Coaxial connector with ingress reduction shielding

Information

  • Patent Grant
  • 10630032
  • Patent Number
    10,630,032
  • Date Filed
    Thursday, April 12, 2018
    6 years ago
  • Date Issued
    Tuesday, April 21, 2020
    4 years ago
Abstract
A coaxial connector with an F female end shield is configured to restrict RF ingress.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to an article of manufacture for conducting electrical signals. In particular, coaxial connectors such as F-Type connectors are equipped to reject RF ingress.


Discussion of the Related Art


FIGS. 1, 2, 3A-C, and 4 show prior art F-Type connectors. FIG. 1 shows a perspective view 100 of a prior art F female port 102 mounted to a wall plate 104. FIG. 2 shows a side view 200 of FIG. 1 revealing a coaxial cable 208 attached via an F male connector 206 to the F female port and leaving a room facing attachment end 204 of the F female port exposed to stray signals and/or RF ingress 210.



FIGS. 3A-C show a cross-sectional view 300A, side view 300B and a perspective view 300C of a prior art F splice with female ports 332, 334 at opposed ends. This splice provides interconnected internal contacts 312, 314 for engaging respective coaxial cable center conductors and a body 316 for engaging F male connector couplings such as threaded nuts and having electrical continuity with respective coaxial cable outer conductors. The splice body 316, such as a metallic body, provides for transport of a coaxial cable ground signal.


Threads 322, 324 at opposing ends of the splice tubular body 316 provide a means for engaging F male connector couplings at the splice end ports. The splice assembly end ports 332, 334 typically include an inwardly directed shallow metal lip 342 that may be rolled from the body or provided in another fashion, for example by fixing a shallow ring at the tube end. The lip provides peripheral support to a disc shaped end insulator 344 within the splice body. An insulator central aperture 346 is for receiving a center conductor of a coaxial cable. Behind this insulator is the internal contact 312 (314) mentioned above.



FIG. 4 shows a cross-sectional view of a bulkhead port 400. To the extent that connector internals are insertable from only a single end, the connector may be referred to as “blind.” The port has an F female port 432 at one end and a mount 450 at an opposed end. Similar to the splice above, the port includes an electrically conductive body 416, an internal contact 412 behind an insulator 444 held in place by a port end lip 442. An aperture 441 in the insulator provides for inserting a coaxial cable center conductor into the port contact 412 and body threads 422 provide for engaging an F male connector coupling such as a threaded nut.


Unlike the splice 300A-C, the bulkhead port 400 has a mount 450 at one end that may be separate from or include portions of a device/equipment bulkhead or portion(s) thereof. The mount supports the bulkhead port from a base 452. A contact 412 trailing portion 481 passes through a hole in a base insulator 456 and then through a hole 458 in the base. As may be required, the base is insulated from the contact by an air gap or by another means known to skilled artisans.


These prior art connectors may become the source of future problems as proliferation of RF devices such as cellular telephones crowd RF spectra and increase the chances RF ingress will adversely affect interconnected systems such as cable television and satellite television signal distribution systems.


Persons of ordinary skill in the art have recognized that in cable television and satellite television systems (“CATV”), reduction of interfering radio frequency (“RF”) signals improves signal to noise ratio and helps to avoid saturated reverse amplifiers and related optic transmission that is a source of distortion.


Past efforts have limited some sources of the ingress of interfering RF signals into CATV systems. These efforts have included increased use of traditional connector shielding, multi-braid coaxial cables, connection tightening guidelines, increased use of traditional splitter case shielding, and high pass filters to limit low frequency spectrum interfering signal ingress in active home CATV systems.


The F connector is the standard connection used for cable television and satellite signals in the home. For example, in the home one will typically find a wall mounted female F connector or a coaxial cable “drop” splitter or isolator for supplying a signal to the TV set, cable set-top box, or internet modem.


A significant location of unwanted RF signal and noise ingress into CATV systems is in the home. This occurs where the subscriber leaves a CATV connection such as a wall-mounted connector or coaxial cable drop connector disconnected/open. An open connector end exposes a normally metallically enclosed and shielded signal conductor and can be a major source of unwanted RF ingress.


As shown above, a CATV signal is typically supplied to a room via a wall mounted connector or in cases a simple “cable drop.” These and similar cable interconnection points provide potential sources of unwanted RF signal ingress into the CATV system. As will be appreciated, multiple CATV connections in a home increase the likelihood that some connections will be left unused and open, making them a source of unwanted RF ingress. And, when subscribers move out of a home, CATV connections are typically left open, another situation that invites RF ingress in a CATV distribution system.


Known methods of eliminating unwanted RF ingress in a CATV system include placing a metal cap over each unused F connector in the home or, placing a single metallic cap over the feeder F port at the home network box. But, the usual case is that all home CATV connections are left active, and when unused, open, a practice the cable television operators and the industry have accepted in lieu of making costly service calls associated with new tenants and/or providing the CATV signal in additional rooms.


The inventor's work in this area suggests current solutions for reducing unwanted RF ingress resulting from open connectors are not successful and/or not widely used. Therefore, to the extent the CATV industry comes to recognize a need to further limit interfering RF ingress into CATV systems, it is desirable to have connectors that reduce RF ingress when they are left open.


Prior art exists which attempts to accomplish this goal but is generally thought to be prohibitively expensive, impractical, or mechanically unreliable. For example, one prior art method disclosed in patent applications of the present inventor disconnects the center conductor contact when the F female is not connected to a male connector. Another method is disclosed in U.S. Pat. No. 8,098,113 where an electronic method differentially cancels noise common to both the center conductor and shield and requires an electric power source. These methods are relatively expensive compared with at least some embodiments of the present invention. They also have reliability limitations due to either of included mechanical or electrical elements.


Presently, it appears the industry has little interest in RF ingress reduction solutions similar to those proposed herein. However, in the inventor's view, there are good reasons to pursue the invention herein to maintain signal quality.


SUMMARY OF THE INVENTION

The present invention provides a shield against unwanted radio frequency (“RF”) signal transfer in coaxial cable installations. Shielding devices of the present invention include electromagnetic radiation shields such as waveguides and particularly dimensioned waveguides adapted to function in conjunction with coaxial cable connectors.


Electromagnetic shields include devices causing electric charges within a metallic shield to redistribute and thereby cancel the field's effects in a protected device interior. For example, an interior space can be shielded from certain external electromagnetic radiation when effective materials(s) and shield geometry(ies) are used.


Applications include cavity openings that are to be shielded from ingress, or in some cases, egress, of certain RF signals or noise with an appropriate shield located at the opening. Effective shields include perforated structures such as plates, discs, screens, fabrics, perforated plates, and perforated discs. In effect, these shields are waveguide(s) tending to attenuate and/or reject passage of certain frequencies.


In the context of a coaxial cable connector, connector internal conductors or portions thereof may act as antennas to receive unwanted RF signals and/or noise via connector openings.


Coaxial cable connectors can be shielded from unwanted RF ingress even when a coaxial cable connector end is left open, for example when an F female port or connector end is left open. In various embodiments, unwanted RF ingress is restricted in a coaxial connector by, inter alia, appropriately selecting waveguide geometry including in some embodiments the size of a waveguide central aperture.


