bit recess may be rectangular. The body may also have a second recess in the second end thereof, and the coring bit recess may be within the second recess.
Furthermore, the coring bit may have marking indicia thereon, and the body may have an indicia reading opening therein aligned with the marking indicia. The first and second blades may also be removably mounted to the body. Additionally, the body may have a plurality of surface gripping features on an external surface thereof. The body may have a cylindrical shape, and it may also comprise plastic, for example.
In addition, the body may have a longitudinal center axis and at least one hole therethrough perpendicular to the longitudinal center axis. Further, the body may have a visual indicator on an exterior surface thereof corresponding to a longitudinal spacing between the first and second blades.
A cable end preparation method for a coaxial cable may include providing a cable end preparation tool, such as the one described briefly above, and positioning the coaxial cable in the first recess and rotating the body relative to the coaxial cable to strip the outer jacket to expose a portion of the outer conductor using the first blade and to strip the outer conductor and dielectric layer to expose a portion of the inner conductor using the second blade. The method may further include positioning the coring bit on the coaxial cable and rotating the body relative to the coaxial cable so that the coring bit removes a portion of the dielectric layer between the inner conductor and the exposed portion of the outer conductor.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and prime notation is used to indicate similar elements in alternative embodiments.
Referring initially to
Reference herein to any of the foregoing coaxial cable components without an “a” or “b” suffix means that the tool 30 may be used with either. For example, when it is said that the tool 30 strips the outer jacket 35 from the outer conductor 34, this means that either the outer jacket 35a or 35b can be stripped from the outer conductor 34a or 34b using the tool, depending upon which type of cable is being used in the given installation. Also, while the tool 30 is described herein by way of example for use with cellular tower cable installations, it will be appreciated that the tool may be used for cable end preparation in other applications as well.
The cable end preparation tool 30 illustratively includes a body 40 having first and second opposing ends 41, 42. In the illustrated example the body 40 is cylindrical, but other body shapes may also be used in different embodiments. The body 40 may be made from a variety of materials, such as metal, wood, and plastic, for example, using common manufacturing techniques known to those skilled in the art. The body 40 further illustratively includes a plurality of raised surface gripping features 39 thereon (knurls in the illustrated embodiment) to help facilitate gripping by the user, although a variety of textured surfaces or other gripping features (e.g., dimples, grooves, etc.) may also be used, if desired, but gripping features are not required in all embodiments. The second end 42 is tapered in the exemplary embodiment, but it need not be tapered in all embodiments.
A first recess 43 is in the first end 41 of the body 40, and a first blade 44 is carried by the body and extends within the first recess 43 for stripping the outer jacket 35 to expose a portion of the outer conductor 34 when the body is rotated relative to the coaxial cable 31. By way of example, the first recess 43 may be sized according to the diameter of the coaxial cable 31. That is, the first recess 43 may have a diameter that is slightly larger than the diameter of the cable 31. When the technician places the cable 31 within the first recess 43, he may then rotate the body 40 about a longitudinal center axis 45 thereof while also pushing the body toward the cable, which causes the first blade 44 to strip or cut the outer jacket off of the outer conductor 34, as seen in
A second blade 46 is illustratively carried by the body 40 and also extends within the first recess 43 for stripping the outer conductor 34 and dielectric layer 33 to expose a portion of the inner conductor 32 when the body is rotated relative to the coaxial cable 31. The exposed portion of the inner conductor 32 extends outwardly beyond the exposed portion of the outer conductor 34 as shown perhaps best in
In accordance with another advantageous aspect, an exterior surface portion of the tool 30 may also provide or have a visual guide or indicator thereon to indicate to the technician when the proper stripping depth for the cable 31 has been reached. More particularly, a lip or rim 65 of the first end 41 is illustratively set to a width x, which is the same width as the longitudinal spacing or distance between the first and second blades 44, 46. In other words, when the cable 31 bottoms out in the first recess 43, the width of the exposed inner conductor 32 will be equal to the width of the lip 65. Thus, the technician can simply remove the cable 31 from the first recess 43 and position the exposed inner conductor 32 next to the lip 65 to see if they are the same width, meaning that stripping is complete.
It should be noted that the first and second blades 44, 46 need not necessarily strip all of the outer jacket 35 and dielectric layer 33 from the outer conductor 34 and inner conductor 32, respectively, in all embodiments. That is, a small or residual amount of jacket and/or dielectric material may remain on the outer/inner conductors 34, 32, which typically may be cleaned off by hand or which may be small enough not to interfere with connector attachment/conductivity. The body 40 also illustratively includes first and second blade access openings 48, 49 for the first and second blades 44, 46, respectively, which not only allow cuttings to exit the first recess 43, but also allow the first and second blades to be removed and/or replaced in certain embodiments, if desired.
