The present invention generally relates to telecommunications cable assemblies and more specifically to a Y-splitter assembly and method for use with a coaxial cable.
Coaxial cables are often used for the transmission of telecommunications signals. At times, it is desirable to divide these signals. When such a signal is divided to permit a monitor function, only a small fraction of the signal is divided at a monitor tap. The bulk of the signal is transmitted without interruption and the small fraction is directed to a monitoring device or circuit to monitor the quality, quantity or content of the signal being transmitted. However, sometimes it is desirable to break the signal into two approximately equal portions. A Y-splitter is used to divide the signal from a first telecommunications cable into two second telecommunications cables and may provide a desired equal split of the signal or may direct more of the signal from the first cable into one of the two second cables and less of the signal to the other of the two second cables.
Improvements to current Y-splitters are desirable. Improvements to splitting of signals from a first cable into the second cables are desirable.
The present invention relates generally to a coaxial cable signal splitter with first, second and third connector ends, each adapted to mate with a coaxial cable connector. The first connector end is integral with a splitter body. The second and third connector ends are connected to the body by a pair of coaxial cables. Each connector end includes a center conductor mounted within a coaxially arranged conductive outer shell conductor. The splitter body includes the first connector end and an opposing arrangement for connecting the pair of cables to the body. The splitter body includes a transverse opening between the first connector end and the cable mounting arrangement, the opening extending through the body and having opposing open sides. Within the opening, the center conductor of the first connector end is electrically connected with the center conductors of the second and third connector ends. The center conductor of the first connector end extends within the conductive outer shell of the first connector end and within the opening of the body. The center conductor of each of the pair of coaxial cables extend within the opening of the body and are electrically connected to the center conductor of the first connector end, and each of the conductive outer shell connectors electrically connected to the other conductive outer shells.
A splitter body including a first end including an integral electrically conductive outer shell of a coaxial cable connector and a opposite second end with a pair of electrically conductive crimp extensions for mounting a pair of coaxial cables. The body includes a central opening extending transversely through the body between the first and second ends. The first and second ends are connected by a pair of side walls on either side of the central opening, and the side walls electrically connect the outer shell and the crimp extensions. The first end includes an opening extending from the outer shell into the central opening and sized to receive a center conductor mounted within a center conductor insulator. Each of the crimp extensions includes an opening extending through the crimp extensions into the central opening, the openings sized to receive a center conductor of one of the coaxial cable electrically isolated from the body. Each crimp extension also includes a textured outer surface. The central opening provides space for the center conductor of the first end to be electrically connected with the center conductors of the coaxial cables without electrically contacting the side walls.
The present invention further relates to a method of assembling a coaxial cable splitter including providing a splitter body with a first end defining a first cable connector end, and a second opposing end. The second end includes a first cable mounting arrangement and a second cable mounting arrangement. The splitter body defines a transverse opening extending through the body between the first and second ends of the splitter body. The first end and the cable mounting arrangements electrically connected to each other. A first center conductor is inserted within a first insulator and the first insulator and the first center conductor are positioned within the first end of the splitter body, with a rear end of the first center conductor extending within the transverse opening. A center conductor and a center conductor insulative jacket sheath of a first coaxial cable are inserted through the first cable mounting arrangement and into the transverse opening. A center conductor and a center conductor insulative jacket sheath of a second coaxial cable are inserted through the second cable mounting arrangement and into the transverse opening. A portion of each of the center conductors of the coaxial cables extending from the insulative jacket sheaths. The extended portion of each of the center conductors of the coaxial cables within the transverse opening are intertwined. The intertwined portions of the center conductors of the coaxial cables are positioned within a notch formed in the rear end of the center conductor of the first end to electrically connect the center conductors. An outer conductor of the first coaxial cable is electrically connected to first cable mounting arrangement and the first coaxial cable is crimped to the first cable mounting arrangement. An outer conductor of the second coaxial cable is electrically connected to the second cable mounting arrangement and crimping the second coaxial cable is crimped to the second cable mounting arrangement.