In various embodiments, coaxial cable connector waveguides are electrical conductors such as plates and fabrics. Plates include discs and in particular generally circular discs. Fabrics include meshes and weaves. Exemplary RF screens are made from a conducting material and have opening size(s) and thickness(es) that are effective to preferentially block RF ingress such as RF ingress in a particular frequency band. Suitable waveguide materials generally include conductors and non-conductors intermingled, commixed, coated, and/or impregnated with conductors.


Incorporated by reference herein in its entirety and for all purposes are the exemplary shield technologies described in U.S. Pat. No. 7,371,977 to inventor Preonas, including in particular the shields of FIGS. 2 and 3 and shield design considerations of FIG. 4. As skilled artisans will recognize, analytical shield and waveguide design methods are generally available and include code incorporating Faraday's Law and finite element modeling techniques. Use of these well-known tools by skilled artisans will typically provide good approximations of shield design variables for particular specifications including waveguide aperture size, thickness, and choice of material.


Inventor experiments on some prototype waveguide designs generally showed a) increasing waveguide thickness tended to reduces return loss at 75 Ohms impedance.


Embodiments of the present invention provide solutions to problematic RF ingress into CATV distribution systems via inadequately shielded and/or open ended coaxial cable connectors subject to unwanted RF transfer. Embodiments of the invention limit unwanted RF signal transfer into media and media distribution systems such as CATV distribution systems.


As will be appreciated, embodiments of the invention disclosed herein have application to additional frequency bands and signal types. In various embodiments, providing waveguides made using effective material(s), hole size(s), and thickness(s) enables wide adaptation for mitigating unwanted signal ingress in selected frequency bands.


Various embodiments of the invention provide for waveguides with a generally annular structure and incorporating RF shielding material for shielding against undesired ingressing, or, in cases, egressing signals at frequencies in ranges below 100 MHz and at frequencies reaching 2150 MHz. Waveguide aperture shapes may be circular or other such as polygonal, curved, multiple curved, and the like. Aperture sizes include those with opening areas equivalent to circular diameters of 1.5 to 3 mm and aperture thicknesses include thicknesses in the range 0.5 to 2.0 mm. In some implementations, connectors with waveguides utilize apertures that are integral with a connector body or a disc/barrier that is within a portion of the connector such as a disk/barrier placed inside a connector body entry but before a connector coaxial cable center conductor contact. Suitable waveguide materials and structures include those known to skilled artisans such as metal waveguides and waveguides that incorporate surface and/or internal shielding materials including those described below.


An embodiment of the invention provides an aperture 2 to 3.5 mm with a nominal thickness between 0.5 to 1.5 mm. This combination of hole size and thickness acts as a waveguide to restrict ingress of low frequencies, typically under 100 Mhz by 20-40 dB (in some cases 1/100 of the signal) of that of an open-ended F port (See FIG. 9).


The combination of sizes serves to restrict the low frequency ingress while only minimally reducing the impedance of the operational connector interface. The reduced impedance match (sometimes characterized in terms of return loss) of the invention remains within limits acceptable to the CATV industry. As the aperture size grows beyond 3.5 mm, there is typically less shielding against unwanted signals at the connector entry.


A purpose of some embodiments of the invention is to maximize the RF shielding or ingress at low frequency while providing a good impedance match of the connector interface during operation. The inventor found that the thickness of the end surface or shield disc can also be an important factor in some embodiments. For example, thicknesses in the range of 0.5 to 1.5 mm were found to be effective in blocking frequencies under 100 Mhz.


An embodiment of the invention uses a 2 mm aperture or end hole size. And, some embodiments use tuned slots in addition to the 2 to 3.5 mm aperture. These slots or waveguide bars may be added to the port end surface or to an internal shield disc for specific frequency restriction.


An embodiment of the invention uses a shield disc from a polymer or ceramic material that can be coated or impregnated with a magnetic material active at specific frequencies. In addition to being homogeneously mixed with the ceramic or polymer, the material can be deposited or sputtered on the shield disc surface in different thicknesses or patterns to better affect specific frequencies. The shield may be a combination of waveguide and sputters or deposited material to more economically produce the shield. Discs made of two or more materials can be described as hybrid discs.


In various embodiments, the invention comprises: an outer connector body; a female end of the connector is for engaging a male coaxial cable connector; the connector female end having a waveguide with an aperture for receiving a center conductor of a coaxial cable; wherein the diameter of the aperture is in the range 1.3 mm to 3.0 mm; and, wherein the waveguide is configured to shield connector body internals from ingress of radio frequency signals in the range of 10 to 100 megahertz.


And, in some embodiments, the connector further comprises: a waveguide surface; the waveguide surface bordering the aperture and an aperture centerline about perpendicular to the waveguide surface; the thickness of a waveguide surface measured along a line parallel to the aperture centerline is not less than 0.5 mm; and, the thickness of the waveguide surface measured along a line parallel to the aperture centerline is not more than 1.5 mm.


And, in some embodiments, the connector further comprises: wherein the diameter of the aperture and the thickness of the waveguide are selected in a manner consistent with achieving a connector impedance of 75 ohms. And, in some embodiments, the connector further comprises: a rim of the outer connector body; and, the waveguide formed by the rim. And, in some embodiments the connector alternatively comprises: a rim of the outer connector body; and, the waveguide formed by a disc held in place by the rim.


And, in various embodiments, the invention comprises: an outer connector body; a female end of the connector is for engaging a male coaxial cable connector; the connector female end having a waveguide with an aperture for receiving a center conductor of a coaxial cable; the diameter of the aperture is not less than two times the diameter of the center conductor; the diameter of the aperture is not more than 4 times the diameter of the center conductor; and, wherein the waveguide is configured to shield connector body internals from ingress of radio frequency signals in the range of 10 to 100 megahertz while maintaining a nominal connector impedance of 75 ohms.


And, in some embodiments, the connector further comprises: a waveguide surface; the waveguide surface bordering the aperture and an aperture centerline about perpendicular to the waveguide surface; the thickness of a waveguide surface measured along a line parallel to the aperture centerline is not less than 0.5 mm; and, the thickness of the waveguide surface measured along a line parallel to the aperture centerline is not more than 1.5 mm.


And, in some embodiments, the connector further comprises: wherein the diameter of the aperture and the thickness of the waveguide are selected in a manner consistent with achieving a connector impedance of 75 ohms. And, in some embodiments, the connector further comprises: a rim of the outer connector body; and, the waveguide formed by the rim. And, in some embodiments, the connector alternatively comprises: a rim of the outer connector body; and, the waveguide formed by a disc held in place by the rim.


Yet other embodiments of the invention comprise a female F connector with an end opening body hole or separate entry disc behind the hole opening from 1.5 to 3 mm port with a thickness of 0.5 to 1.5 mm. In some embodiments, the disc is made from a metallic material and in some embodiments the disc is made from a metallically impregnated polymer or ceramic material. Some embodiments of the disc are made with additional waveguide slots and some embodiments of the disc are made including one or more of a polymer, ceramic, or fiberglass material for example with a sputtered or etched magnetic material on the surface.