The tool 30 also illustratively includes a coring bit 50 carried by the second end 42 of the body 40 for removing a portion of the dielectric layer 33 between the inner conductor 32 and the exposed portion of the outer conductor 34 when the body is rotated relative to the coaxial cable 31. In the illustrated embodiment, the coring bit 50 is carried within a second recess 51 in the second end 42 of the body 40. Like the first recess 41, the second recess 51 is sized according to the coaxial cable size and provides a guide for insertion and steadying the tool 30 on the cable end so that the user may again push the body 40 toward the cable 31 and rotate or twist it about the central axis 45. This also keeps the coring bit 50 recessed within the body 40 so that it does not accidentally scrape other objects or the technician. However, the coring bit 50 need not be recessed within the body 40 in all embodiments.
The coring bit 50 illustratively includes a cutting head 52 comprising teeth 53 for removing the dielectric material 33 as the bit is rotated, similar to a drill bit. The teeth 53 are also tapered on their sides 54 which, as the teeth progress inside the outer conductor 34, cause the outer conductor to flare outwardly, as will be appreciated by those skilled in the art. A back nut connector (not shown), which is used to screw the prepared cable end to a corresponding coaxial plug, etc., is typically placed on the cable 31 after stripping and before flaring with the coring bit 50, as will be appreciated by those skilled in the art. The tapered sides 54 flatten out to a stopping point as shown so that the cutting head 52 will stop progressing once the appropriate flaring and depth have been achieved. However, it should be noted that flaring may not be required in certain implementations depending upon the given cable and connector type, and thus in such applications the tapered sides 54 would not be required, as will also be appreciated by the skilled artisan.
The cutting head 52 also has a central opening 55 therein for receiving the exposed inner conductor 32. The central opening 55 therefore provides a guide for insertion of the exposed inner conductor 32 into the cutting head 52, and thereby helps align the cutting head for removal of the dielectric layer 33 and flaring of the outer conductor 34. In the illustrated embodiment, the body 40 also has a coring bit recess 56 within the second recess 51 for receiving the coring bit 50, which is centered on the central axis 45 of the body (see
In some embodiments the first end 42 and depth of the coring bit recess 56 may be configured such that an edge or other indicator on the body 40 is aligned with either a marking on the cable 31 or on the back nut when the proper coring depth has been achieved. That is, the technician will turn the body 40 until the edge/indicator on the body is in alignment with the edge/indicator on the cable/back nut, indicating that the coring/flaring operation is complete. However, such a configuration need not be used in all embodiments.
Turning now to
When the coring bit 50′ is removed or taken out of the coring bit recess 56′, the cutting head 52′ may then be used for removing the dielectric layer 33 between the inner conductor 32 and the exposed portion of the outer conductor 34 based upon rotation of the drive shaft 61′. That is, with the drive shaft 61′ still in the drill chuck, the cutting head 52 is removed from the body 40′ and the central opening 55′ therein is positioned on the exposed portion of the inner conductor 32 as an alignment guide for dielectric removal/flaring, as discussed above. The drive shaft 61′ and the cutting head 52′ may be threadably connected, as shown in
As such, it will be appreciated that different coring bits 50′ (or cutting heads 52′) may also advantageously be interchangeably used for different cable types/sizes. To this end, it may also be advantageous to include marking indicia 63′ on the cutting heads 52′ to identify the respective types/sizes of coaxial cable 31 they are intended to be used with. In the illustrated example, the marking indicia on the cutting head 52′ is “LDF4.” As shown in the embodiment of
It will also be appreciated that with a removable drive shaft 61′, the coring bit 50′ may advantageously be used with a same body 40 as either a handheld tool (i.e., without the drive shaft) or as a power driven tool (i.e., with the drive shaft attached and connected to a drill chuck). Moreover, even with a unitary coring bit where the drive shaft 61′ is not removable from the cutting head 52′, an additional recess or hole may be used so that the coring bit 50′ can be inserted “backwards” (i.e., drive shaft first), and thereby still used as a hand tool without a drill. That is, the drive shaft recess would have a smaller diameter than the coring bit recess 56′ and would extend deeper into the body 40′ so that the drive shaft 61′ extends into the first recess 43′, leaving the cutting head positioned in the coring bit recess as shown in
Referring now to
Turning additionally to
Referring additionally to
This application is related to co-pending patent application entitled COAXIAL CABLE END PREPARATION TOOL WITH DRIVE SHAFT AND RELATED METHODS, attorney docket no. 63256, the disclosure of which is hereby incorporated herein in its entirety by reference.
Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.