1. Field of the Invention
The invention relates to a coaxial connector, more particularly to a coaxial connector with structural improvement capable of switching the transmission direction of electronic signal.
2. Description of Prior Art
Normally most of the conventional type connector can allow the electronic signal to be transmitted in only one direction. However there is also a coaxial connector for the aerial module of wireless local area network system which possesses the function of switching of the direction of signal transmission, and allows switching and changing the direction of signal transmission when the signal is transmitted through the connector.
Shown in
The conducting rod assembly 12 comprises a movable conducting rod 121, a fixed conducting rod 122 and an elastic restoring mechanism 123, and by arranging the elastic restoring mechanism 123 between the movable conducting rod 121 and the fixed conducting rod 122 a movable connection with elastic restoring mechanism is formed.
Moreover, the conducting rod assembly 12 is installed inside the switch control compartment 111 of the metal housing 11 in such a way that the movable conducting rod 12 is supported by, and can freely move inside the center hole of the axial sliding support 13 with its front part extended into the butt connection opening of the metal housing 11 to form the axially-movable signal input end of the conventional type coaxial connector 10, and the fixed conducting rod 122 of the conducting rod assembly 12 is supported, and secured by the first sealing support 14 to form fixed state with its front part extended to the outside of the conventional type coaxial connector to form signal output end.
This type of conventional coaxial connector 10 also has a contact pin 15 which, by employing the second sealing support 16, has its upper part extended to the outside of the conventional type coaxial connector 10 to form another signal input end of the conventional type coaxial connector 10 while the lower part of the contact pin 15 extends to the inside of the switching control compartment 111 of the metal housing 11 to form electric contact with the conducting rod assembly 12.
This type of conventional coaxial connector has two ways of electric signal transmission. When there is no complementary connector 19 connected to the input end of the conventional coaxial connector 10 as shown in
However, owing to the drawback of poor structure strength caused by extending the contact pin 15 into the switching control compartment 111 of the metal housing 11 in the way of cantilever which is frequently bumped or pushed by the elastic restoring mechanism 123 of the conducting rod assembly 12 that always results in the damage of distortion and looseness of the contact pin 15, particularly since the electric contact between the contact pin 15 and the conducting rod assembly 12 is in the form of cylindrical surface to flat surface which has a very small contact area, it always results in poor electrical connection quality, moreover, since the contact pin 15 is apt to distortion or looseness that will cause the drawbacks of unstable signal transmission and distorted signal of the conventional type coaxial connector 10. In view of these drawbacks it is necessary to do further improvement of the conventional type coaxial connector 10.
In view of the above the major purpose of the invention is to provide an improvement of the structure of coaxial connector which comprises a housing, a sliding support, an electric conducting block, a first conducting rod assembly, a first sealing support, a second conducting rod assembly, a second sealing support, a contact piece and a third sealing support, particularly, by adopting the electric conducting block in the structure a flat-surface to flat-surface contact between the bottom side of the contact piece and the top side of the electric conducting block can be achieved that can also enable a more strong structure of the contact piece of the coaxial connector without being apt to the damage of distortion or looseness. Besides, since both of the side surfaces of the electric conducting block are flat surface, a good electric connection between electric conducting block and the first conducting rod assembly, as well as the contact piece can be achieved, and the damage of distortion or looseness of the contact piece caused by bumping and impact by the first conducting rod can be avoided, so that the performance of signal transmission of the coaxial connector can be enhanced and more stable signal transmission and switching without signal distortion can be obtained.
Referring to
And, another preferred embodiment of the invention as shown in
The housing 30 of the coaxial connector 20 is made of metal which can form the grounding, and is made to have a hollow inner side with a circular rib 31 formed on the inner wall of the inner space perpendicular to the axis of the coaxial connector to divide inner space into two compartments of the first cylindrical chamber 32 and the second cylindrical chamber 33 which are connected and adjacent to each other.
In addition, an outlet opening 36 is formed on the wall of the first cylindrical chamber 32 of the housing 30 near the circular rib 31, and can communicate with the first cylindrical chamber 32.
As shown in
Similarly, the parts of bearing piece 74, second conducting rod assembly 90 are installed in the second cylindrical chamber 33 of the housing 30 in sequence. Also, at the main outlet of the second cylindrical space a sealing portion 35 is formed with inside diameter greater than the inside diameter of the second cylindrical chamber 33 for tightly installing and holding the second sealing support 72 which has a center hole 721, and for sealing the main outlet of the second cylindrical chamber 33.
At the outlet opening 36 the third sealing support 73 having a center hole 731 is tightly installed and held for sealing the outlet opening 36, and by employing the center hole 731 the contact piece 80 is installed and held with its front portion extended to the outside of the coaxial connector 20 to form the signal input end of the coaxial connector 20 and its back portion extended into the first cylindrical chamber 32 of the housing 30 of the coaxial connector 20.