As will be appreciated, embodiments of the invention disclosed herein have application to additional frequency bands and signal types. In various embodiments, providing waveguides made using effective material(s), hole size(s), and thickness(s) enables wide adaptation for mitigating unwanted signal ingress in selected frequency bands.


An embodiment of the invention provides an aperture 2 to 3.5 mm with a nominal thickness between 0.5 to 1.5 mm. This combination of hole size and thickness acts as a waveguide to restrict ingress of low frequencies, typically under 100 Mhz by 20-40 dB (in some cases 1/100 of the signal) of that of an open-ended F port (See FIG. 9).


The combination of sizes serves to restrict the low frequency ingress while only minimally reducing the impedance of the operational connector interface. The reduced impedance match (sometimes characterized in terms of return loss) of the invention remains within limits acceptable to the CATV industry. As the aperture size grows beyond 3.5 mm, there is typically less shielding against unwanted signals at the connector entry.


A purpose of some embodiments of the invention is to maximize the RF shielding or ingress at low frequency while providing a good impedance match of the connector interface during operation. The inventor found that the thickness of the end surface or shield disc can also be an important factor in some embodiments. For example, thicknesses in the range of 0.5 to 1.5 mm were found to be effective in blocking frequencies under 100 Mhz.


An embodiment of the invention uses a 2 mm aperture or end hole size. And, some embodiments use tuned slots in addition to the 2 to 3.5 mm aperture. These slots or waveguide bars may be added to the port end surface or to an internal shield disc for specific frequency restriction.


An embodiment of the invention uses a shield disc from a polymer or ceramic material that can be coated or impregnated with a magnetic material active at specific frequencies. In addition to being homogeneously mixed with the ceramic or polymer, the material can be deposited or sputtered on the shield disc surface in different thicknesses or patterns to better affect specific frequencies. The shield may be a combination of waveguide and sputters or deposited material to more economically produce the shield.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described with reference to the accompanying figures. These figures, incorporated herein and forming part of the specification, illustrate embodiments of the invention and, together with the description, further serve to explain its principles enabling a person skilled in the relevant art to make and use the invention.



FIG. 1 shows a perspective view of a prior art F port and splice.



FIG. 2 shows a side view of FIG. 1.



FIGS. 3A-C show prior art F splice views.



FIG. 4 shows a prior art bulkhead type F port.



FIG. 5 shows a first chart of waveguide dimensions for some embodiments of the present invention.



FIG. 6 shows in partial section a first embodiment of the connector with shield of the present invention.



FIG. 7 shows in partial section a second embodiment of the connector shield of the present invention.



FIG. 8 shows the connector of FIG. 6 with a variety of waveguide discs.



FIG. 9 shows a performance chart of one open connector embodiment of the present invention.



FIG. 10 shows a second chart of waveguide dimensions for some embodiments of the present invention.



FIGS. 11A-B show a first coaxial cable connector and a related signal ingress performance chart.



FIGS. 12A-C show a second coaxial cable connector and related performance charts.



FIGS. 13A-C show a third coaxial cable connector and related performance charts.



FIGS. 14A-C show a fourth coaxial connector including a waveguide.



FIG. 15 shows a fifth coaxial connector including a waveguide.



FIGS. 16A-B show a coaxial cable connector insulator with a waveguide.



FIGS. 17A-C show a first insulated aperture waveguide.



FIGS. 18A-D show a second insulated aperture waveguide.



FIGS. 19A-E show a third insulated aperture waveguide.



FIGS. 20A-D show a fourth insulated aperture waveguide.



FIGS. 21A-C show a fifth insulated aperture waveguide.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The disclosure provided herein describes examples of some embodiments of the invention. The designs, figures, and descriptions are non-limiting examples of the embodiments they disclose. For example, other embodiments of the disclosed device and/or method may or may not include the features described herein. Moreover, disclosed advantages and benefits may apply to only certain embodiments of the invention and should not be used to limit the disclosed invention.


Embodiments of the invention provide a method of reducing RF cable interconnection ingress. In various embodiments, cable interconnection RF ingress is reduced by including a filter such as a waveguide and/or a screen at the cable entry end of a coaxial connector port such as an F-Type female port. Examples include filters that are frequency and/or frequency range specific.


Restriction of the ingress of RF frequencies may be for particular applications such as restricting frequencies below 100 MHz for certain CATV applications and specific frequencies for satellite and home networking. Because ingress restriction devices may change an F connector's characteristic impedance, for example 75 Ohm devices, filter geometry may be varied to balance filter performance and maintenance of a desired characteristic impedance within an acceptable range.


Notably, typical F female port geometry includes entry hole sizes that range from 4.0-5.5 mm as compared with the F connector tube or body overall diameter of 9.7 mm (⅜-32 outer thread). CATV industry standards promulgated by the Society of Cable Television Engineers (“SCTE”) show a minimum port opening of 4.3 mm to insure desired connector impedance when, for example, they cannot control the corresponding annular end wall thickness. By selecting filter performance related dimensions and materials, embodiments of the present invention reduce stray signal ingress while maintaining particular return loss performance consistent with SCTE and/or industry standards. In an embodiment, a minimum return loss is 20 dB.


Applicant notes that in telecommunications, return loss is the loss of signal power resulting from the reflection caused by a discontinuity in a transmission line. This discontinuity can be a mismatch with the terminating load or with a device inserted in the line.







RL


(
dB
)


=

10






log
10




P
i


P
r







Return loss is usually expressed in decibels dB where RL (dB) is the return loss in dB, Pi is the incident power and Pr is the reflected power. Return loss is related to both standing wave ratio (SWR) and reflection coefficient (Γ). Increasing return loss corresponds to lower SWR. Return loss is a measure of how well devices or lines are matched. A match is good if the return loss is high. A high return loss is desirable and results in a lower insertion loss.


In some embodiments, the invention provides a waveguide in the form of a waveguide “washer,” that is an electrically conductive disc with a central hole. In an embodiment, a waveguide aperture or entry hole diameter is in the range of 2.0-2.5 mm and the waveguide thickness in the range of 0.5-1.5 mm. This particular combination of waveguide hole size and thickness provides a device for restricting ingress of frequencies typically below 100 MHz with significant attenuation. As used herein, the term disc includes structures such as a separator, a plate, a flat plate, a circular plate, a perforated plate, a disc, and a disk, any of which may be made from one or more of plates, fabrics, composites, and the like.


Embodiments provide RF ingress attenuation in the range of 20-40 dB (reductions to 1/100 of the signal) when compared with RF ingress of an open-ended F female port without the waveguide or other RF ingress protection. Persons of ordinary skill in the art will recognize waveguide dimensions may be varied within and around the ranges to provide particular waveguide and connector performance.