The present invention relates still further to a coaxial cable signal splitter with first, second and third coaxial connectors. The first coaxial connector includes a first conductive body. The first conductive body includes a hollow first end defining a coaxial connector end for mating with a first mating coaxial connector. The first conductive body also includes an opposite end defining two parallel hollow crimp extensions, the opposite end spaced from the first end along a longitudinal axis of the first conductive body. The first conductive body further includes an intermediate portion defining a transverse opening extending through the first conductive body transverse to the longitudinal axis. The intermediate portion includes first and second side walls on opposite sides of the transverse opening and spaced on opposite sides of the longitudinal axis. The intermediate portion also includes first and second end walls on opposite ends of the traverse opening and spaced from each other along the longitudinal axis.
The first conductive body further includes two conductive crimp sleeves, each one mounted over one of the crimp extensions. A first center conductor is positioned within the first end of the first conductive body. A first insulator electrically isolates the first center conductor from the first conductive body. A conductive bushing is positioned over the first conductive body and encloses the transverse opening.
The second coaxial connector includes a second conductive body, a second center conductor disposed within the second conductive body, and a second insulator electrically isolating the second center conductor from the second conductive body. The second coaxial connector defines a distal end for mating with a second mating coaxial connector. The third coaxial connector includes a third conductive body, a third center conductor disposed within the third conductive body, and a third insulator electrically isolating the third center conductor from the third conductive body. The third coaxial connector defines a distal end for mating with a third mating coaxial connector.
Two flexible coaxial cables extend between first and second opposite ends. Each coaxial cable includes an outer jacket, a ground shield inside the outer jacket, an inner jacket inside the ground shield, and a main signal center conductor inside the inner jacket. The ground shield and the main signal center conductor of each coaxial cable are connected at the first ends to the second and third coaxial connectors. The ground shields of the coaxial cables are each connected to one of the respective second and third conductive bodies. The main signal center conductors are each connected to one of the respective second and third center conductors. The ground shields of the coaxial cables at the second ends are each connected to one of the crimp extensions under one of the crimp sleeves. The main signal center conductors of the coaxial cables at the second ends extend through the crimp extensions and into the transverse opening. The main signal center conductors connect to the first center conductor within the transverse opening.
The accompanying drawings, which are incorporated in and constitute a part of the description, illustrate several aspects of the invention and together with the detailed description, serve to explain the principles of the invention. A brief description of the drawings is as follows:
Reference will now be made in detail to exemplary aspects of the present invention which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Referring to
Extending through a second opposing inner wall 68 of opening 56 is a pair of openings 70. A pair of crimp extensions 72 extend from an outer wall 76, opposite second inner wall 68, and extend each opening 70 from opening 56 to an outer lip 74. Openings 70 provide a path for cables 20 and 22 to connect to body 44 and extend into opening 56 to electrical split 44. Crimp extensions 72 may include spiral threads 78, as shown, on an outer surface 80 to provide greater mechanical strength to the connection of cables 20 and 22 to body 44, as shown in
Body 44 may be cast as a blank without openings 56, 60, and 70, and then the blank machined or otherwise configured to include the features shown and described above. Alternatively, body 44 could be machined from as a complete body from a piece of appropriate raw material, such as aluminum, brass, or other suitable, electrically conductive material. To provide access into opening 56 to form or repair electrical split 44, it is desirable that opening 56 extend through the width of body 44 with access provided into opening 56 through a pair of opposing sides 82. As shown, opening 56 is formed by milling or machining through an intermediate portion 84 of body 44. This creates a side wall 86 with a maximum thickness 87 along a centerline perpendicular to the direction of insertion of the milling or machining device and tapering in thickness to opposing edges 88 adjacent opposite sides 82. Other methods or techniques of forming body 44 may be used to create opening 56 and sides 82.
Within area 62 is an inner ledge 90 and an inner wall 92 which locate and position center conductor insulator 48 within body 44. Inner ledge 90 limits the depth to which center conductor insulator 48 may be inserted within opening 60 through conductive outer shell 26.
