Not applicable.
Not applicable.
Not applicable.
The technology described herein is generally related to the field of coaxial cables, more specifically to radiating coaxial cable transmission lines, and particularly to types used as antennas.
It is known to use a radiating coaxial cable transmission line, also commonly referred to as a “leaky wave coaxial cable” or simply a “leaky cable,” as an antenna. Long line leaky cable antennas are useful for communication applications where a point source antenna is inadequate—e.g., in tunnels, mines, along roadways, or the like. Standard coaxial cables are modified to have slots, loose braids, or helical shields designed so that communication signals leak out over long distances, e.g., several miles or kilometers. Fundamentals of known manner radiating coaxial cable technology are described in U.S. Pat. No. 3,417,400 (Black, December 1968), incorporated herein by reference. Basics of apertured radiating coaxial cables are described in U.S. Pat. No. 4,339,733 (Jul. 13, 1982) to Smith for a Radiating Cable, incorporated herein by reference. Radiating Cables Having Spaced Radiating Sleeves are described by Hildebrand, et al. in U.S. Pat. No. 4,129,841, incorporated herein by reference.
The electromagnetic radiation (EM) modes that a leaky cable antenna supports are shown in
On a perfectly uniform cable, neither of these two modes radiate a substantial EM field since their phase velocity is slower than the speed of light. The phase velocity of the bifilar mode is governed by the inner dielectric insulator. However, the phase velocity of the monofilar mode is just slightly slower than the speed of light, which means that it is only loosely bound to the cable, and extends a significant distance into free space. In this mode EM radiation is easily scattered by discontinuities or bends in the cable. Thus, traditional helical wound leaky cable antennas work over long distances because of the constant flow of energy between these two weakly coupled modes, with the monofilar mode gradually leaking power into the surrounding space. As a result, conventional leaky cable antennas typically require hundreds of wavelengths or more to radiate efficiently, making them suitable for use as multiband antennas inside tunnels, mines, along roadways or the like.
Such leaky cable antennas provide additional environmental robustness compared to a single point radiator type (such as a bow-tie antenna) in that if a portion of the cable is shorted out, such as by moisture or nearby conductive surfaces, the energy simply continues down the cable and radiates from the next available radiator region.
There have been developed specifications for military antenna systems—such as that described by R. C. Adams, R. S. Abramo, J. L. Parra, J. F. Moore, “COMWIN Antenna System Fiscal Year 200 Report,” SPAWAR, San Diego, Calif., Technical Report 1836, September 2000—where leaky cable antennas have been employed but are usually designed for broadband application. Use in proximity to military personnel has raised series radiation hazard issues. Prototypes described therein also exhibit signal distribution patterns sometimes having one or more null regions, thus exhibiting a relatively lesser operational efficiency. Another problem is that military specifications define specific signal polarizations for particular applications. Thus, field antenna systems must perform accordingly depending upon the transmission source protocols in use during current operations.
Another adaptation for using a leaky cable antenna is for covert operations—such as for investigative or military applications—where it is desirable to mask the visual signature of the user of antenna-related communication devices. It has been found that a wearable antenna is advantageous. However, for such applications, problems related to signal transmission—e.g., bandwidth and directionality capabilities, field effects due to proximity of a human body, and the like—and to wearability—e.g., disguisability, weight and flexibility, robustness, radiation hazards protection, and the like—must be accounted for in the design.
There is a need for leaky cable antenna devices and methods which address the foregoing issues.
The present invention generally provides for high efficiency leaky cable antennas. Exemplary embodiments include features providing highly efficient mechanisms for increasing, boosting, the rate of conversion between bifilar and monofilar modes.
In accordance with one aspect of the present invention, there is provided a radiating coaxial cable transmission line apparatus having high radiation efficiency, the apparatus including: at least one center conducting mechanism for carrying electromagnetic waveband signals; surrounding said center conducting mechanism, at least one first dielectric mechanism for electrically insulating said center conducting mechanism; superjacent said first dielectric mechanism, at least one mechanism for boosting bifilar-to-monofilar mode rate conversion of said signals; and surrounding said mechanism for boosting bifilar-to-monofilar mode rate conversion, said first dielectric mechanism, and said center conducting mechanism, at least one second dielectric mechanism for insulating said apparatus from a local environment.
Another aspect of the present invention may be described as a method of fabricating a radiating coaxial cable transmission line device, the method including: extending a first length of a center conductor for carrying electromagnetic waveband signals; surrounding said center conductor with first dielectric material for electrically insulating said center conductor; wrapping superjacent to said first dielectric material at least one conductor for boosting bifilar-to-monofilar mode rate conversion of said signals; and surrounding said at least one conductor for boosting bifilar-to-monofilar mode rate conversion, said first dielectric means, and said center conductor with second dielectric material for insulating said device from a local environment.