Dimensions of waveguide aperture and thickness may be chosen to restrict RF ingress such as low frequency ingress managing the impedance of the operational connector interface. Embodiments of the invention perform with return losses acceptable in the CATV and satellite television industry. For example, where the waveguide aperture size is greater than 3 mm, RF ingress continues to be restricted to some degree but there is less shielding of the connector entry.


Embodiments of the invention may enhance RF shielding for ingress at low frequencies while providing a good impedance match of the connector interface while in operation. For example, various embodiments control the thickness of the end surface or shield disc to enhance performance. Waveguide thicknesses in the range of 0.5 to 1.5 mm have demonstrated an ability to block frequencies below 100 MHz.



FIG. 5 shows an exemplary chart of waveguide thickness and waveguide aperture size 500. In particular, the chart shows ranges of aperture size and thickness within a particular region, Region 1, that has been shown to yield desirable RF ingress attenuation in CATV applications.



FIG. 5 illustrates thickness and aperture size ranges tested in connection with rejecting unwanted signals in the frequency band 100 MHz and below. Region 1 is bounded by aperture sizes of approximately 2 to 3 mm and waveguide thicknesses of approximately 0.5 to 2 mm. Notably, beneficial rejection of unwanted signals in the frequency spectrum between 100 MHz and 2050 MHz has also been observed.


Several waveguides with dimensions in Region 1 were found to be useful for blocking unwanted RF ingress typical of CATV applications. For example, in various embodiments an F female connector is shielded to restrict RF transfer at frequencies below 100 MHz while allowing the connector to mate with a male coaxial connector with insignificant degradation of a desired 75 ohm impedance.



FIG. 6 shows an F-Type splice embodiment of the present invention with an integral waveguide 600. A tubular, electrically conductive splice body 616 extends between first and second ends 670, 672 of the body locating two F female ports 680, 682. An outer diameter of the body is threaded 622 for engaging male connector(s).


A shielded port 680 with an internal contact 612 is located near the first end 670. The port is shielded by an integral waveguide in the form of an inwardly directed integral lip. Forming a centrally located and relatively small shielded port aperture 660 with diameter d1, the lip is deep as compared with prior art port lips. A lip diameter d2 (d2>d1) describes an annulus 664 between d1 and d2 having a thickness t1 measured along a central axis x-x of the connector.


Typically, only one end of the splice will have need of a shielded port given the opposite end usually remains attached to a mating male connector during the splice service life. As such, only the end opposite this undisturbed connection may typically be shielded.


In various embodiments the waveguide aperture has a diameter d1 that is smaller than the wavelength of stray RF signals to be attenuated before reaching the connector contact or other similar connector parts behind the waveguide. In various embodiments the waveguide has a thickness t1 in the range of 0.5 to 1.5 mm and an aperture diameter in the range of 2.0 to 3.0 mm. And, in various embodiments the waveguide aperture has a thickness t1 that is less than the aperture diameter (t1<d1). In an embodiment suited for use in some CATV applications, the inventor determined approximate dimensions t1=1.3 mm, d1=2.0 mm, and d2=5.5 mm provided significant attenuation of RF ingress frequencies below 100 MHz.



FIG. 7 shows an F-Type splice embodiment of the present invention with an disc waveguide 700. An electrically conductive splice body 716 extends between first and second ends 770, 772 of the body locating two F female ports 780, 782. An outer diameter of the body is threaded 722 for engaging male connector(s).


A shielded port 780 with an internal contact 712 is located near the first end 770. The port is shielded by a disc waveguide in the form of a perforated disc 764. As used here, disc includes any of thin or thick plates, relative to other plate dimensions, having a circular or another shape. As shown, the disc has an outer diameter d33 and a disc periphery 761 that is supported by an inwardly directed rim 763 of the connector body 716. As skilled artisans will appreciate, other methods of locating and/or supporting the disc may also be used.


The disc includes a relatively small and centrally located shielded port aperture 760 with diameter d11. The port aperture diameter d11 is less than an adjacent body end hole diameter d22. The disc defines an inwardly directed disc lip 765 that is deep as compared with prior art port lips and in some embodiments is coextensive with the disc 764. The disc has a thickness t11 measured along a central axis x-x of the connector. Typically, only one end of the splice will have need of a shielded port given the opposite end usually remains attached to a mating male connector during the splice service life. As such, only the end opposite this undisturbed connection may typically be shielded.


In various embodiments the waveguide aperture has a diameter d11 that is smaller than the wavelength of stray RF signals to be attenuated before reaching the connector contact or other similar connector parts behind the waveguide. In various embodiments the waveguide has a thickness t11 in the range of 0.5 to 1.5 mm and an aperture diameter in the range of 2.0 to 3.0 mm. And, in various embodiments the waveguide aperture has a thickness t11 that is less than the aperture diameter (t11<d11). In an embodiment suited for use in some CATV applications, the inventor determined approximate dimensions t11=1.3 mm, d11=2.1 mm, and d22=5.5 mm provided significant attenuation of RF ingress frequencies below 100 MHz.



FIG. 8 shows an F-Type splice embodiment of the present invention with a disc waveguide 800. A tubular, electrically conductive splice body 816 extends between first and second ends 870, 872 of the body locating two F female ports 880, 882.


As shown, an electrically conductive disc waveguide 864 is internal to the connector body 816 and is near a locating and/or supporting part such as an inwardly directed rim 863 of the connector body. As skilled artisans will appreciate, other methods of locating and/or supporting the disc may also be used. For example, a removable screw-in plug, circlip, or similarly useful device may retain the disc.


In addition to varying the size of a hole in a perforated disc such as a disc with a center hole, disc type waveguides may utilize a plurality of holes to obtain a desired performance. These holes may be of the same or different sizes and may include or exclude a center hole. Hole shapes may also be varied.


Five exemplary multi-hole discs 864a-e are shown in FIG. 8. A first disc 864a has circular center hole and additional smaller holes arranged along radii of the disc. A second disc 864b has a circular center hole and additional smaller rectangular or square holes arranged along radii of the disc. A third disc 864c has a circular center hole and comparatively narrow rectangular slots with a longitudinal axis about perpendicular to disc radii. A fourth disc 864d has a circular center hole and is made of a mesh with openings smaller than the centerhole. The fifth disc 864e has a circular centerhole and plural relatively small rectangular slots having longitudinal axes arranged about perpendicular to disc radii.



FIG. 9 shows performance graphs for open coaxial cable connector splices with different opening sizes 900. This chart is a digital recording of a test instrument display made during testing of a prototype connector with a port shielded in accordance with the present invention. The upper curve marked “F splice with 5.5 mm [aperture] opening” lacks the shield of the present invention and shows RF ingress that varies between about −140 dB and −90 dB over the ingress frequency range 0.3 to 100 MHz. The lower curve marked “F splice with 3 mm [aperture] opening” includes an embodiment of the shield of the present invention and shows ingress that is much reduced, varying between about −140 dB and −120 db over the same 0.3 to 100 Mhz range of RF ingress frequencies. As can be seen from the chart, improvements in the range of about 20-40 dB can occur over the range of frequencies tested.



