Many aspects of the present coaxial cable can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, the emphasis instead being placed upon clearly illustrating the present coaxial cable.
The present coaxial cable is further described below with reference to the drawings.
The present coaxial cable includes at least one conducting wire, at least one insulating layer, each insulating layer respectively surrounding a corresponding conducting wire, at least one shielding layer encompassing the at least one insulating layer, and a sheath wrapping the above-mentioned three parts thereof. The coaxial cable is, usefully, an electromagnetic interference (EMI) shield cable.
Referring to
The conducting wire 110 can be a single wire or a number of stranded wires. The conducting wire 110 is made of a conducting material, such as a metal, an alloy, a carbon nanotube bundle, or a carbon nanotube composite having electrical conduction. Advantageous metals for this purpose are aluminum (Al) or copper (Cu). A particularly useful alloy is a copper-zinc alloy or a copper-silver alloy, wherein a mass percent of copper in the copper-zinc alloy is about 70% and that in the copper-silver alloy is about 10-40%. The carbon nanotube composite advantageously includes the carbon nanotubes and one of the above-mentioned alloys. Preferably, the mass percent of the carbon nanotubes in the carbon nanotube composite is 0.2%-10%. The carbon nanotube bundle is, usefully, a sort of carbon nanotube chain connected by van der Waals attractive forces between ends of adjacent carbon nanotubes.
The insulating layer 120 coating/surrounding the conducting wire 110 is an electric insulator/dielectric, and can be, for example, polytetrafluoroethylene (PTFE) or a nano-sized clay/polymer composite. The clay of the composite is a hydrated alumino-silicate mineral in a nano-sized layer form. The mineral can, for example, be nano-sized kaolinite or nano-sized montmorillonite. The polymer of the clay/polymer composite is, usefully, chosen from the group consisting a material of silicone, polyamide, and polyolefin, such as polyethylene and polypropylene. In the preferred embodiment, the clay/polymer composite includes nano-sized montmorillonite and polyethylene. The clay/polymer composite has many good properties such as electrically insulating, fire resistant, low smoke potential, and halogen free. The clay/polymer is an environmentally friendly material and can be applied as an electrically insulating material to protect the conducting wire and keep/maintain a certain space between the conducting wire and the shielding layer.
Referring to
A method for manufacturing carbon nanotube/polymer composite includes the steps, as follows: providing a prepolymer solution; uniformly dispersing the carbon nanotubes 132 into the prepolymer solution; coating the prepolymer solution with the carbon nanotubes 132 therein directly on the outside of insulting layer 120; and solidifying/curing the prepolymer solution to obtain the polymer material 134 and thereby yield the carbon nanotube/polymer composite. Alternatively, another method for manufacturing carbon nanotube/polymer composite includes the following steps: melting the polymer material 134; dispersing the carbon nanotubes 132 uniformly into the melted polymer material 134; coating the melted polymer material 134 with the carbon nanotubes 132 dispersed therein directly on the outside of insulting layer 120; and solidifying the melted polymer material 134 and thereby obtaining the carbon nanotube/polymer composite, in contact with the outside of insulting layer 120.
The material of the sheath 140 is, advantageously, the same as the material used for the insulating layer 120. This kind of material has many good properties, such as good mechanical behavior, electrically insulating, fire resistant, chemically durable, low smoke potential, and halogen free. Thus, the material is an environmentally friendly material and can be applied to protect the coaxial cable 10 from external injury, such as physical, chemical, and/or mechanical injury.
Referring to
Referring to
Number | Date | Country | Kind |
---|---|---|---|
200610061129.9 | Jun 2006 | CN | national |
This application is related to commonly-assigned, co-pending application: entitled, “COMPOSITE CONDUCTOR AND ELECTRICAL CABLE USING THE SAME”, filed Nov. 24, 2006 (application Ser. No. 11/559,840). The disclosure of the above-identified application is incorporated herein by reference.