The sliding support 40 is an electric insulating part, and is securely installed and fixed inside the first cylindrical chamber 32 against the circular rib 31 inside the housing 30, and on one side of the sliding support 40 a raised hub 41 is formed for installing and fixing the electric conducting block 50, in addition, the sliding support 40 has a sliding center hole 42 for accommodating the center rod 611 of the first conducting rod assembly 60 and the push rod 94 of the second conducting rod assembly 90, and for allowing the center rod 611 and the push rod 94 to move freely in axial direction in the sliding center hole 42.
Referring to FIGS. 3 to 5, the electric conducting block 50 is made of metal, and has a mounting hole 51 for fitting the raised hub 41 of the sliding support 40, so that the electric conducting block 50 can be installed on the raised hub 41. Since the top side of the electric conducting block 50 is a flat surface so that the flat bottom side of the contact piece 80 inside the first cylindrical chamber 32 of the housing 30 can evenly touch the flat top side of the electric conducting block to form flat-surface to flat-surface contact which enables a good electrical connection. Particularly, since both of the left and right side of the electric conducting block 50 perpendicular to the center axis of the sliding center hole 42 are also flat surface, a flat-surface to flat-surface contact between the side surface of the electric conducting block 50 and the moveable cylinder 61 of the first conducting rod assembly 60 can be achieved to enable a good electrical connection. In addition, with this type of structure the damage of distortion or looseness of the contact piece 80 due to the bumping or impact by the movable cylinder 61 of the first conducting rod assembly 60 can be avoided, and more effective signal transmission function of the coaxial connector 20 without signal distortion can be achieved.
Shown in
The first conducting rod assembly 60 comprises a movable cylinder 61, a fixed cylinder 62 and a spring 63 which form a movably connected elastic restoring mechanism by mounting the spring 63 between the movable cylinder 61 and the fixed cylinder 62.
As shown in
Similarly, the conducting rod 621 is formed on the outer end of the fixed cylinder 62, and is fitted into the center hole 711 on the first sealing block 71 when the first conducting rod assembly 60 is installed in the first cylindrical chamber 32 of the housing 30, and the first sealing block 71 is tightly fitted and mounted into the sealing portion 34 of the first cylindrical chamber 32 of the housing 30, so that the first conducting rod assembly 60 can be supported by the first sealing support 71 by means of fitting the conducting rod 621 into the center hole 711 on the first sealing support 71. And, the end portion of the conducting rod 621 of the first conducting rod assembly 60 extended to the outside of coaxial connector 20 forms the signal output end of the coaxial connector 20.
As shown in
As shown in
When the second conducting rod assembly 90 is installed in the second cylindrical chamber 33 of the house 30, the push rod 94 of the second conducting rod assembly 90 can freely extend into the sliding center hole 42 of the sliding support 40, so that one end of the second conducting rod 90 can be supported by sliding support 40. However, one of the example of the preferred embodiment of the invention is having a bearing piece 74 with a center hole 741 tightly installed inside the second cylindrical chamber 33 and tightly fitted against the circular rib 31 to allow the push rod 94 of the second conducting rod assembly 90 to pass through and move freely in the center hole 741 of the bearing support 74, and extended into the sliding center hole 42 of the sliding support 40, i.e. the purpose of design of the bearing support 74 is to provide a support for one end of the second conducting rod assembly 90, and enable a more smooth movement of the push rod 94 of the second conducting rod assembly 90 inside the sliding center hole 42 of the sliding support 40.
In addition to having the push rod 94 of the second conducting rod 90 extended into the sliding center hole 42 of the sliding support 40 the electric conducting pin 92 of the second conducting rod assembly 90 is arranged to pass through the center hole 721 and enter into the inner side 722 of the second sealing support 72 which is tightly installed and fitted into the sealing portion 35 of the second cylindrical chamber 33 of the housing 30 so that through supporting the electric conducting pin 92 the other end of the second conducting rod assembly 90 can be supported by the second sealing support 72.
As shown in
Particularly, when the neck portion 93 of the second conducting rod assembly 90 securely touches and is stopped by the second sealing support 72, the push rod 94 of the second conducting rod assembly 90 is inside the sliding center hole 42 of the sliding support 40, and will cause no electrical connection with the center rod 611 of the first conducting rod assembly 60, this is because while in this condition there is a space between the push rod 94 and the center rod 611.
However, as shown in
Therefore, as shown in
However, when the coaxial connector 20 of the invention is connected to a complementary connector 19, the conducting rod 621 and the contact piece 80 will no longer form electrical connection, but the conducting rod 621 of the first conducting rod assembly 60 and the electric conducting pin 92 of the second conducting rod assembly 90 will form electrical connection, signal can be transmitted from the complementary connector 19 to the conducting rod 621 through the electric conducting pin 92 of the coaxial connector 20. Therefore, the coaxial connector 20 of the invention has the function of switching the direction of transmission of signal without distortion of signal.
Number | Date | Country | Kind |
---|---|---|---|
094208007 | May 2005 | TW | national |