FIG. 10 shows a second exemplary chart of waveguide thickness and waveguide aperture size 1000. In particular, the chart shows ranges of aperture size and thickness within a particular region, Region 2, that has been shown to yield desirable RF ingress attenuation in CATV applications. The figure illustrates thickness and aperture size ranges tested in connection with rejecting unwanted signals in CATV distribution frequency bands. Notably, beneficial rejection of unwanted signals in the frequency spectrum below 100 MHz and between 100 MHz and 2050 MHz has also been observed.


Here, the 0.3 to 1000 MHz and in particular the 700-800 MHz frequency band is of interest due to cellular telephone signal ingress such as 4G and/or LTE phone signal ingress in a cell phone/CATV an overlapping (700-800 MHz) frequency range. Region 2 is bounded by aperture sizes of approximately 1.5 to 3 mm and waveguide thicknesses of approximately 0.5 to 2 mm.



FIG. 11A shows an F type splice 1100A with a 5.5 mm aperture, a feature that can be implemented, for example, by deforming the end of the splice body to form an inwardly directed lip that defines the aperture.



FIG. 11B shows attenuation performance 1100B of the splice of FIG. 11A under two different conditions. Larger negative dB values are desirable as they indicate greater attenuation of undesirable ingressing signals. The upper curve of this graph shows the port open condition, for example when the splice is mounted in a wall plate as shown in FIG. 1. Port open means the exposed port of the splice is disconnected while the hidden/in-the-wall port of the splice is connected to a CATV distribution system. The lower curve of this graph shows the port closed condition, for example when the above described exposed port is capped as with a screw-on cap, to block signal ingress. Differences between port open and port closed performance are shown in the table below.












Performance With 5.5 mm Aperture, Connector of FIG. 11A










0.300 MHz
1000 MHz















Port Open
−120 dB
 −63 dB



Port Closed
−138 dB
−125 dB










Connectors similar to those of FIGS. 12A and 13A below have been tested and found to significantly attenuate undesirable ingressing signals in the 0.3 to 1000 MHz frequency range and in particular in the 700-800 MHZ frequency range. And, as the data shows, the waveguides reject unwanted signals while maintaining return loss values suited to CATV industry operations.



FIG. 12A shows a portion of a coaxial cable connector with a waveguide 1200A. The waveguide 1202 is 1.0 mm thick and has a central aperture 1204 that is 2.0 mm in diameter. Notably, other than circular apertures may be used in various embodiments. For example, a triangular or other aperture shape with a similar cross-sectional area might be used here in lieu of the circular aperture.



FIG. 12B shows attenuation performance 1200B of the protected connector of FIG. 12A.












Performance with 2.0 mm Aperture, Connector of FIG. 12A










0.300 MHz
1000 MHz













Port Open
−140 dB
−92 dB


Improvement Over
(−140-(−120)) = −20 dB
(−92-(−63)) = −29 dB


Connector of FIG.


11A










As seen, in the 0.300 MHz to 1000 MHz frequency spectrum, improved attenuation of unwanted ingressing signals is in the range of about −20 to −29 dB.



FIG. 12C shows return loss performance 1200C of the protected connector of FIG. 12A. Larger negative dB values of return loss are desirable as they indicate improved impedance matching and reduced signal reflection losses. Typical return loss values maintained in the CATV industry are in the range of about −50 to −10 dB. As seen in the figure and in the table below, return loss values for the connector of FIG. 12A are in the range of about −50 to −25 dB.



FIG. 13A shows a portion of a coaxial cable connector with a waveguide 1300A. The waveguide 1302 is 0.5 mm thick and has a central aperture 1304 that is 2.0 mm in diameter. Notably, other than circular apertures may be used in various embodiments. For example, a triangular or other aperture shape with a similar cross-sectional area might be used here in lieu of the circular aperture.



FIG. 13B shows attenuation performance 1300B of the protected connector of FIG. 13A.












Performance with 2.0 mm Aperture, Connector of FIG. 13A










0.300 MHz
1000 MHz













Port Open
−140 dB
−86 dB


Improvement Over
(−140-(−120)) = −20 dB
(−86-(−63)) = −23 dB


Connector of FIG.


11A










As seen, in the 0.300 MHz to 1000 MHz frequency spectrum, improved attenuation of unwanted ingressing signals is in the range of about −20 to −23 dB.


A lip diameter d2 (d2>d1) describes an annulus 664 between d1 and d2 having a thickness t1 measured along a central axis x-x of the connector.



FIG. 13C shows return loss performance 1300C of the protected connector of FIG. 13A. Larger negative dB values of return loss are desirable as they indicate improved impedance matching and reduced signal reflection losses. Typical return loss values maintained in the CATV industry are in the range of about −50 to −10 dB. As seen in the figure and in the table below, return loss values for the connector of FIG. 13A are in the range of about −50 to −32 dB.


Turning now to some alternative waveguide configurations, FIGS. 14A-C, 15, and 16A,B show waveguides installed in bulkhead connectors and connectors such as ports and splices.



FIG. 14A shows a connector such as a bulkhead mountable or bulkhead integral connector 1400A. A connector body 1401 is supported by a connector base 1410 and an insulating structure(s) 1403 within the connector body support a central electrical contact 1407 having a coaxial cable center conductor contactor 1405 and an opposed contacting pin 1418 near the base.


Access to the center conductor contactor 1405 is via an adjacent body end opening 1495. An annular waveguide 1402 located in this opening is adjacent to the center conductor contactor. In some embodiments, an outer ring 1404 abuts the waveguide. In various embodiments, the waveguide is held in place by a deformed or staked end of the body 1406 that overlaps the waveguide or outer ring.



FIG. 14B shows the waveguide 1400B. Profile 1480 and end 1481 views show the annular structure of the waveguide. As seen in the profile view, an embodiment of the waveguide includes a generally cylindrical waveguide lip 1403. The lip encircles and projects from the waveguide aperture 1411 to define a coaxial cable center conductor mouth. Some embodiments include a lip internal entry taper 1417 that guides a coaxial cable central conductor into the waveguide aperture 1411.



FIG. 14 C shows the optional outer ring embodiment 1400C. Profile 1490 and end 1491 views show the annular structure of the outer ring 1404. As seen in the profile view, the ring forms a lip receiving hole 1431 for receiving the waveguide lip 1403 as shown in FIG. 14A.


In a connector embodiment 1400A including the outer ring 1404, one closure method incorporates a metal or RF conductive waveguide 1402 used in an F female port with a deformable waveguide fixing end such that horizontal port cast metal bodies may be equipped with the waveguide. In yet another embodiment of FIGS. 14A-C, annotated item 1402 is the insulator and annotated item 1404 is the waveguide.



FIG. 15 shows a connector female port 1500. As discussed in connection with FIGS. 14A-C above, the port of FIG. 15 utilizes a waveguide 1502 and an outer ring 1504 such as an interengaging waveguide and ring. These parts are fitted into a connector body 1501 opening 1506 and an extended cylindrical shank 1516 of the outer ring provides a fixation means, for example an interference fit 1517 with a bore 1519 of the body.