Center conductor insulator 48, shown in greater detail in
Referring now to
Extending away from opening 114 is a shaft 118 extending toward second end 54. In a portion of shaft 118 adjacent housing 115 is a seating ring 122 defining a seating ledge 124. A taper 130 provides a transition between seating ledge 124 and shaft 118. When center conductor 32 is inserted within opening 96 of center conductor insulator 48, seating ledge 124 engages outer surface 99 of central shaft portion 94 and taper 130 is positioned within taper 112. A pair of reverse tapered ledges 120 are positioned along shaft 118 between seating ledge 124 and second end 54, and are located so that they will be within opening 96 of center conductor insulator 48 when ledge 124 engages outer surface 99. The reverse taper of ledges 120 permits insertion of center conductor 32 within opening 94 of center conductor insulator 48 through taper 112 while resisting extraction in the opposite direction.
Second end 54 includes an axial opening 126 and a pair of opposing extensions 128 forming a slot 132. Slot 132 and opening 126 provide a secure location for forming electrical split 44 and structure to aid the physical and electrical connection of center conductor wires from cables 20 and 22 with center conductor 32.
Center conductor 32 may be constructed without the several features noted above for engaging center conductor insulator 48. A friction fit or other method or structure for securely holding the center conductor within center conductor insulator may be utilized.
When bushing 46 is inserted about body 44, an inner wall 152 within cavity 140 adjacent opening 142 through first end 136 is positioned adjacent a ledge 133 (shown in
Within opening 56, cable center conductors 34 and 36 are entwined with each other to electrically connect to each other and positioned within slot 126 between extensions 128 of second end 54 of center conductor 32. This forms electrical split 40. Cable center conductors 34 and 36 can be held together by physical means or may also be soldered together to enhance the electrical connection as well as the physical connection. Alternative methods of physically and electrically joining cable center conductors 34 and 36 with second end 54 are within the bounds of the splitter described herein.
Rotating sleeve 162 is mounted to housing 164 about a shoulder 174. A washer 176 is positioned against an inner wall 190 within sleeve 162 and sleeve 162 is placed about shoulder 174. A wave washer 178 is positioned on an opposite side of shoulder 174 from washer 176 and a crimp washer 180 is positioned on the opposite side of wave washer 178. Crimp washer 180 is positioned within a second end 172 of sleeve 162 and second end 172 is crimped about crimp washer 180 to hold sleeve 162 and washers 176, 178 and 180 to housing 164. When so assembled, first end 183 of housing 164, a first end 170 of sleeve 162 and first end 186 of center conductor 166 are positioned adjacent one another to physically and electrically connect with a mating coaxial connector.
A second end 184 of housing 164 is configured to receive a crimp sleeve to allow a coaxial cable to be terminated and connected to connector 160. Such termination and mounting of connectors such as connector 160 to a coaxial cable are well known in the telecommunications industry. A crimp sleeve 187 is sized and configured to be placed about second end 184 and an outer insulative sheath and an outer coaxial conductor of a coaxial cable. The outer coaxial conductor is placed in electrical contact with housing 162 and thus to first end 183 of housing 162. Crimp sleeve 187 is crimped about the outer conductor and second end 184 to secure connector 160 to the coaxial cable.
Coaxial cable and coaxial cable connectors are well known in the telecommunications industry. It is to be understood that different styles, formats and genders of such connectors can be substituted for the connectors and ends of connectors described and shown above, with straying from the bounds of the present invention.
This application is a continuation of U.S. patent application Ser. No. 10/809,666, filed Mar. 25, 2004, now U.S. Pat. No. 7,086,898 the disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4738009 | Down et al. | Apr 1988 | A |
4773879 | Pauza | Sep 1988 | A |
5030122 | Birch et al. | Jul 1991 | A |
5387116 | Wang | Feb 1995 | A |
5503566 | Wang | Apr 1996 | A |
5702261 | Wang | Dec 1997 | A |
6299479 | Tang | Oct 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20060258211 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10809666 | Mar 2004 | US |
Child | 11489057 | US |