Another aspect of the present invention may be described as a user-wearable leaky cable antenna including: a flexible center conductor for carrying electromagnetic waveband signals; a substantially cylindrical, flexible, inner insulator surrounding said center conductor; at least one helical winding conductor wound around said inner insulator wherein said at least one helical winding conductor includes features for boosting bifilar-to-monofilar mode rate conversion of said signals; and a substantially cylindrical outer insulator surrounding said second helical winding conductor, said first helical winding conductor, said inner insulator, and said center conductor.
Some objects and advantages of the present invention are:
to improve the state of the art of radiating coaxial cable transmission lines, particularly for wearable antenna embodiments;
it is an advantage that it operates over a very broad bandwidth, obtaining reasonable performance over several octaves of EM waveband bandwidth and is particularly efficient in the approximate range of UHF to S-band;
it is another advantage that it is omnidirectional,
it is another advantage that it supports both horizontal and vertical signal polarizations, simulating a large distributed radiating structure regardless of position or orientation;
it is another advantage that it provides a flexible device that can be easily integrated into clothing, body armor, vests, backpacks, or like wearable gear;
it is another advantage that it may be implemented in a relatively short size compared to a human body and thus not adding significant weight, volume, or rigidity to the wearable gear;
it is another advantage that it can be routed in wearable gear in a variety of positions without significantly affecting the overall performance;
it is another advantage that it distributes emitted power over a large area of the proximate body, having lower specific absorption rate (SAR) compared to single point radiators.
The foregoing summary is not intended to be inclusive of all aspects, objects, advantages and features of the present invention nor should any limitation on the scope of the invention be implied therefrom. This Brief Summary is provided in accordance with the mandate of 37 C.F.R. 1.73 and M.P.E.P. 608.01(d) merely to apprise the public, and more especially those interested in the particular art to which the invention relates, of the nature of the invention in order to be of assistance in aiding ready understanding of the patent in future searches.
Like reference designations represent like features throughout the drawings. The drawings in this specification should be understood as not being drawn to scale unless specifically annotated as such.
The present invention discloses mechanisms for significantly boosting the rate of conversion between bifilar and monofilar modes in radiating coaxial cable transmission lines. In an implementation as a leaky cable antenna, the present invention has been found to be highly efficient when compared to known manner leaky cable antennas. The mode conversion is a factor which may be measured in coupling/meter for EM waveband signal coupling attenuation rate or growth rate.
The antenna 201a structure includes a center conductor 202, an inner insulator 204, a helical wound outer conductor 206, and an outer-insulator 208, all generally fabricated in a known manner. Conductive and dielectric materials may be used in accordance with the extant state-of-the-art. In accordance with one exemplary embodiment of the present invention, the antenna 201a structure includes a second helical conductor 210 that may be wound in the direction opposite to the first 206. It has been found in accordance with the present invention that if the two counter-wound helical outer conductors 206, 210 have different pitches to their respective winding, the EM waves are scattered in accordance with a spatial beat frequency between the two helicals. It has been found that this results in more rapid mode conversion and more efficient radiation than in known manner leaky cable antennas.
Note that while contra-wound helices are demonstrated, other implementations may be considered within the scope of the present invention. Furthermore, there may be more than two windings.
In manufacturing a particular implementation, the baseline for a basic design of relative pitch for the at least two windings may begin with the equation:
1/p1−1/p2=1/λ (Equation 1),
where:
p1 is the pitch angle for the first winding,
p2 is the pitch angle for the second winding, and
λ, is the approximate center wavelength for the bandwidth-of-interest.
It has been found that the present invention may be implemented with a ratio of relative pitch angle ratios from 1/1 to 2/1, excluding the self-defining extremes thereof which would merely create overlapped windings. It should be noted that the mode conversion factor thus may be tuned by design for specific implementations for specific ranges of transmission frequency.
G=GISOTROPIC−LRETURN−LPOLRIZATION−LABSORPTION (Equation 2),
where:
GISOTROPIC is the gain of an isotropic radiator, or 0 dBi,
LRETURN is the return loss, related to the feed mismatch, which is about 2 dB in the shown prototype 501b,
LPOLRIZATION is equal to 3 dB for an antenna having random polarization, and
LABSORPTION is the power absorbed into the human body simulator 503, often about 3 dB.
This prototype antenna 501b was expected, in accordance with Equation 2, to have gain calculated as: G=0 dB−2 dB−3 dB−3 dB=−8 dBi. The measured gain value of this prototype 501b was −10 dBi. The additional −2 dB may be due to extra losses in the human body model 503—which may be minimized by proper placement and shielding such as described with respect to
The prototype leaky cable antennas 501a, 501b draped around the human body simulator 503 as shown in
Returning to
An important feature of the invention in accordance with such an implementation is a relatively low emission of radiation, particularly heat measured in watts/sq. cm., making the invention particularly suited for incorporation into wearable gear.
From the foregoing description, it will be apparent that the present invention has a number of advantages, some of which have been described above, and others of which are inherent in the embodiments of the invention described above. Also, it will be understood that modifications can be made to the invention described without departing from the teachings of subject matter described herein. As such, the invention is not to be limited to the described embodiments except as required by the appended claims.