FIGS. 16A,B show a coaxial connector port insulator and waveguide 1600A,B. In particular, FIG. 16A shows a connector port insulator 1602 together with a waveguide 1605. FIG. 16 B shows the waveguide 1605. In some embodiments, the waveguide is a separable disc. And, in some embodiments, the waveguide is integral with the insulator and includes one or more of the following: an RF shielding material that is a coating, an impregnate, a commix with insulator plastic, an insert, and the like. In an embodiment, the waveguide is a metallic plating on the cable entry side of the insulator. In an embodiment, the waveguide is a metallic plating on the surface of the cable entry side of the insulator.



FIGS. 17A-C, 18A-D, 19A-E, 20A-D, 21A-C (i.e., FIGS. 17A-21C) show coaxial connectors with waveguides. In particular, the waveguides of these figures have insulated apertures or throats. In various embodiments, the waveguides are incorporated in F Type connectors.



FIG. 17A shows a first insulated aperture waveguide and a center conductor portion 1700A. The insulated aperture waveguide is shown in cross sectional 1701 and end 1712 views. In various embodiments, the waveguide may be described or partially described as a web or web portion bordering an aperture. Adjacent to the cross sectional view is a center conductor 1702 for insertion in the insulator. Notably, the waveguides disclosed herein may be used with conductive connector bodies including connector bodies that incorporate a plurality of different materials in the form of mixtures, admixtures, comixtures, coatings, and platings comprising suitable materials such as one or more plastics and/or resins in combination with one or more conductors such as metals. In an embodiment, a connector body utilizes a finely divided metal suspended in a resin matrix.


As shown, an electrical insulator 1704, such as a cylindrical plastic insulator, is inserted in a central aperture 1710 of a disk like waveguide 1706. While the insulator is shown extending the entire length of the waveguide aperture, this need not be the case. An insulator through hole 1708 provides a passageway through the waveguide 1706 such that the center conductor does not touch or short circuit with the waveguide. Not shown are insulator portions which may lie to either side of the waveguide. In some embodiments, the aperture insulator may be segmented and/or have a snap-in type design. And in some embodiments, the aperture insulator may be an insulative coating.


Waveguide 1706 dimensions include a waveguide thickness (WT), a waveguide outer diameter or major dimension (WOD), and a waveguide aperture diameter (WID). Insulator dimensions include an insulator through hole diameter or inside dimension (IID) and an insulator outer diameter or major dimension (IOD) that allows for fitting the insulator within the waveguide aperture. In various embodiments, IOD is chosen such that the insulator 1704 engages the waveguide aperture 1710 with a slip or an interference fit for a given WID. As persons of ordinary skill in the art will observe, a radial wall thickness of the insulator (IRT) may be approximated as IRT=((WID−IID)/2).



FIG. 17B shows a table of insulated aperture waveguide dimensions for use with center conductors having dimensions similar to those of Mini RG59, RG59, RG6, and RG11 coaxial cables 1700B. Skilled artisans will appreciate that ranges in WID may result in corresponding ranges of IID. For example, with an RG6 coaxial cable skilled artisans will appreciate that a range in WID of 2.0 to 3.0 mm may result in a corresponding range in IID of 1.4 to 2.4 mm. In various embodiments, a nominal radial clearance (RC) between a center conductor 1702 having a center conductor outer diameter (CCOD) and the insulator 1704 ranges for RG59 from 0.19 to 0.8 mm and for RG6 from 0.19 to 0.7 mm. In various embodiments connectors with the waveguide shield and/or enable shielding of connector body internals from ingress of radio frequency signals in the range of 5 to 2050 megahertz while maintaining a nominal connector impedance of 75 ohms. And, in various embodiments connectors with the waveguide preferentially attenuate ingressing radio frequency signals in the range of 5 to 2050 megahertz while maintaining a nominal connector impedance of 75 ohms.



FIG. 17C shows a dimensioned example of an insulated aperture waveguide 1700C. For example, a 2.0 mm waveguide aperture diameter and a 0.3 mm insulator wall thickness provide an insulator through hole diameter of 1.4 mm for passing an RG6 center conductor with a 1.02 mm OD. As shown, a radial center conductor to insulator clearance RC of approximately 0.19 mm results.


The insulated aperture waveguide may be used in coaxial connectors including splicing or coupling connectors such as connectors for splicing two coaxial cables and terminating connectors such as female coaxial connector ports on radio frequency equipment. In various embodiments, insulated aperture waveguides are used with coaxial cable connector splices and with satellite television set top boxes.



FIGS. 18A, 19A, 20A, 21A show insulated aperture waveguides installed in coaxial connector splices 1800A, 1900A, 2000A, 2100A. Skilled artisans will appreciate that the insulated aperture waveguide end of the splice also discloses the making and using of a similar insulated aperture waveguide in a female coaxial connector port.



FIGS. 18A-D show a splice having a second insulated aperture waveguide 1800A-D. As seen in FIG. 18A, the insulated aperture waveguide includes a waveguide 1806 and a first or outside mount insulator 1804. The waveguide is located between the first insulator and a second insulator 1808 that supports a center pin 1810 within the body 1802 of the connector.



FIG. 18B shows cross sectional 1880 and end 1890 views of the outside mount insulator 1804. An insulator flange 1824 adjoins a coaxially arranged insulator neck 1834 that is for insertion in a waveguide aperture 1846 (see FIG. 18C). An insulator through hole 1844 is for receiving a center conductor while the insulator flange guards against center conductor (see e.g. 1702 of FIG. 17A) contact with a waveguide front face 1816 (see also FIG. 18C) and the insulator neck guards against center conductor contact with a waveguide aperture wall 1836. In various embodiments the waveguide through hole may include a chamfer (not shown) to guide entry of an insertable center conductor, for example the center conductor of a coaxial cable



FIG. 18C shows cross sectional 1881 and end 1891 views of the waveguide 1800C. The waveguide 1806 may be formed as a disk like structure that extends radially or somewhat radially between a central aperture 1846 and an outer perimeter 1856. In various embodiments, the waveguide central aperture may be cylindrical as shown.



FIG. 18D shows cross sectional 1882 and end 1892 views of the second insulator 1808. The second insulator includes a central tubular section 1838 with a mouth 1848 adjacent to the waveguide aperture 1846 (see FIG. 1800A) and a rear entry 1849 for receiving the connector center pin 1810. In various embodiments, a coaxially arranged collar 1868 encircles and is attached to the tubular section.



FIGS. 19A-E show a splice having a third insulated aperture waveguide 1900A-E. As seen in FIG. 19A, the insulated aperture waveguide includes a waveguide 1906 and a first or outside mount insulator 1904. An inner rim of the waveguide 1996 that bounds a waveguide aperture 1946 (see also FIG. 19C) is located between the first insulator and a second insulator 1908. The second insulator supports a center pin 1910 within the body 1902 of the connector.



FIG. 19B shows cross sectional 1980 and end 1990 views of the outside mount insulator 1904. An insulator flange 1924 adjoins a coaxially arranged insulator neck 1934 that is for insertion in a waveguide aperture 1946 (see FIG. 19C). An insulator through hole 1944 is for receiving a center conductor (see e.g. 1702 of FIG. 17A) while the insulator flange guards against center conductor contact with a waveguide front face 1916 (see also FIG. 19C) and the insulator neck guards against center conductor contact with a waveguide aperture wall 1936.



FIG. 19C shows cross sectional 1981 and end 1991 views of the waveguide 1900C. The waveguide 1906 may be formed as a disk like structure that extends radially or somewhat radially between a central aperture 1946 and an outer perimeter 1956. As shown, the waveguide includes an outer cylinder 1966 and the waveguide inner rim 1996 extends inwardly from the cylinder and bounds a waveguide aperture 1946. A waveguide front cavity 1913 for receiving the insulator 1904 has boundaries including the rim and the cylinder such that a cylinder face recess 1986 provides a bendable stake or tang like structure 1915 for fixing the insulator within the cavity. An outwardly directed cylinder rim 1976 is for seating against the connector body 1902.


In various embodiments, the waveguide central aperture may be cylindrical as shown and in other embodiments the aperture may have straight or non-cylindrically curved boundaries.



FIG. 19D shows cross sectional 1982 and end 1992 views of the second insulator 1908. The second insulator includes a central tubular section 1938 with a mouth 1948 adjacent to the waveguide aperture 1946 and a rear entry 1949 for receiving the connector center pin 1910. In various embodiments, a coaxially arranged collar 1968 encircles and is attached to the tubular section.



FIG. 19E shows a perspective view of a female coaxial connector port fitted with the third insulated aperture waveguide of FIGS. 1900B-C. In various embodiments, a through hole 1944 of the insulator 1904 provides access via the waveguide aperture 1946 and second insulator mouth 1948 to the connector center pin 1910.



FIGS. 20A-D show a splice having a fourth insulated aperture waveguide 2000A-D. As seen in FIG. 20A, the insulated aperture waveguide includes a waveguide 2006 and a first or inside mount insulator 2004. The waveguide is located between the first insulator and a second insulator 2008 that supports a center pin 2010 within the body 2002 of the connector.



FIG. 20B shows cross sectional 2080 and end 2090 views of the inside mount insulator 2004. An insulator flange 2014 has inner 2024 and outer 2047 flange portions and the inner flange portion adjoins a coaxially arranged insulator neck 2034. The insulator neck 2034 is for insertion in a waveguide aperture 2046.


An insulator through hole 2044 is for receiving a center conductor (see e.g. 1702 of FIG. 17A) while the insulator flange inner portion 2024 guards against center conductor contact with a waveguide front face 2016 (see also FIG. 20C) and the insulator neck guards against center conductor contact with a waveguide aperture wall 2036.



FIG. 20C shows cross sectional 2081 and end 2091 views of the waveguide 2000C. The waveguide 2006 may be formed as a disk like structure that extends radially or somewhat radially between a central aperture 2046 and an outer perimeter 2056. In the embodiment shown, the waveguide is in the form of coaxially arranged inner 2053 and outer 2055 rings, the inner ring for mating with an opposed insulator cavity 2043 and the outer ring for mating with an opposed insulator face 2045.



FIG. 20D shows cross sectional 2082 and end 2092 views of the second insulator 2008. The second insulator includes a central tubular section 2038 with a mouth 2048 adjacent to the waveguide aperture 2046 and a rear entry 2049 for receiving the connector center pin 2010. In various embodiments, a coaxially arranged collar 2068 encircles and is attached to the tubular section.



FIGS. 21A-C show a splice having a fifth insulated aperture waveguide 2100A-C. As seen in FIG. 21A, the insulated aperture waveguide includes an outside mount waveguide 2106 and an inside mount insulator 2108 that supports a center pin 2110 within the body 2102 of the connector.



FIG. 21B shows cross sectional 2181 and end 2191 views of the waveguide 2100B. The waveguide may be formed as a disk like structure that extends radially or somewhat radially between a central aperture 2146 and an outer perimeter 2156. As shown, the waveguide includes an outer cylindrical portion 2166 and a inwardly directed rim 2196 defining an aperture wall 2136. In various embodiments, peripheral waveguide shoulder 2176 is for seating against the connector body 2102.



FIG. 21C shows cross sectional 2182 and end 2192 views of the insulator 2108. The insulator includes a central tube like section 2138 and in some embodiments, a coaxially arranged collar 2168 that encircles and is attached to the tubular section.


A central tube section mouth 2148 is for receiving a center conductor such as the center conductor of a coaxial cable and a rear entry 2149 for receiving a connector pin 2110. In various embodiments, the mouth is designed with a projecting portion 2159 for insertion into and/or through the waveguide aperture 2146 (see FIG. 21A,B). As seen, the mouth projecting portion guards against center conductor contact with the waveguide aperture wall 2136. Some embodiments include an internal mouth chamfer 2161 for guiding the center conductor into and/or through the mouth.


While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to those skilled in the art that various changes in the form and details can be made without departing from the spirit and scope of the invention. As such, the breadth and scope of the present invention should not be limited by the above-described exemplary embodiments, but should be defined only in accordance with the following claims and equivalents thereof.

Claims
  • 1. A coaxial connector comprising: a metallic waveguide that shields the internals of a connector body from the ingress of radio frequency signals;a waveguide aperture having a diameter less than or equal to 3.5 mm;a stationary first electrical insulator for covering a waveguide surface otherwise subject to contact by the mating connector center conductor during its alignment with and insertion in the waveguide aperture;a first electrical insulator through hole having a diameter greater than an outer diameter of the mating connector center conductor; and,the mating connector center conductor for passing through the first electrical insulator through hole and the waveguide aperture.
  • 2. The coaxial connector of claim 1 further comprising a metallic center pin within the body for receiving the mating connector center conductor.
  • 3. The coaxial connector of claim 1 wherein the connector is an F-Type connector.
  • 4. The coaxial connector of claim 1 wherein the waveguide aperture diameter is “d” mm and 2.6≤d≤3.5.
  • 5. The coaxial connector of claim 1 wherein the waveguide aperture diameter is less than or equal to 2.0 mm.
  • 6. The coaxial connector of claim 1 wherein the waveguide aperture diameter is “d” mm and 1.5≤d≤2.0.
  • 7. The coaxial connector of claim 1 wherein the waveguide aperture diameter is less than or equal to 3.0 mm.
  • 8. The coaxial connector of claim 7 wherein the connector is an F-Type connector.
  • 9. The coaxial connector of claim 8 wherein the wave guide aperture diameter is “d” mm and 2.0≤d≤3.0.
PRIORITY CLAIM AND INCORPORATION BY REFERENCE

This application is a continuation of U.S. patent application Ser. No. 15/644,734 filed Jul. 7, 2017 which is a continuation of U.S. patent application Ser. No. 14/957,179 filed Dec. 2, 2015 (now U.S. Pat. No. 9,711,919) which is a continuation-in-part of U.S. patent application Ser. No. 14/588,889 filed Jan. 2, 2015 (now U.S. Pat. No. 9,246,275) which is 1) a continuation-in-part of U.S. patent application Ser. No. 14/069,221 filed Oct. 31, 2013 (now U.S. Pat. No. 9,178,317 issued Nov. 3, 2015) which is a continuation-in-part of U.S. patent application Ser. No. 13/712,828 filed Dec. 12, 2012, which claims the benefit of U.S. Prov. Pat. App. No. 61/620,355 filed Apr. 4, 2012 and 2) a continuation in part of U.S. patent application Ser. No. 14/494,488 filed Sep. 23, 2014 (now U.S. Pat. No. 9,112,323 issued Aug. 18, 2015). All of the aforementioned patent applications are incorporated by reference herein, in their entireties and for all purposes.

US Referenced Citations (125)
Number Name Date Kind
3757279 Winston Sep 1973 A
4275946 Manina et al. Jun 1981 A
4633048 Komatsu Dec 1986 A
4660921 Hauver Apr 1987 A
4681390 Hayward Jul 1987 A
5011440 Lee Apr 1991 A
5096444 Lu Mar 1992 A
5150087 Yoshie Sep 1992 A
5278525 Palinkas Jan 1994 A
5413502 Wang May 1995 A
5432488 Kotani Jul 1995 A
5498175 Yeh Mar 1996 A
5625177 Yukinori Apr 1997 A
5632637 Diener May 1997 A
5658171 Pauza Aug 1997 A
5662494 Zennamo Sep 1997 A
5667409 Wong Sep 1997 A
5700160 Lee Dec 1997 A
5730622 Olson Mar 1998 A
5863226 Lan Jan 1999 A
5865654 Shimirak Feb 1999 A
5921793 Phillips Jul 1999 A
5980326 Weidner Nov 1999 A
6030240 Duff Feb 2000 A
6065997 Wang May 2000 A
6071144 Tang Jun 2000 A
6113431 Wong Sep 2000 A
6123581 Stabile Sep 2000 A
6146168 Ishii Nov 2000 A
6146208 Pennell Nov 2000 A
6227868 Wiodarski May 2001 B1
6250960 Youtsey Jun 2001 B1
6276970 Wong Aug 2001 B1
6296492 Fujimoto Oct 2001 B1
6299479 Tang Oct 2001 B1
6323743 Zelenz Nov 2001 B1
6336820 Hida Jan 2002 B2
6380826 Palinkas Apr 2002 B1
6398568 Preece Jun 2002 B1
6439906 Gray Aug 2002 B1
6476688 Palinkas Nov 2002 B2
6520785 Hida Feb 2003 B2
6574855 Hida Jun 2003 B1
6595799 Yao Jul 2003 B2
6636129 Zennamo Oct 2003 B2
6655991 Heebe Dec 2003 B2
6659784 Klein Dec 2003 B1
6674343 Gould Jan 2004 B2
6755665 Lu Jun 2004 B2
6791436 Zennamo Sep 2004 B2
6794957 Shafer Sep 2004 B2
6808405 Uratani Oct 2004 B1
6808426 Liu Oct 2004 B2
6829813 Zennamo Dec 2004 B2
6835095 Chen Dec 2004 B2
6875024 Nagano Apr 2005 B2
6881082 Jordan Apr 2005 B2
6888423 Tresness May 2005 B2
6899563 Lee May 2005 B1
6955561 Seymour Oct 2005 B2
6974340 Zech Dec 2005 B2
6976884 Lee Dec 2005 B1
6986666 Benson Jan 2006 B2
7080997 Matsuo Jul 2006 B2
7086867 Nakagawa Aug 2006 B2
7255599 Chawgo Aug 2007 B1
7303439 Montena Dec 2007 B1
7306484 Mahoney Dec 2007 B1
7323951 Montena Jan 2008 B2
7354306 Thorner Apr 2008 B2
7371977 Preonas May 2008 B1
7414196 Chawgo Aug 2008 B2
7442084 Montena Oct 2008 B2
7527500 Montena May 2009 B2
7575474 Dodson Aug 2009 B1
7713067 Behrent May 2010 B1
7731512 Montena Jun 2010 B1
7909614 Chang Mar 2011 B1
7972173 Hyzin Jul 2011 B1
8043118 Lee Oct 2011 B1
8083544 Chee Dec 2011 B2
8162672 Huang Apr 2012 B2
8172617 Peng May 2012 B2
8298020 Chen Oct 2012 B1
8454395 Xu Jun 2013 B2
8545235 Montena Oct 2013 B2
8585438 Tang Nov 2013 B2
8777658 Holland Jul 2014 B2
9048600 Holland Jun 2015 B2
9112323 Goebel Aug 2015 B2
9130288 Holland Sep 2015 B2
9136629 Holland Sep 2015 B2
20030129873 Heeba Jul 2003 A1
20030181073 Nagano Sep 2003 A1
20040198094 Seymour Oct 2004 A1
20050001697 Gould Jan 2005 A1
20050148236 Montena Jul 2005 A1
20050162238 Ho Jul 2005 A1
20050164525 Benson Jul 2005 A1
20050245104 Nakagawa Nov 2005 A1
20060246774 Buck Nov 2006 A1
20070298653 Mahoney et al. Dec 2007 A1
20090011628 Purchon Jan 2009 A1
20090114424 Holland May 2009 A1
20090181575 Hung Jul 2009 A1
20100093211 Sutter Apr 2010 A1
20100255721 Purdy et al. Oct 2010 A1
20110045694 Chee Feb 2011 A1
20110076885 Shaw Mar 2011 A1
20110117776 Burris et al. May 2011 A1
20110244720 Peng Oct 2011 A1
20120040555 Shih Feb 2012 A1
20130040481 Vallely Feb 2013 A1
20130115809 Hanson May 2013 A1
20130244481 Holland Sep 2013 A1
20130244483 Montena Sep 2013 A1
20130244509 Holland Sep 2013 A1
20130252462 Tang Sep 2013 A1
20130266275 Holland Oct 2013 A1
20130316578 Takahasi Nov 2013 A1
20140162494 Holland Jun 2014 A1
20140315428 Holland Oct 2014 A1
20150038009 Gibson Feb 2015 A1
20150132992 Holland May 2015 A1
20150263463 Holland Sep 2015 A1
Foreign Referenced Citations (5)
Number Date Country
2242147 Apr 2010 EP
08-168015 Jun 1996 JP
2010-118201 May 2010 JP
WO 9833245 Jul 1998 WO
WO 2013151589 Oct 2013 WO
Non-Patent Literature Citations (1)
Entry
Society of Cable Telecommunications Engineers; Engineering Committee Interface Practices Subcommittee; American National Standard; ANSI/SCTE 74 2011.
Related Publications (1)
Number Date Country
20180294608 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
61620355 Apr 2012 US
Continuation in Parts (5)
Number Date Country
Parent 15644734 Jul 2017 US
Child 15951403 US
Parent 14957179 Dec 2015 US
Child 15644734 US
Parent 14588889 Jan 2015 US
Child 14957179 US
Parent 14069221 Oct 2013 US
Child 14588889 US
Parent 13712828 Dec 2012 US
Child 14069221 US